On a definition of multi-Koszul algebras XV International Conference on Representation of Algebras Bielefeld, Germany

Estanislao Herscovich (joint with Andrea Rey) Université Grenoble, Grenoble, France

August 13th - 17th, 2012

Plan of the talk

2 Definition of multi-Koszul algebras

3 Several properties

æ

Plan of the talk

2 Definition of multi-Koszul algebras

æ

A (1) > (1) > (1)

→ ∃ →

Plan of the talk

2 Definition of multi-Koszul algebras

臣

< ∃ >

Short summary on (part of) the history of the subject

- (i) Inspired on work by J.-L. Koszul in the 50's, S. Priddy introduced in 1970 the Koszul property for (graded) algebras, which has been intensively studied later on. They are necessarily quadratic (*i.e.* TV/⟨R⟩ for R ⊆ V^{⊗2}).
- (ii) In 2001, R. Berger defined the generalized Koszul property for homogeneous algebras (*i.e.* TV/⟨R⟩ for R ⊆ V^{⊗N} and N ∈ N≥2). They were independently (defined and) studied by E. Green, E. Marcos, R. Martínez-Villa and P. Zhang (2004).
- (iii) There were other Koszul-like definitions, e.g. almost Koszul algebras introduced by S. Brenner, M. Butler and A. King (2002), δ-Koszul algebras defined by E. Green and E. Marcos (2005), piecewise-Koszul algebras by J.-F. Lü, J.-W. He and D.-M. Lu (2007), K₂ algebras by B. Cassidy and T. Shelton (2008), 2-p-Koszul algebras defined by E. Green and E. Marcos (2011), etc.

Short summary on (part of) the history of the subject

- (i) Inspired on work by J.-L. Koszul in the 50's, S. Priddy introduced in 1970 the Koszul property for (graded) algebras, which has been intensively studied later on. They are necessarily quadratic (*i.e.* TV/⟨R⟩ for R ⊆ V^{⊗2}).
- (ii) In 2001, R. Berger defined the generalized Koszul property for homogeneous algebras (*i.e.* TV/⟨R⟩ for R ⊆ V^{⊗N} and N ∈ N_{≥2}). They were independently (defined and) studied by E. Green, E. Marcos, R. Martínez-Villa and P. Zhang (2004).
- (iii) There were other Koszul-like definitions, e.g. almost Koszul algebras introduced by S. Brenner, M. Butler and A. King (2002), δ-Koszul algebras defined by E. Green and E. Marcos (2005), piecewise-Koszul algebras by J.-F. Lü, J.-W. He and D.-M. Lu (2007), K₂ algebras by B. Cassidy and T. Shelton (2008), 2-p-Koszul algebras defined by E. Green and E. Marcos (2011), etc.

Short summary on (part of) the history of the subject

- (i) Inspired on work by J.-L. Koszul in the 50's, S. Priddy introduced in 1970 the Koszul property for (graded) algebras, which has been intensively studied later on. They are necessarily quadratic (*i.e.* TV/⟨R⟩ for R ⊆ V^{⊗2}).
- (ii) In 2001, R. Berger defined the generalized Koszul property for homogeneous algebras (*i.e.* TV/⟨R⟩ for R ⊆ V^{⊗N} and N ∈ N_{≥2}). They were independently (defined and) studied by E. Green, E. Marcos, R. Martínez-Villa and P. Zhang (2004).
- (iii) There were other *Koszul-like* definitions, *e.g.* almost Koszul algebras introduced by S. Brenner, M. Butler and A. King (2002), δ-Koszul algebras defined by E. Green and E. Marcos (2005), piecewise-Koszul algebras by J.-F. Lü, J.-W. He and D.-M. Lu (2007), *K*₂ algebras by B. Cassidy and T. Shelton (2008), 2-*p*-Koszul algebras defined by E. Green and E. Marcos (2011), etc.

