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R a fixed commutative artin ring
algebra = an artin algebra over R
A an algebra
modA = the category of all finitely generated right A-modules
indA = the full subcategory of modA formed by all indecomposable
modules

K0(A) the Grothendieck group of A
[M ] the image of a A-module M in K0(A)

[M ] = [N ] for two modules M,N ∈ modA
⇔

M,N have the same composition factors including the multiplicities
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ΓA the Auslander-Reiten quiver of A
τA = DTr the Auslander-Reiten translations in modA
component of ΓA = connected component of ΓA

C a component of ΓA

section Σ of C= a full connected valued subquiver Σ which:

has no oriented cycles,
is convex in C,
intersects each τA-orbit of C exactly once,

Σ is faithful provided the direct sum of all modules lying on Σ is a
faithful A-module
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H a hereditary algebra
T ∈ modH
T is a tilting H-module:

Ext1
H(T, T ) = 0

the number of pairwise nonisomorphic indecomposable direct
summands = rank of K0(H)

A is a tilted algebra if and only if A = EndH(T ), where H is a
hereditary algebra and T is a tilting module in modH
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(F(T ), T (T )) = torsion pair in modH:
torsion-free part F(T ) = {X ∈ modH|HomH(T,X) = 0}
torsion part T (T ) = {X ∈ modH|Ext1

H(T,X) = 0}
(Y(T ),X (T )) = torsion pair in modB:

torsion-free part Y(T ) = {Y ∈ modB|TorB1 (Y, T ) = 0}
torsion part X (T ) = {Y ∈ modB|Y ⊗B T = 0}

Brenner-Butler Theorem.
HomH(T,−) : modH → modB induces T (T ) ' Y(T )
Ext1

H(T,−) : modH → modB induces F(T ) ' X (T )
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I indecomposable injective H-module
MI = HomH(T, I) ∈ C an indecomposable B-module

The modules MI = HomH(T, I) ∈ C, with I indecomposable injective
H-modules, form a faithful section ∆T of the connecting
component C = CT of ΓB determined by T .

∆T connects the torsion-free part Y(T ) with the torsion part X (T ):
- every predecessor in indB of a module MI from ∆T lies in Y(T ),
- every successor of τ−BMI in indB lies in X (T ).



Tilted algebras and short chains of modules
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CT
pdBY 6 1 for any indecomposable module Y in Y(T )

idBX 6 1 for any indecomposable module X in X (T )
gldimB 6 2
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The Criterion of Liu and Skowroński.
Let B be an indecomposable algebra. Then B is a tilted algebra

if and only if

ΓB admits a component C with a faithful section ∆ such that
HomB(X, τBY ) = 0 for all modules X and Y in ∆.

Moreover, if this is the case and T ∗
∆ is the direct sum of all

indecomposable modules lying on ∆, then:
H∆ = EndB(T ∗

∆) is an indecomposable hereditary algebra,
T∆ = D(T ∗

∆) is a tilting module in modH∆,
the tilted algebra B∆ = EndH∆

(T∆) is the basic algebra of B.
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cycle in modA = a sequence M0 →M1 → ...→Mt = M0 of nonzero
nonisomorphisms, where Mi are indecomposable, t > 1
short cycle in modA = a cycle with t 6 2

Theorem (Reiten, Skowroński, Smalø).
Let M,N be indecomposable modules over artin algebra A such that
[M ] = [N ]. If M does not lie on a short cycle, then M ∼= N .

short chain of modules = a chain of nonzero homomorphisms

X →M → τAX,

with X ∈ indA
M = the middle of this short chain
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Proposition.
M ∈ indA:
M lies on a short cycle ⇔M is the middle of a short chain.

⇐ Reiten, Skowroński, Smalø
⇒ Happel, Liu

Theorem (Reiten, Skowroński, Smalø).
Let A be an artin algebra and assume that there is a sincere module
M which is not the middle of a short chain. Then gldimA 6 2 and for
any module X in indA we have pdAX 6 1 or idAX 6 1.
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Motivation:

H a hereditary algebra
T a tilting module in modH
B = EndH(T ) the associated tilted algebra

MT = ⊕MI the direct sum of all indecomposable modules MI

forming the canonical section ∆T of the connecting component CT of
ΓB determined by T

Then MT is a sincere B-module which is not the middle of a short
chain in modB.
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Reiten, Skowroński, Smalø ’93

It would be interesting to know whether
the existence of a sincere A-module M that is not the middle of a

short chain implies that A is a tilted algebra.

