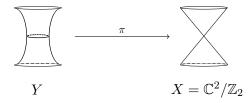
Relative Singularity Categories

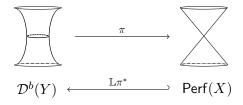
Martin Kalck

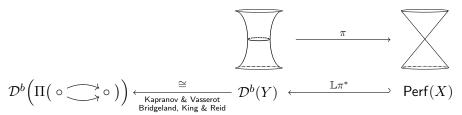
University of Bonn, Germany

ICRA 2012, Bielefeld 17. August 2012

 $X = \mathbb{C}^2/\mathbb{Z}_2$







Derived McKay Correspondence

Idea (Van den Bergh)

Replace $\mathcal{D}^b(Y)$ by $\mathcal{D}^b(A)$ for a "nice" algebra A (e.g. $\mathrm{gl.dim}(A) < \infty$) and consider it as **categorical resolution** of X if there is an embedding

$$\mathsf{Perf}(X) \hookrightarrow \mathcal{D}^b(A).$$

Idea (Van den Bergh)

Replace $\mathcal{D}^b(Y)$ by $\mathcal{D}^b(A)$ for a "nice" algebra A (e.g. $\mathrm{gl.\,dim}(A) < \infty$) and consider it as **categorical resolution** of X if there is an embedding

$$\mathsf{Perf}(X) \hookrightarrow \mathcal{D}^b(A)$$
.

Setup

Let k be an algebraically closed field and (R, \mathfrak{m}) be a commutative complete **Gorenstein** k-algebra with **isolated singularity** and $R/\mathfrak{m} \cong k$.

Idea (Van den Bergh)

Replace $\mathcal{D}^b(Y)$ by $\mathcal{D}^b(A)$ for a "nice" algebra A (e.g. $\mathrm{gl.\,dim}(A) < \infty$) and consider it as **categorical resolution** of X if there is an embedding

$$\mathsf{Perf}(X) \hookrightarrow \mathcal{D}^b(A)$$
.

Setup

Let k be an algebraically closed field and (R,\mathfrak{m}) be a commutative complete **Gorenstein** k-algebra with **isolated singularity** and $R/\mathfrak{m} \cong k$.

Definition

Let $M\in \mathrm{MCM}(R):=\left\{N\in \mathrm{mod}-R|\operatorname{Ext}^i_R(N,R)=0 \text{ for all } i>0\right\}$ be a maximal Cohen–Macaulay module and $A:=\operatorname{End}_R(R\oplus M).$

Idea (Van den Bergh)

Replace $\mathcal{D}^b(Y)$ by $\mathcal{D}^b(A)$ for a "nice" algebra A (e.g. $\mathrm{gl.\,dim}(A) < \infty$) and consider it as **categorical resolution** of X if there is an embedding

$$\mathsf{Perf}(X) \hookrightarrow \mathcal{D}^b(A)$$
.

Setup

Let k be an algebraically closed field and (R,\mathfrak{m}) be a commutative complete **Gorenstein** k-algebra with **isolated singularity** and $R/\mathfrak{m} \cong k$.

Definition

Let $M\in \mathrm{MCM}(R):=\left\{N\in \mathrm{mod}-R|\operatorname{Ext}_R^i(N,R)=0 \text{ for all } i>0\right\}$ be a maximal Cohen–Macaulay module and $A:=\mathrm{End}_R(R\oplus M).$ If gl. $\dim(A)<\infty$, then A is a non-commutative resolution (NCR) and $\mathcal{D}^b(A)$ is a categorical resolution of R.

ullet R: Gorenstein Singularity

• R: Gorenstein Singularity

$$\mathcal{D}_{sg}(R) := \frac{\mathcal{D}^{b}(\text{mod} - R)}{K^{b}(\text{proj} - R)}$$

Classical Singularity Category

• R: Gorenstein Singularity

$$\mathcal{D}_{sg}(R) := \frac{\mathcal{D}^b(\text{mod} - R)}{K^b(\text{proj} - R)}$$

Classical Singularity Category

'measures complexity of singularities of Spec(R)'

- R: Gorenstein Singularity
- \bullet A: non-commutative resolution of R

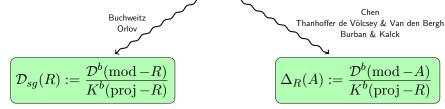
Buchweitz Orlov
$$b \pmod{-R}$$

$$\mathcal{D}_{sg}(R) := \frac{\mathcal{D}^b(\text{mod} - R)}{K^b(\text{proj} - R)}$$