Let k be a field, and A be a finitely generated nonnegatively graded connected algebra which is generated in degree 1, *i.e.* $A \simeq TV/I$, where V is concentrated in degree 1. We assume that $V \simeq A_{\geq 0}/(A_{\geq 0}, A_{\geq 0})$ and $I \subseteq TV_{\geq 2}$ to avoid redundancy. Let $R = \bigoplus_{s \in S} R_s \subseteq I$ be a **space of relations** of A, *i.e.* $R \simeq I/(TV_{\geq 0}I + ITV_{\geq 0})$ and suppose dim $(R) < +\infty$. For $s \in \mathbb{N}_{\geq 2}$, consider $n_s : \mathbb{N}_0 \to \mathbb{N}_0$ given by $n_s(2m) = sm$ and $n_s(2m + 1) = sm + 1$, for $m \in \mathbb{N}_0$. If $s \in S$, we will denote

$$J_i^s = \bigcap_{j=0}^{n_s(i)-s} V^{\otimes j} \otimes R_s \otimes V^{\otimes (n_s(i)-s-j)},$$

for $i \geq 2$,

御 と く き と く き

Let k be a field, and A be a finitely generated nonnegatively graded connected algebra which is generated in degree 1, *i.e.* $A \simeq TV/I$, where V is concentrated in degree 1. We assume that $V \simeq A_{>0}/(A_{>0}.A_{>0})$ and $I \subseteq TV_{\geq 2}$ to avoid redundancy. Let $R = \bigoplus_{s \in S} R_s \subseteq I$ be a space of relations of A, *i.e.* $R \simeq I/(TV_{>0}I + ITV_{>0})$ and suppose dim $(R) < +\infty$. For $s \in \mathbb{N}_{\geq 2}$, consider $n_s : \mathbb{N}_0 \to \mathbb{N}_0$ given by $n_s(2m) = sm$ and $n_s(2m+1) = sm+1$, for $m \in \mathbb{N}_0$. If $s \in S$, we will denote

$$J_i^s = \bigcap_{j=0}^{n_s(i)-s} V^{\otimes j} \otimes R_s \otimes V^{\otimes (n_s(i)-s-j)},$$

for $i \geq 2$,

▲□ ▶ ▲ □ ▶ ▲ □

Let k be a field, and A be a finitely generated nonnegatively graded connected algebra which is generated in degree 1, *i.e.* $A \simeq TV/I$, where V is concentrated in degree 1. We assume that $V \simeq A_{>0}/(A_{>0}.A_{>0})$ and $I \subseteq TV_{\geq 2}$ to avoid redundancy. Let $R = \bigoplus_{s \in S} R_s \subseteq I$ be a **space of relations** of A, *i.e.* $R \simeq I/(TV_{>0}I + ITV_{>0})$ and suppose dim $(R) < +\infty$. For $s \in \mathbb{N}_{\geq 2}$, consider $n_s : \mathbb{N}_0 \to \mathbb{N}_0$ given by $n_s(2m) = sm$ and $n_s(2m+1) = sm+1$, for $m \in \mathbb{N}_0$. If $s \in S$, we will denote

$$J_i^s = \bigcap_{j=0}^{n_s(i)-s} V^{\otimes j} \otimes R_s \otimes V^{\otimes (n_s(i)-s-j)},$$

for $i \geq 2$,

・ 同 ト ・ ヨ ト ・ ヨ ト

Let k be a field, and A be a finitely generated nonnegatively graded connected algebra which is generated in degree 1, *i.e.* $A \simeq TV/I$, where V is concentrated in degree 1. We assume that $V \simeq A_{>0}/(A_{>0}.A_{>0})$ and $I \subseteq TV_{\geq 2}$ to avoid redundancy. Let $R = \bigoplus_{s \in S} R_s \subseteq I$ be a **space of relations** of A, *i.e.* $R \simeq I/(TV_{>0}I + ITV_{>0})$ and suppose dim $(R) < +\infty$. For $s \in \mathbb{N}_{\geq 2}$, consider $n_s : \mathbb{N}_0 \to \mathbb{N}_0$ given by $n_s(2m) = sm$ and $n_s(2m+1) = sm+1$, for $m \in \mathbb{N}_0$. If $s \in S$, we will denote

