Spherelike Twist Functors

Andreas Hochenegger

University of Cologne, Germany

ICRA 2012

This talk is about a joint work with Martin Kalck and David Ploog. A preprint is available on-line: arXiv:1208.4046 .

Protagonists

Notation

Let \mathcal{D} be a **k**-linear algebraic triangulated category with Serre functor. All triangles are meant to be distinguished, and all functors exact.

Definition

An object F in \mathcal{D} is called *d*-spherelike \Leftrightarrow Hom[•] $(F, F) = \mathbf{k} \oplus \mathbf{k}[-d]$ *d*-Sphere *d*-spherical \Leftrightarrow F is *d*-spherelike and Hom[•] $(F, \cdot) = \text{Hom}^{•}(\cdot, F[d])^{*}$ *d*-Calabi-Yau

Definition

For any object F in \mathcal{D} there is the *evaluation map* Hom[•] $(F, \cdot) \otimes F \rightarrow \text{id}$.

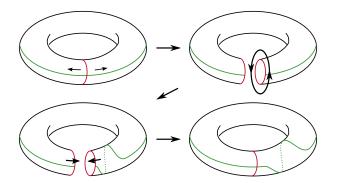
We define the twist functor T_F as its cone. So the functor fits into the triangle $\operatorname{Hom}^{\bullet}(F, \cdot) \otimes F \to \operatorname{id} \to T_F.$

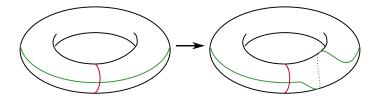
If *F* spherelike, we call T_F a spherelike twist functor. Analogously, T_F is called spherical twist functor, if *F* is spherical.

Theorem (Paul Seidel and Richard Thomas)

Let F be non-zero. F is spherical $\Leftrightarrow T_F$ is an auto-equivalence. Paul Seidel and Richard Thomas were motivated by mirror symmetry. In algebraic geometry, a typical example is a (-2)-curve C on a smooth projective surface X. Then $F = \mathcal{O}_C$ is 2-spherical and T_F is an auto-equivalence of $\mathcal{D}^b(X)$.

On the symplectic side, this twist corresponds to a Dehn twist.

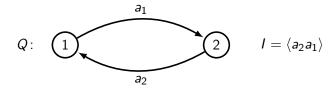




There are some immediate similarities:

- $T_F(F) = F[1 d] \quad \leftrightarrow \text{ rotating red circle}$
- $\mathsf{T}_{\!\mathit{F}} = \mathsf{id} \ \mathsf{when} \ \mathsf{restricted} \ \mathsf{to} \ \mathit{F}^{\perp} \quad \leftrightarrow \quad \mathsf{outside} \ \mathsf{red} \ \mathsf{cirle}$
 - outside red cirle
 essentially nothing happens

Spherical Example: Quiver Algebra $A = \mathbf{k}Q/I$

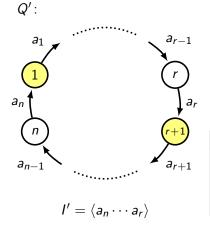


The simple A-module S(1) has the projective resolution 0 o P(1) o P(2) o P(1) o S(1) o 0

Easy calculation:

$$\begin{array}{l} \mathsf{Hom}^{\bullet}(S(1),S(1)) = \mathsf{k} \oplus \mathsf{k}[-2] \\ S(1) \text{ is 2-Calabi-Yau} \end{array} \right\} \Rightarrow S(1) \text{ is 2-spherical}$$

Spherelike Example: Quiver Algebra $A' = \mathbf{k}Q'/I'$



Choosing idempotent $e = e_1 + e_{r+1}$:

 $\mathcal{D}^b(A)\cong \mathcal{D}^b(eA'e)$

Fully faithful embedding: $j: \mathcal{D}^b(A) \hookrightarrow \mathcal{D}^b(A')$ (induced by functor $A'e \otimes_{eA'e} \cdot$)

Result

- $\Rightarrow j(S(1)) \text{ is still 2-spherelike,} \\ \text{but not 2-spherical.}$
- $\Rightarrow T_{j(S(1))}$ is not an equivalence.