Classical Singularity Category

'measures complexity of singularities of Spec(R)'

- R: Gorenstein Singularity
- \bullet A: non-commutative resolution of R



Classical Singularity Category

'measures complexity of singularities of Spec(R)'

Relative Singularity Category

Buchweitz

Orlov

- R: Gorenstein Singularity
- \bullet A: non-commutative resolution of R

$$\mathcal{D}_{sg}(R) := \frac{\mathcal{D}^b(\text{mod} - R)}{K^b(\text{proj} - R)}$$

Classical Singularity Category

'measures complexity of singularities of Spec(R)'

$$\Delta_R(A) := \frac{\mathcal{D}^b(\text{mod} - A)}{K^b(\text{proj} - R)}$$

Relative Singularity Category

'measures difference between categorical resolution $\mathcal{D}^b(A)$ and smooth part $\mathcal{D}^b(R) \supseteq K^b(\operatorname{proj} - R) \subseteq \mathcal{D}^b(A)$ '

Let $A = \operatorname{End}_R(R \oplus M)$ be a NCR of a Gorenstein k-algebra R as above. The relative singularity category $\Delta_R(A) := \mathcal{D}^b(A)/K^b(\operatorname{proj} - R)$ satisfies:

Let $A = \operatorname{End}_R(R \oplus M)$ be a NCR of a Gorenstein k-algebra R as above. The relative singularity category $\Delta_R(A) := \mathcal{D}^b(A)/K^b(\operatorname{proj} - R)$ satisfies:

• $\Delta_R(A)$ is **Hom-finite**, by [TV] or [KY].

Let $A = \operatorname{End}_R(R \oplus M)$ be a NCR of a Gorenstein k-algebra R as above. The relative singularity category $\Delta_R(A) := \mathcal{D}^b(A)/K^b(\operatorname{proj} - R)$ satisfies:

- $\Delta_R(A)$ is **Hom-finite**, by [TV] or [KY].
- There is an equivalence of triangulated categories

$$\frac{\Delta_R(A)}{\operatorname{thick}(S_1,\ldots,S_t)} \stackrel{\sim}{\longrightarrow} \mathcal{D}_{sg}(R),$$

where S_1, \ldots, S_t denote the simple modules over the stable endomorphism algebra $\underline{A} = \underline{\operatorname{End}}_R(M)$, by [TV] or [KY].

Let $A = \operatorname{End}_R(R \oplus M)$ be a NCR of a Gorenstein k-algebra R as above. The relative singularity category $\Delta_R(A) := \mathcal{D}^b(A)/K^b(\operatorname{proj} - R)$ satisfies:

- $\Delta_R(A)$ is **Hom-finite**, by [TV] or [KY].
- There is an equivalence of triangulated categories

$$\frac{\Delta_R(A)}{\operatorname{thick}(S_1,\ldots,S_t)} \stackrel{\sim}{\longrightarrow} \mathcal{D}_{sg}(R),$$

where S_1, \ldots, S_t denote the simple modules over the stable endomorphism algebra $\underline{A} = \underline{\operatorname{End}}_R(M)$, by [TV] or [KY].

• If add M has almost split sequences, then $\operatorname{thick}(S_1,\ldots,S_t)$ has a Serre functor ν ,

Let $A = \operatorname{End}_R(R \oplus M)$ be a NCR of a Gorenstein k-algebra R as above. The relative singularity category $\Delta_R(A) := \mathcal{D}^b(A)/K^b(\operatorname{proj} - R)$ satisfies:

- $\Delta_R(A)$ is **Hom-finite**, by [TV] or [KY].
- There is an equivalence of triangulated categories

$$\frac{\Delta_R(A)}{\operatorname{thick}(S_1,\ldots,S_t)} \stackrel{\sim}{\longrightarrow} \mathcal{D}_{sg}(R),$$

where S_1, \ldots, S_t denote the simple modules over the stable endomorphism algebra $\underline{A} = \underline{\operatorname{End}}_R(M)$, by [TV] or [KY].