$$J_i^s = \bigcap_{j=0}^{n_s(i)-s} V^{\otimes j} \otimes R_s \otimes V^{\otimes (n_s(i)-s-j)},$$

for $i \geq 2$,

白 ト イヨト イヨト

Let k be a field, and A be a finitely generated nonnegatively graded connected algebra which is generated in degree 1, *i.e.* $A \simeq TV/I$, where V is concentrated in degree 1. We assume that $V \simeq A_{>0}/(A_{>0}.A_{>0})$ and $I \subseteq TV_{\geq 2}$ to avoid redundancy. Let $R = \bigoplus_{s \in S} R_s \subseteq I$ be a **space of relations** of A, *i.e.* $R \simeq I/(TV_{>0}I + ITV_{>0})$ and suppose dim $(R) < +\infty$. For $s \in \mathbb{N}_{\geq 2}$, consider $n_s : \mathbb{N}_0 \to \mathbb{N}_0$ given by $n_s(2m) = sm$ and $n_s(2m+1) = sm+1$, for $m \in \mathbb{N}_0$. If $s \in S$, we will denote

$$J_i^{s} = \bigcap_{j=0}^{n_{s}(i)-s} V^{\otimes j} \otimes R_{s} \otimes V^{\otimes (n_{s}(i)-s-j)},$$

for $i \geq 2$,

同 ト イヨト イヨト

Let k be a field, and A be a finitely generated nonnegatively graded connected algebra which is generated in degree 1, *i.e.* $A \simeq TV/I$, where V is concentrated in degree 1. We assume that $V \simeq A_{>0}/(A_{>0}.A_{>0})$ and $I \subseteq TV_{\geq 2}$ to avoid redundancy. Let $R = \bigoplus_{s \in S} R_s \subseteq I$ be a **space of relations** of A, *i.e.* $R \simeq I/(TV_{>0}I + ITV_{>0})$ and suppose dim $(R) < +\infty$. For $s \in \mathbb{N}_{\geq 2}$, consider $n_s : \mathbb{N}_0 \to \mathbb{N}_0$ given by $n_s(2m) = sm$ and $n_s(2m+1) = sm+1$, for $m \in \mathbb{N}_0$. If $s \in S$, we will denote

$$J_i^{s} = \bigcap_{j=0}^{n_{s}(i)-s} V^{\otimes j} \otimes R_s \otimes V^{\otimes (n_{s}(i)-s-j)},$$

for $i \geq 2$,

$$J_i = \bigoplus_{s \in S} J_i^s,$$

if $i \ge 2$, and $J_i = V^{\otimes i}$, if i = 0, 1.

Definition

The (left) multi-Koszul complex $(K(A)_{\bullet}, \delta_{\bullet})$ of A is defined by $K(A)_0 = A$, $K(A)_1 = A \otimes V$ and $K(A)_i = A \otimes J_i$ for $i \ge 2$, with differential δ_{\bullet} , where δ_1 is induced by the multiplication on A, and, for $i \ge 2$,

 $\delta_i: A \otimes J_i \to A \otimes J_{i-1}$

is given by the restriction of the map $\hat{\delta}_i : A \otimes (\bigoplus_{s \in S} V^{\otimes n_s(i)}) \to A \otimes (\bigoplus_{s \in S} V^{\otimes n_s(i-1)})$, where

$$\hat{\delta}_{i}(\alpha \otimes v_{j_{1}} \cdots v_{j_{n_{s}(i)}}) = \begin{cases} \alpha v_{j_{1}} \cdots v_{j_{s-1}} \otimes v_{j_{s}} \cdots v_{j_{n_{s}(i)}}, & \text{if } i \text{ is even,} \\ \alpha v_{j_{1}} \otimes v_{j_{2}} \cdots v_{j_{n_{s}(i)}}, & \text{if } i \text{ is odd,} \end{cases}$$

for $s \in S$. We say that A is **(left) multi-Koszul** if $(K(A)_{\bullet}, d_{\bullet})$ is acyclic in positive degrees.