Proved in the case: A is of finite representation type and M is
indecomposable.

Theorem (Happel, Reiten, Smalø).
Let A be an artin algebra and X a sincere module in indA which does
not lie on a short cycle. Then X does not lie on a cycle in modA.

In particular, we have:
X a sincere indecomposable module in modA which is not the middle
of a short chain ⇒ X is a sincere directing module in indA

Ringel
⇒ A is a tilted algebra and X lies on
a section of a connecting component of ΓA
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THEOREM 1.
An artin algebra A is a tilted algebra if and only if modA admits a
sincere module M which is not the middle of a short chain.

Idea of the proof:
A an artin algebra
M a sincere module in modA which is not the middle of a short chain

Then A is a quasitilted algebra ( Reiten, Skowroński, Smalø).
Hence A is a tilted algebra or a quasitilted algebra of canonical type
(by the theorem of Happel and Reiten).
Assume A is a quasitilted algebra which is not tilted.
Applying results on the structure of the module category of a
quasitilted algebra of canonical type (established by
Lenzing-Skowroński, Meltzer, Ringel, ...) we prove that modA has no
sincere module which is not the middle of a short chain.
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Characterization of modules not being the middle of short chains of
modules:

THEOREM 2.
Let A be an algebra and M a module in modA which is not the
middle of a short chain. Then there exists a hereditary algebra H, a
tilting module T in modH, and an injective module I in modH such
that the following statements hold:

the tilted algebra B = EndH(T ) is a quotient algebra of A;
M is isomorphic to the right B-module HomH(T, I).
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Idea of proof:
A an artin algebra
M module in modA which is not the middle of a short chain in modA

B = A/annA(M)
M a sincere B-module
M is not the middle of a short chain in modB (Reiten, Skowroński, Smalø)
B = B1 × ...×Bm, B1, ..., Bm indecomposable algebras
M = M1 ⊕ ...⊕Mm, Mi ∈ modBi, Bi = A/annA(Mi)
Mi a sincere Bi-module which is not the middle of a short chain in modBi

Bi a tilted algebra by THEOREM 1.
Hence, we may assume that B is an indecomposable algebra.
Applying results on the structure of the module category of a tilted algebra
we prove that:
• M ∈ add(CT ) for a connecting component CT of ΓB of a tilting module
T over a hereditary algebra H with B = EndH(T ).
Moreover, using the Auslander-Reiten theory and combinatorial arguments,
we prove that:
• there is a section ∆ in CT such that every indecomposable direct
summand of M belongs to ∆.
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T ∗
∆ the direct sum of all indecomposable B-modules lying on ∆
H∆ = EndB(T ∗

∆) indecomposable hereditary algebra
T∆ = D(T ∗

∆) tilting module in modH∆

B∆ = EndH∆
(T∆) the basic algebra of B

Take H = H∆.
There exists a tilting module T in add(T∆) in modH = modH∆ such
that:

B = EndH(T )

CT = CT the connecting component of ΓB determined by T
∆ = ∆T the canonical section of CT
M ∼= HomH(T, I) for an injective module I in modH
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COROLLARY.
Let A be an algebra and M a module in modA which is not the
middle of a short chain. Then EndA(M) is a hereditary algebra.
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We show that the modules not being the middle of short chains occur also
in the module categories of selfinjective algebras.

Example.
K a field
H a basic indecomposable finite-dimensional hereditary K-algebra
T a multiplicity-free tilting module in modH
B = EndH(T )
T (B)(r) r-fold trivial extension algebra, r > 2:

T (B)(r) =





b1 0 0
f2 b2 0 0
0 f3 b3

. . .
. . .

0 fr−1 br−1 0
0 f1 b1


b1, . . . , br−1 ∈ B, f1, . . . , fr−1 ∈ D(B)


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T (B)(r) basic indecomposable finite-dimensional selfinjective K-algebra
T (B)(r) ∼= B̂/(νr

B̂
)

Am = T (B)(4(m+1)) for a fixed m > 1
i ∈ {1, ..., r}:
B4i = B
M4i = HomH(T,D(B)) ∈ mod(B4i)
M4i ∈ C4i = CT

M =

m⊕
i=1

M4i

M is not the middle of a short chain in modAm (RSS)

Am/annAm(M) is isomorphic to
∏m

i=1B4i
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