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Notations

Notations

g: complex semisimple Lie algebra

I = {1, 2, . . . , n}, n = the rank of g

h: Cartan subalgebra of g

{αi}i∈I : the simple roots, {hi}i∈I : the simple coroots

{$i}i∈I : the fundamental weights

hR =
⊕

i∈I Rhi
W : the Weyl group

{si}i∈I : simple reflections

Γ = {w$i|w ∈W, i ∈ I}: the set of chamber weights
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Mirković-Vilonen polytopes

Notations

Notations

g: complex semisimple Lie algebra

I = {1, 2, . . . , n}, n = the rank of g

h: Cartan subalgebra of g

{αi}i∈I : the simple roots, {hi}i∈I : the simple coroots

{$i}i∈I : the fundamental weights

hR =
⊕

i∈I Rhi
W : the Weyl group

{si}i∈I : simple reflections

Γ = {w$i|w ∈W, i ∈ I}: the set of chamber weights
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Definitions and examples

Pseudo-Weyl polytopes

M• = (Mγ)γ∈Γ a collection of integers

We say that M• satisfies the edge inequalities if

Mw$i +Mwsi$i +
∑
j 6=i

cjiMw$j ≤ 0,

for all i ∈ I and w ∈W .

Definition

If M• satisfy the edge inequalities, we can define a polytope

P (M•) = {α ∈ hR|〈α, γ〉 ≥Mγ , for all γ ∈ Γ}

associated to M•, called a pseudo-Weyl polytope.
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Definitions and examples

Pseudo-Weyl polytopes - continued

We have a map W � {vertices of P (M•)}, w 7→ µw such
that

〈µw, w$i〉 = Mw$i , ∀i ∈ I.

The collection of coweights µ• = (µw)w∈W is called the
Gelfand-Goresky-MacPherson-Serganova (GGMS) datum of
the pseudo-Weyl polytope.

P (M•) = conv(µ•).
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Pseudo-Weyl polytope - Examples
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µw0µs2s1 = µs2
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Mirković-Vilonen polytopes

Let P = P (M•) be a pseudo-Weyl polytope.

We say that M• satisfy the Tropical Plücker relations, if for
each triple (w, i, j) such that wsi > w, wsj > w and i 6= j we
have

Mwsi$i+Mwsj$j = min(Mw$i+Mwsisj$j ,Mw$j+Mwsjsi$i).

Definition

A pseudo-Weyl polytope P (M•) is called an Mirković-Vilonen
(MV) polytope if M• satisfy the tropical Plücker relations. And in
this case M• is called the Berenstein-Zelevinsky (BZ) datum of
P (M•).
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Mirković-Vilonen polytopes

Let P = P (M•) be a pseudo-Weyl polytope.

We say that M• satisfy the Tropical Plücker relations, if for
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this case M• is called the Berenstein-Zelevinsky (BZ) datum of
P (M•).
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Mirković-Vilonen polytopes

Let P = P (M•) be a pseudo-Weyl polytope.

We say that M• satisfy the Tropical Plücker relations, if for
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this case M• is called the Berenstein-Zelevinsky (BZ) datum of
P (M•).
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The crystal structure on Mirković-Vilonen polytopes and representations of preprojective algebras
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The crystal structure on Mirković-Vilonen polytopes and representations of preprojective algebras
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MV polytopes - continued

Let P = P (M•) = conv(µ•) be an MV polytope.

The pair (µe, µw0) is called the coweight of P .

The coweight lattice P∨ acts on the set of MV polytopes by
translation: ν + conv(µ•) = conv(µ′•), where µ′w = ν + µw
for any w ∈W .

The orbit of an MV polytope of coweight (µ1, µ2) is called a
stable MV polytope of coweight µ1 − µ2.

MV: the set of stable MV polytopes
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The crystal structure on MV polytopes

The Lusztig datum

The Lusztig datum

i = (i1, . . . , ir): a reduced word of w0

Set wi
k = si1 · · · sik for each 1 ≤ k ≤ r

i determines a path e = µwi
0
, µwi

1
, . . ., µwi

r
= w0 through the

1-skeleton of the MV polytope P (M•).
The i-Lusztig datum of P (M•): The sequence of lengths of
the edges n• = (n1, n2, . . . , nr) along the above path.

Theorem (Kamnitzer, 2010)

(1). For any reduced word i, taking i-Lusztig datum gives a
bijection MV → Nr.
(2). For any reduced word i, we have a coweight-preserving
bijection B ↔MV identifying the i-Lusztig datum, where B is
Lusztig’s canonical basis of U+

q (g∨).

Thus the set MV inherits a crystal structure from B.
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The crystal structure on MV polytopes

The Kashiwara operators

The Kashiwara operators

For each j ∈ I, denote by f̃j the Kashiwara operator

Set Γj =
⋃
i∈IW

−
j ·$i, W

−
j = {w ∈W |sjw < w}.

Theorem (Kamnitzer, 2007)

Let P = P (M•) = conv(µ•) be an MV polytope, then f̃jP is the
unique MV polytope whose BZ datum M ′• satisfy

M ′$j
= M$j − 1, and M ′γ = Mγ , if γ ∈ Γj .

Other M ′γs are determined by the tropical Plücker relations. Thus
the description of the Kashiwara operators is non-explicit.
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The Kashiwara operators

The Kashiwara operator - Examples

P = P (M•), where Mγ = −1,
∀γ ∈ Γ.

Let us compute f̃1(P ) = P (M ′•).

By the theorem M ′$1
= −2,

M ′$2
= M ′s1$1

= M ′s1s2$2
=

M ′s2s1$1
= −1.