イロト イポト イヨト イヨト

Definition

The (left) multi-Koszul complex $(K(A)_{\bullet}, \delta_{\bullet})$ of A is defined by $K(A)_0 = A$, $K(A)_1 = A \otimes V$ and $K(A)_i = A \otimes J_i$ for $i \ge 2$, with differential δ_{\bullet} , where δ_1 is induced by the multiplication on A, and, for $i \ge 2$,

$$\delta_i: A \otimes J_i \to A \otimes J_{i-1}$$

is given by the restriction of the map $\hat{\delta}_i : A \otimes (\bigoplus_{s \in S} V^{\otimes n_s(i)}) \to A \otimes (\bigoplus_{s \in S} V^{\otimes n_s(i-1)})$, where

$$\hat{\delta}_{i}(\alpha \otimes \mathsf{v}_{j_{1}} \cdots \mathsf{v}_{j_{n_{s}(i)}}) = \begin{cases} \alpha \mathsf{v}_{j_{1}} \cdots \mathsf{v}_{j_{s-1}} \otimes \mathsf{v}_{j_{s}} \cdots \mathsf{v}_{j_{n_{s}(i)}}, & \text{if } i \text{ is even,} \\ \alpha \mathsf{v}_{j_{1}} \otimes \mathsf{v}_{j_{2}} \cdots \mathsf{v}_{j_{n_{s}(i)}}, & \text{if } i \text{ is odd,} \end{cases}$$

for $s \in S$.

We say that A is (left) multi-Koszul if $(K(A)_{\bullet}, d_{\bullet})$ is acyclic in positive degrees.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

The **(left) multi-Koszul complex** $(K(A)_{\bullet}, \delta_{\bullet})$ of A is defined by $K(A)_0 = A$, $K(A)_1 = A \otimes V$ and $K(A)_i = A \otimes J_i$ for $i \ge 2$, with differential δ_{\bullet} , where δ_1 is induced by the multiplication on A, and, for $i \ge 2$,

$$\delta_i: A \otimes J_i \to A \otimes J_{i-1}$$

is given by the restriction of the map $\hat{\delta}_i : A \otimes (\bigoplus_{s \in S} V^{\otimes n_s(i)}) \to A \otimes (\bigoplus_{s \in S} V^{\otimes n_s(i-1)})$, where

$$\hat{\delta}_{i}(\alpha \otimes \mathsf{v}_{j_{1}} \cdots \mathsf{v}_{j_{n_{s}(i)}}) = \begin{cases} \alpha \mathsf{v}_{j_{1}} \cdots \mathsf{v}_{j_{s-1}} \otimes \mathsf{v}_{j_{s}} \cdots \mathsf{v}_{j_{n_{s}(i)}}, & \text{if } i \text{ is even,} \\ \alpha \mathsf{v}_{j_{1}} \otimes \mathsf{v}_{j_{2}} \cdots \mathsf{v}_{j_{n_{s}(i)}}, & \text{if } i \text{ is odd,} \end{cases}$$

for $s \in S$.

We say that A is (left) multi-Koszul if $(K(A)_{\bullet}, d_{\bullet})$ is acyclic in positive degrees.

A (10) < A (10) < A (10) </p>

Examples and comments

Proposition

Let $\{B^s : s \in S\}$, where $S \subseteq \mathbb{N}_{\geq 2}$, be a finite collection of homogeneous algebras such that B^s is s-Koszul, for each $s \in S$. Then, the free product $A = \coprod_{s \in S} B^s$ of the collection $\{B^s : s \in S\}$ is a multi-Koszul algebra.

Remark

The (left) multi-Koszul property is not equivalent to the trivial A-module k having a minimal projective resolution $(P_{\bullet}, d_{\bullet})$ whose *i*-th projective P_i is generated in degrees $\{n_s(i) : s \in S\}$, for all $i \in \mathbb{N}_0$. For instance, for $A = k\langle x, y, z \rangle / \langle x^2y, z^2x \rangle *_k k \langle u \rangle / \langle u^4 \rangle$, the *i*-th projective module of the minimal projective resolution of k is pure in degrees $n_3(i)$ and $n_4(i)$, for all $i \in \mathbb{N}_0$, but it is not multi-Koszul.