• If add M has almost split sequences, then thick (S_1, \ldots, S_t) has a Serre functor ν , whose action on the generators S_i is given by

$$\nu^n(S_i) \cong S_i[2n]$$
 (fractionally CY)

Let $A = \operatorname{End}_R(R \oplus M)$ be a NCR of a Gorenstein k-algebra R as above. The relative singularity category $\Delta_R(A) := \mathcal{D}^b(A)/K^b(\operatorname{proj} - R)$ satisfies:

- $\Delta_R(A)$ is **Hom-finite**, by [TV] or [KY].
- There is an equivalence of triangulated categories

$$\frac{\Delta_R(A)}{\operatorname{thick}(S_1,\ldots,S_t)} \stackrel{\sim}{\longrightarrow} \mathcal{D}_{sg}(R),$$

where S_1, \ldots, S_t denote the simple modules over the stable endomorphism algebra $\underline{A} = \underline{\operatorname{End}}_R(M)$, by [TV] or [KY].

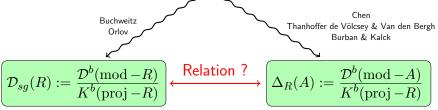
• If add M has almost split sequences, then thick (S_1, \ldots, S_t) has a Serre functor ν , whose action on the generators S_i is given by

$$\nu^n(S_i) \cong S_i[2n]$$
 (fractionally CY)

where $n=n(S_i)$ is given by the length of the au-orbit of M_i , by [KY].

A natural question

- R: Gorenstein Singularity
- A: non-commutative resolution of R



Classical Singularity Category

Relative Singularity Category

'measures complexity of singularities of Spec(R)'

'measures difference between categorical resolution $\mathcal{D}^b(A)$ and smooth part $\mathcal{D}^b(R) \supseteq K^b(\operatorname{proj} - R) \subseteq \mathcal{D}^b(A)$ '

A first answer to this question was obtained in joint work with Dong Yang.

A first answer to this question was obtained in joint work with Dong Yang.

Theorem

Let R and R' be $\operatorname{MCM-representation}$ finite complete Gorenstein k-algebras with Auslander algebras $A = \operatorname{Aus}(R)$ respectively $A' = \operatorname{Aus}(R')$.

A first answer to this question was obtained in joint work with Dong Yang.

Theorem

Let R and R' be MCM-representation finite complete Gorenstein k-algebras with Auslander algebras $A = \operatorname{Aus}(R)$ respectively $A' = \operatorname{Aus}(R')$. Then the following statements are equivalent.

(i) There is a triangle equivalence $\mathcal{D}_{sg}(R) \cong \mathcal{D}_{sg}(R')$.

A first answer to this question was obtained in joint work with Dong Yang.

Theorem

Let R and R' be MCM -representation finite complete Gorenstein k-algebras with Auslander algebras $A = \operatorname{Aus}(R)$ respectively $A' = \operatorname{Aus}(R')$. Then the following statements are equivalent.

- (i) There is a triangle equivalence $\mathcal{D}_{sg}(R) \cong \mathcal{D}_{sg}(R')$.
- (ii) There is a triangle equivalence $\Delta_R(A) \cong \Delta_{R'}(A')$.

A first answer to this question was obtained in joint work with Dong Yang.

Theorem

Let R and R' be MCM -representation finite complete Gorenstein k-algebras with **Auslander algebras** $A = \operatorname{Aus}(R)$ respectively $A' = \operatorname{Aus}(R')$. Then the following statements are equivalent.

- (i) There is a triangle equivalence $\mathcal{D}_{sg}(R) \cong \mathcal{D}_{sg}(R')$.
- (ii) There is a triangle equivalence $\Delta_R(A) \cong \Delta_{R'}(A')$.

The implication $(ii) \Rightarrow (i)$ holds more generally for arbitrary NCRs A and A' of arbitrary isolated Gorenstein singularities R and R'.

A first answer to this question was obtained in joint work with Dong Yang.

Theorem

Let R and R' be MCM -representation finite complete Gorenstein k-algebras with Auslander algebras $A = \operatorname{Aus}(R)$ respectively $A' = \operatorname{Aus}(R')$. Then the following statements are equivalent.

- (i) There is a triangle equivalence $\mathcal{D}_{sg}(R) \cong \mathcal{D}_{sg}(R')$.
- (ii) There is a triangle equivalence $\Delta_R(A) \cong \Delta_{R'}(A')$.

The implication $(ii) \Rightarrow (i)$ holds more generally for arbitrary NCRs A and A' of arbitrary isolated Gorenstein singularities R and R'.

Remark

Knörrer's Periodicity yields a wealth of non-trivial examples for (i):

$$\mathcal{D}_{sg}(S/(f)) \xrightarrow{\sim} \mathcal{D}_{sg}(S[[x,y]]/(f+xy)),$$

where $S = k[[z_0, ..., z_d]], f \in (z_0, ..., z_d)$ and $d \ge 0$.