The Spherical Subcategory

Let F be d-spherelike but not d-spherical. Denote the Serre functor of \mathcal{D} by S. Then

$$\operatorname{Hom}^{\bullet}(F,F) = \operatorname{Hom}^{\bullet}(F,\mathsf{S}(F))^* \ncong \operatorname{Hom}^{\bullet}(F,F[d])^*$$

We can compare $\omega(F) := S(F)[-d]$ and F. By Serre duality

$$\operatorname{Hom}^{\bullet}(F,\omega(F)) = \operatorname{Hom}^{\bullet}(F,F)^{*}[-d] = \mathbf{k} \oplus \mathbf{k}[-d]$$

 \Rightarrow canonical map

$$w \colon F \to \omega(F)$$

(even for the case d = 0, which needs more care)

Using the canonical map, we define the

 $F \xrightarrow{w} \omega(F) \rightarrow Q_F$ aspherical triangle

Properties of Q_F

• F spherical $\Leftrightarrow Q_F$ is zero

■ Hom[•](*F*, *Q_F*) vanishes

Main Definition

Let F be a spherelike object in \mathcal{D} .

- $\mathcal{D}_F := {}^{\perp}Q_F$ spherical subcategory
- $\mathcal{Q}_F := \mathcal{D}_F^{\perp}$ aspherical subcategory

Main Theorem

Theorem

Let F be a d-spherelike object in \mathcal{D} . Then F is d-spherical in \mathcal{D}_F . Moreover, T_F induces auto-equivalences of \mathcal{D}_F and \mathcal{Q}_F .

Sketch of the Proof

Easy:
$$T_F|_{\mathcal{Q}_F} = id_{\mathcal{Q}_F}$$
 by $F \in \mathcal{D}_F = {}^{\perp}\mathcal{Q}_F$.
 $T_F|_{\mathcal{D}_F}$: Apply Hom[•](A, \cdot) to the aspherical triangle
Hom[•](A, F) \longrightarrow Hom[•]($A, \omega(F)$) \longrightarrow Hom[•](A, Q_F)
 $=$ Hom[•]($F, A[d]$)* $= 0$

so F is d-spherical in \mathcal{D}_F .

Warning: \mathcal{D}_F has no Serre functor in general. Theorem of Seidel and Thomas does not apply here.

11 of 12

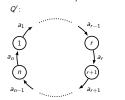
Spherelike Example, Revisited

Special situation:
$$j: \mathcal{D}^b(A) \hookrightarrow \mathcal{D}^b(A')$$

has right adjoint *i* such that $i \circ j = id$.

Proposition

For F = j(S(1)) holds $\mathcal{D}^b(A')_F = \langle \mathcal{D}^b(A)^{\perp} \cap {}^{\perp}F, \mathcal{D}^b(A) \rangle$



 $I' = \langle a_n \cdots a_r \rangle$

 $A = \mathbf{k}Q/I$

a₁

a2

 $I = \langle a_2 a_1
angle$ $A' = \mathbf{k} Q' / I'$

2

Q:

Using this proposition, we calculate $\mathcal{D}^{b}(A')_{F} \cong \langle S(k), k = 2, ..., r - 1 \rangle \times$ $\times \langle S(k), k = r + 2, ..., n - 1 \rangle \times \mathcal{D}^{b}(A)$ $\cong \mathcal{D}^{b}(\vec{A}_{r-2}) \times \mathcal{D}^{b}(\vec{A}_{n-r-2}) \times \mathcal{D}^{b}(A)$

with \vec{A}_m the path algebra of $1 \rightarrow \cdots \rightarrow m$.

12 of 12