But M ′s2$2
=?

Using the tropical Plüker relation
M ′s1$1

+M ′s2$2
= min{M ′$1

+
M ′s1s2$2

,M ′$2
+M ′s2s1$1

}, we can
deduce that M ′s2$2

= −2.
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The crystal structure on MV polytopes

The Anderson-Mirković operators

The Anderson-Mirković operators

W−j := {w ∈W |sjw < w}, W+
j := {w ∈W |sjw > w}.

Let P = P (M•) = conv(µ•) be an MV polytope. Set
cj = M$j −Msj$j − 1.

Let rj : hR → hR be a map defined by h 7→ sj(h) + cjhj .

Definition

For each j ∈ I, define a polytope AMj(P ) = conv(µ′•) = P ′ to be
the smallest pseudo-Weyl polytope such that
(i) µ′w = µw for all w ∈W−j ,
(ii) µ′e = µe − hj ,
(iii) P ′ contains µw for all w ∈W+

j ,

(iv) if w ∈W−j is such that 〈µw, hj〉 ≥ cj , then P ′ contains
rj(µw).
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The Anderson-Mirković operators
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The Anderson-Mirković operators

The AM operator - Examples

P = P (M•), where Mγ = −1,
∀γ ∈ Γ.

Let us compute
AM1(P ) = P (M ′•).

(i) µ′w = µw for all w ∈W−1 .

(ii) µ′e = µe − h1.

(iii) P ′ contains µw for all
w ∈W+

1 .

(iv) if w ∈W−1 is such that
〈µw, h1〉 ≥ c1, then P ′ contains
r1(µw).
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The AM operator - Examples

P = P (M•), where Mγ = −1,
∀γ ∈ Γ.

Let us compute
AM1(P ) = P (M ′•).

(i) µ′w = µw for all w ∈W−1 .

(ii) µ′e = µe − h1.

(iii) P ′ contains µw for all
w ∈W+

1 .

(iv) if w ∈W−1 is such that
〈µw, h1〉 ≥ c1, then P ′ contains
r1(µw).

µs2

µe µs1

µs1s2

µw0µs2s1

µs2

µe µs1

µs1s2

µw0µs2s1

µ′s1

µ′s1s2

µ′w0

µ′s1

µ′s1s2

µ′w0

µ′e µ′s1

µ′s1s2

µ′w0

µ′e

µs2

µs2s1

µ′s1

µ′s1s2

µ′w0

µ′e

µs2

µs2s1

r1(µs2s1)

r1(µw0)

µ′s2

µ′e µ′s1

µ′s1s2

µ′w0
µ′s2s1
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The Anderson-Mirković conjecture

Conjecture (Anderson-Mirković)

For any MV polytope P and any j ∈ I, AMj(P ) is an MV

polytope and AMj(P ) = f̃j(P ).

Type A - proved by Kamnitzer (2007)

A counterexample in type C2 was given by Kamnitzer (2007)

Type B and C - a modified version proved by Naito and
Sagaki (2008)
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The Anderson-Mirković conjecture
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Main results

The aim is to give an explicit description of the crystal
structure on MV.

From now on, we assume that g is of type ADE.

Theorem

For any MV polytope P and any j ∈ I, we have
AMj(P ) ⊆ f̃j(P ). Namely f̃j(P ) always satisfy the conditions
(i)-(iv) in the definition of AM operators.

This answers an open question of Kamnitzer in “The crystal
structure on the set of Mirković-Vilonen polytopes” (Adv. Math.
215 (2007), 66-93).
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Main results

Results - continued

Theorem

(1) Let P be an MV polytope and j ∈ I, if
εj(P ) + ε∗j (P )− 〈wt(P ), αj〉 = 0, then AMj(P ) = f̃j(P ), namely
the AM conjecture holds.
(2) In this case, assume that P = P (M•) and AMj(P ) = P (M ′•),
we have

M ′γ =

{
Mγ , if γ ∈ Γj

Msjγ + cj〈hj , γ〉, if γ ∈ Γ \ Γj

So in this case we have a very explicit description of the action of
Kashiwara operators.
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Main results

Results - continued

Propostion

Let P be an MV polytope and j ∈ I such that ẽj(P ) = 0. Then
there exists a positive integer N = N(j, P ) such that for any
n ≥ N , the assumption in the Theorem (1) holds for f̃nj P . In

particular, AMj(f̃
n
j P ) = f̃n+1

j P .
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MV polytopes and preprojective algebras

MV polytopes and preprojective algebras

Λ: the preprojective algebra.

For a chamber weight γ = w$i (i ∈ I), we have a unique (up
to isomorphism) Λ-submodule of Ii with dimension vector
$i − γ, denoted by N(γ).

Dγ := dim Hom(N(γ),−) is a constructible function on the
variety Λv for any v. Hence it takes a constant value on a
dense open subset of each irreducible component Z ∈ Irr Λv.

Theorem (Baumann-Kamnitzer, 2012)

(1). For any v ∈ Nn and a irreducible component Z ∈ Irr Λv,
(Dγ(Z))γ∈Γ is a BZ-datum.
(2). The map

∐
v∈Nn Irr Λv →MV given by

Z 7→ P ((Dγ(Z))γ∈Γ) is a crystal isomorphism.
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Idea of the proof

Observation: If M• satisfy the following condition

M ′γ = min(Mγ ,Msjγ + cj〈hj , γ〉),

for all γ ∈ Γ \ Γj , then f̃j(P ) ⊇ AMj(P ).

Use the homological properties in the module category
mod(Λ).

We also have a new proof for the AM conjecture in type A.
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