イロト イポト イヨト イヨト

Examples and comments

Proposition

Let $\{B^s : s \in S\}$, where $S \subseteq \mathbb{N}_{\geq 2}$, be a finite collection of homogeneous algebras such that B^s is s-Koszul, for each $s \in S$. Then, the free product $A = \coprod_{s \in S} B^s$ of the collection $\{B^s : s \in S\}$ is a multi-Koszul algebra.

Remark

The (left) multi-Koszul property is not equivalent to the trivial A-module k having a minimal projective resolution $(P_{\bullet}, d_{\bullet})$ whose *i*-th projective P_i is generated in degrees $\{n_s(i) : s \in S\}$, for all $i \in \mathbb{N}_0$. For instance, for $A = k\langle x, y, z \rangle / \langle x^2 y, z^2 x \rangle *_k k\langle u \rangle / \langle u^4 \rangle$, the *i*-th projective module of the minimal projective resolution of k is pure in degrees $n_3(i)$ and $n_4(i)$, for all $i \in \mathbb{N}_0$, but it is not multi-Koszul.

Examples and comments

Proposition

Let $\{B^s : s \in S\}$, where $S \subseteq \mathbb{N}_{\geq 2}$, be a finite collection of homogeneous algebras such that B^s is s-Koszul, for each $s \in S$. Then, the free product $A = \coprod_{s \in S} B^s$ of the collection $\{B^s : s \in S\}$ is a multi-Koszul algebra.

Remark

The (left) multi-Koszul property is not equivalent to the trivial A-module k having a minimal projective resolution $(P_{\bullet}, d_{\bullet})$ whose *i*-th projective P_i is generated in degrees $\{n_s(i) : s \in S\}$, for all $i \in \mathbb{N}_0$. For instance, for $A = k\langle x, y, z \rangle / \langle x^2 y, z^2 x \rangle *_k k \langle u \rangle / \langle u^4 \rangle$, the *i*-th projective module of the minimal projective resolution of k is pure in degrees $n_3(i)$ and $n_4(i)$, for all $i \in \mathbb{N}_0$, but it is not multi-Koszul.

イロト イポト イヨト イヨト

An equivalent description

Proposition

The following are equivalent

(i) A is left (resp., right) multi-Koszul algebra

(ii) There is an isomorphism of graded vector spaces $\operatorname{Tor}_{i}^{\mathcal{A}}(k,k) \simeq J_{i} = \bigoplus_{s \in S} J_{i}^{s}$, for all $i \in \mathbb{N}_{0}$.

(iii) There is an isomorphism of graded vector spaces $\mathcal{E} \times t^{i}_{A}(k,k) \simeq J^{\#}_{i}$, for all $i \in \mathbb{N}_{0}$.

An equivalent description

Proposition

The following are equivalent

- (i) A is left (resp., right) multi-Koszul algebra
- (ii) There is an isomorphism of graded vector spaces $\operatorname{Tor}_{i}^{A}(k,k) \simeq J_{i} = \bigoplus_{s \in \mathcal{S}} J_{i}^{s}$, for all $i \in \mathbb{N}_{0}$.

iii) There is an isomorphism of graded vector spaces $\mathcal{E}xt^{i}_{A}(k,k) \simeq J^{\#}_{i}$, for all $i \in \mathbb{N}_{0}$.

An equivalent description

Proposition

The following are equivalent

- (i) A is left (resp., right) multi-Koszul algebra
- (ii) There is an isomorphism of graded vector spaces $\operatorname{Tor}_{i}^{A}(k,k) \simeq J_{i} = \bigoplus_{s \in S} J_{i}^{s}$, for all $i \in \mathbb{N}_{0}$.
- (iii) There is an isomorphism of graded vector spaces $\mathcal{E}xt_A^i(k,k) \simeq J_i^{\#}$, for all $i \in \mathbb{N}_0$.