Example

Let $R=\mathbb{C}[\![x]\!]/(x^2)$ and $R'=\mathbb{C}[\![x,y,z]\!]/(x^2+yz)$. Knörrer's equivalence and our theorem above yield a triangle equivalence

$$\Delta_R(\operatorname{\mathsf{Aus}}(R)) \cong \Delta_{R'}(\operatorname{\mathsf{Aus}}(R')),$$

Example

Let $R=\mathbb{C}[\![x]\!]/(x^2)$ and $R'=\mathbb{C}[\![x,y,z]\!]/(x^2+yz)$. Knörrer's equivalence and our theorem above yield a triangle equivalence

$$\Delta_R(\operatorname{Aus}(R)) \cong \Delta_{R'}(\operatorname{Aus}(R')),$$

which may be written explicitly as

$$\frac{\mathcal{D}^{b}\left(1 \overbrace{\underset{i}{ }}^{p} \underbrace{)}^{2} / (pi)\right)}{K^{b}(\operatorname{add} P_{1})} \xrightarrow{\sim} \frac{\mathcal{D}^{b}\left(1 \overbrace{\underset{x}{ }}^{x} \underbrace{)}^{x} \underbrace{)}^{2} / (xy - yx)\right)}{K^{b}(\operatorname{add} P_{1})}$$

Example

Let $R = \mathbb{C}[\![x]\!]/(x^2)$ and $R' = \mathbb{C}[\![x,y,z]\!]/(x^2+yz)$. Knörrer's equivalence and our theorem above yield a triangle equivalence

$$\Delta_R(\operatorname{Aus}(R)) \cong \Delta_{R'}(\operatorname{Aus}(R')),$$

which may be written explicitly as

$$\frac{\mathcal{D}^b\left(1 \overbrace{\underset{i}{ \swarrow} 2 / (pi)}^p 2 / (pi)\right)}{K^b(\operatorname{add} P_1)} \xrightarrow{\sim} \frac{\mathcal{D}^b\left(1 \overbrace{\underset{x}{ \swarrow} y}^x 2 / (xy - yx)\right)}{K^b(\operatorname{add} P_1)}$$

The quiver algebra on the right hand side is the **completion** of the preprojective algebra of the Kronecker quiver $\Pi(\circ \circlearrowleft \circ)$.

Key Statement (Kalck & Yang)

There exists a dg-algebra $\Lambda_{dg}(R)$ such that

• $\operatorname{per} \Lambda_{dg}(R) \cong \Delta_R(\operatorname{Aus}(R)).$

Key Statement (Kalck & Yang)

There exists a dg-algebra $\Lambda_{dq}(R)$ such that

- $\operatorname{per} \Lambda_{dg}(R) \cong \Delta_R(\operatorname{Aus}(R)).$
- $\Lambda_{dq}(R)$ is determined by $\mathcal{D}_{sg}(R)$.

Key Statement (Kalck & Yang)

There exists a dg-algebra $\Lambda_{dq}(R)$ such that

- per $\Lambda_{dq}(R) \cong \Delta_R(\mathsf{Aus}(R))$.
- $\Lambda_{dq}(R)$ is determined by $\mathcal{D}_{sg}(R)$.

We call $\Lambda_{dq}(R)$ the **dg-Auslander algebra** of $\mathcal{D}_{sq}(R)$.

Key Statement (Kalck & Yang)

There exists a dg-algebra $\Lambda_{dq}(R)$ such that

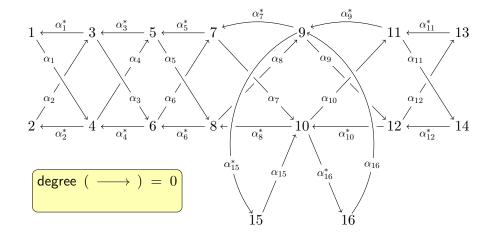
- $\operatorname{per} \Lambda_{dq}(R) \cong \Delta_R(\operatorname{Aus}(R))$.
- $\Lambda_{dq}(R)$ is determined by $\mathcal{D}_{sg}(R)$.

We call $\Lambda_{dq}(R)$ the dg-Auslander algebra of $\mathcal{D}_{sq}(R)$.