Relation to (generalized) Koszul components

Given $A = TV/\langle R \rangle$, where $R = \bigoplus_{s \in S} R_s$, we define the **associated** *s*-homogeneous component A^s of A given by $TV/\langle R_s \rangle$.

[heorem]

The following conditions are equivalent:

(i) A is (left) multi-Koszul.

(ii) For each s ∈ S, A^s is s-Koszul, r-pdim_{As}(A) ≤ 1, and Ker(δ₂) = ⊕_{s∈S}(Ker(δ₂) ∩ (A ⊗ R_s)), where δ₂ : A ⊗ R → A ⊗ V is the second differential of the left multi-Koszul complex of A.

Relation to (generalized) Koszul components

Given $A = TV/\langle R \rangle$, where $R = \bigoplus_{s \in S} R_s$, we define the **associated** *s*-homogeneous component A^s of A given by $TV/\langle R_s \rangle$.

Theorem

The following conditions are equivalent:

(i) A is (left) multi-Koszul.

(ii) For each s ∈ S, A^s is s-Koszul, r-pdim_{A^s}(A) ≤ 1, and Ker(δ₂) = ⊕_{s∈S}(Ker(δ₂) ∩ (A ⊗ R_s)), where δ₂ : A ⊗ R → A ⊗ V is the second differential of the left multi-Koszul complex of A.

Relation to (generalized) Koszul components

Given $A = TV/\langle R \rangle$, where $R = \bigoplus_{s \in S} R_s$, we define the **associated** *s*-homogeneous component A^s of A given by $TV/\langle R_s \rangle$.

Theorem

The following conditions are equivalent:

(i) A is (left) multi-Koszul.

(ii) For each $s \in S$, A^s is s-Koszul, r-pdim_{A^s} $(A) \le 1$, and $\operatorname{Ker}(\delta_2) = \bigoplus_{s \in S} (\operatorname{Ker}(\delta_2) \cap (A \otimes R_s))$, where $\delta_2 : A \otimes R \to A \otimes V$ is the second differential of the left multi-Koszul complex of A.

A (10) < A (10) < A (10) </p>

The Yoneda algebra

By the functoriality of the Yoneda algebra construction, the morphisms of algebras $TV \rightarrow A^s$ and $A^s \rightarrow A$, for $s \in S$, induce morphisms $E(A) \rightarrow E(A^s)$ and $E(A^s) \rightarrow E(TV)$, for $s \in S$.

Proposition

The algebra E(A) of a multi-Koszul algebra A is the inverse limit in the category of graded algebras of the system given by $\{E(A^s) \rightarrow E(TV), \text{ for } s \in S\}.$

Corollary

The graded algebra E(A) of a multi-Koszul algebra A is generated by $E^1(A) = \operatorname{Ext}_A^1(k, k)$ and $E^2(A) = \operatorname{Ext}_A^2(k, k)$, i.e. it is \mathcal{K}_2 (in the sense of T. Cassidy and B. Shelton). Moreover, the A_{∞} -algebra structure of E(A) can be easily computed computed in an explicit manner.

The Yoneda algebra

By the functoriality of the Yoneda algebra construction, the morphisms of algebras $TV \rightarrow A^s$ and $A^s \rightarrow A$, for $s \in S$, induce morphisms $E(A) \rightarrow E(A^s)$ and $E(A^s) \rightarrow E(TV)$, for $s \in S$.

Proposition

The algebra E(A) of a multi-Koszul algebra A is the inverse limit in the category of graded algebras of the system given by $\{E(A^s) \rightarrow E(TV), \text{ for } s \in S\}.$

Corollary

The graded algebra E(A) of a multi-Koszul algebra A is generated by $E^1(A) = \operatorname{Ext}_A^1(k, k)$ and $E^2(A) = \operatorname{Ext}_A^2(k, k)$, i.e. it is \mathcal{K}_2 (in the sense of T. Cassidy and B. Shelton). Moreover, the A_{∞} -algebra structure of E(A) can be easily computed computed in an explicit manner.

The Yoneda algebra

By the functoriality of the Yoneda algebra construction, the morphisms of algebras $TV \rightarrow A^s$ and $A^s \rightarrow A$, for $s \in S$, induce morphisms $E(A) \rightarrow E(A^s)$ and $E(A^s) \rightarrow E(TV)$, for $s \in S$.

Proposition

The algebra E(A) of a multi-Koszul algebra A is the inverse limit in the category of graded algebras of the system given by $\{E(A^s) \rightarrow E(TV), \text{ for } s \in S\}.$

Corollary

The graded algebra E(A) of a multi-Koszul algebra A is generated by $E^1(A) = \operatorname{Ext}_A^1(k, k)$ and $E^2(A) = \operatorname{Ext}_A^2(k, k)$, i.e. it is \mathcal{K}_2 (in the sense of T. Cassidy and B. Shelton). Moreover, the A_{∞} -algebra structure of E(A) can be easily computed computed in an explicit manner.

The Yoneda algebra (cont.)

- (i) There is a quasi-isomorphism of A_∞-algebras from E(A) to the A_∞-algebra given by the cohomology of the inverse limit in the category of differential graded algebras of the system {F_s : B(A^s)* → B(TV)*, for s ∈ S}.
- (ii) On the other hand, using the Merkulov's procedure to obtain a canonical A_∞-algebra structure on the homology of a differential graded algebra, it is trivial to see that we may choose the higher multiplications of the inverse limit such that m_n(a₁ ⊗ · · · ⊗ a_n) = 0 if there are indices 1 ≤ i ≠ j ≤ n satisfying that a_i ∈ E^{d_i}(A^s) and a_j ∈ E^{d_j}(A^{s'}) for s ≠ s', and d_i, d_j > 1.
- (iii) Finally, the restriction of the higher multiplication m_n of E(A) to each E(A^s)^{⊗n} is given by the corresponding Merkulov's construction of the higher multiplication of E(A^s), for each s ∈ S, which were completely described by J.-W. He and D.-M. Lu.

The Yoneda algebra (cont.)

- (i) There is a quasi-isomorphism of A_∞-algebras from E(A) to the A_∞-algebra given by the cohomology of the inverse limit in the category of differential graded algebras of the system {F_s : B(A^s)* → B(TV)*, for s ∈ S}.
- (ii) On the other hand, using the Merkulov's procedure to obtain a canonical A_{∞} -algebra structure on the homology of a differential graded algebra, it is trivial to see that we may choose the higher multiplications of the inverse limit such that $m_n(a_1 \otimes \cdots \otimes a_n) = 0$ if there are indices $1 \le i \ne j \le n$ satisfying that $a_i \in E^{d_i}(A^s)$ and $a_j \in E^{d_j}(A^{s'})$ for $s \ne s'$, and $d_i, d_j > 1$.
- (iii) Finally, the restriction of the higher multiplication m_n of E(A) to each E(A^s)^{⊗n} is given by the corresponding Merkulov's construction of the higher multiplication of E(A^s), for each s ∈ S, which were completely described by J.-W. He and D.-M. Lu.

The Yoneda algebra (cont.)

- (i) There is a quasi-isomorphism of A_∞-algebras from E(A) to the A_∞-algebra given by the cohomology of the inverse limit in the category of differential graded algebras of the system {F_s : B(A^s)* → B(TV)*, for s ∈ S}.
- (ii) On the other hand, using the Merkulov's procedure to obtain a canonical A_{∞} -algebra structure on the homology of a differential graded algebra, it is trivial to see that we may choose the higher multiplications of the inverse limit such that $m_n(a_1 \otimes \cdots \otimes a_n) = 0$ if there are indices $1 \le i \ne j \le n$ satisfying that $a_i \in E^{d_i}(A^s)$ and $a_j \in E^{d_j}(A^{s'})$ for $s \ne s'$, and $d_i, d_j > 1$.
- (iii) Finally, the restriction of the higher multiplication m_n of E(A) to each $E(A^s)^{\otimes n}$ is given by the corresponding Merkulov's construction of the higher multiplication of $E(A^s)$, for each $s \in S$, which were completely described by J.-W. He and D.-M. Lu.