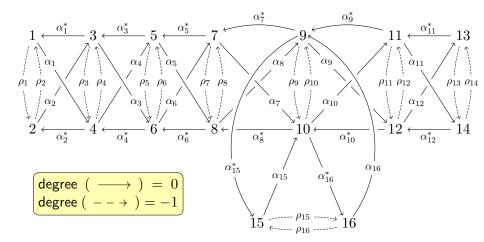
Corollary

 $\mathcal{D}_{sg}(R)\cong\mathcal{D}_{sg}(R')$ implies $\Delta_R(\mathsf{Aus}(R))\cong\Delta_{R'}(\mathsf{Aus}(R')).$

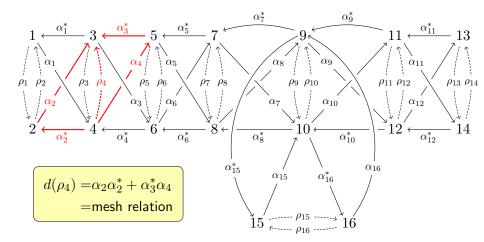
Example: The dg-Auslander algebra of an odd-dimensional \mathbb{E}_8 -singularity: $f=z_0^3+z_1^5+z_2^2+\ldots+z_d^2$



Example: The dg-Auslander algebra of an odd-dimensional \mathbb{E}_8 -singularity: $f=z_0^3+z_1^5+z_2^2+\ldots+z_d^2$



Example: The dg-Auslander algebra of an odd-dimensional \mathbb{E}_8 -singularity: $f=z_0^3+z_1^5+z_2^2+\ldots+z_d^2$



$$\Delta_R(A) \cong \Delta_{R'}(A') \implies \mathcal{D}_{sg}(R) \cong \mathcal{D}_{sg}(R')$$

$$\Delta_R(A) \cong \Delta_{R'}(A') \implies \mathcal{D}_{sg}(R) \cong \mathcal{D}_{sg}(R')$$

Proposition

Let A be a Noetherian ring and let $e \in A$ be an idempotent. The exact functor $\operatorname{Hom}_A(eA,-)$ induces an equivalence of triangulated categories

$$\frac{\mathcal{D}^b(\operatorname{mod} - A)/\operatorname{thick}(eA)}{\operatorname{thick}(\operatorname{mod} - A/AeA)} \stackrel{\sim}{\longrightarrow} \mathcal{D}_{sg}(eAe).$$

$$\Delta_R(A) \cong \Delta_{R'}(A') \implies \mathcal{D}_{sg}(R) \cong \mathcal{D}_{sg}(R')$$

Proposition

Let A be a Noetherian ring and let $e \in A$ be an idempotent. The exact functor $\operatorname{Hom}_A(eA,-)$ induces an equivalence of triangulated categories

$$\frac{\mathcal{D}^b(\operatorname{mod} - A)/\operatorname{thick}(eA)}{\operatorname{thick}(\operatorname{mod} - A/AeA)} \stackrel{\sim}{\longrightarrow} \mathcal{D}_{sg}(eAe).$$

Corollary

Let $A = \operatorname{End}_R(R \oplus M)$ be an NCR and $e := \operatorname{id}_R \in A$.

$$\Delta_R(A) \cong \Delta_{R'}(A') \implies \mathcal{D}_{sg}(R) \cong \mathcal{D}_{sg}(R')$$

Proposition

Let A be a Noetherian ring and let $e \in A$ be an idempotent. The exact functor $\operatorname{Hom}_A(eA,-)$ induces an equivalence of triangulated categories

$$\frac{\mathcal{D}^b(\operatorname{mod} - A)/\operatorname{thick}(eA)}{\operatorname{thick}(\operatorname{mod} - A/AeA)} \stackrel{\sim}{\longrightarrow} \mathcal{D}_{sg}(eAe).$$

Corollary

Let $A = \operatorname{End}_R(R \oplus M)$ be an NCR and $e := \operatorname{id}_R \in A$. Then $R \cong eAe$, $K^b(\operatorname{proj} - R) \cong \operatorname{thick}(eA)$

$$\Delta_R(A) \cong \Delta_{R'}(A') \implies \mathcal{D}_{sg}(R) \cong \mathcal{D}_{sg}(R')$$

Proposition

Let A be a Noetherian ring and let $e \in A$ be an idempotent. The exact functor $\operatorname{Hom}_A(eA,-)$ induces an equivalence of triangulated categories

$$\frac{\mathcal{D}^b(\operatorname{mod} - A)/\operatorname{thick}(eA)}{\operatorname{thick}(\operatorname{mod} - A/AeA)} \stackrel{\sim}{\longrightarrow} \mathcal{D}_{sg}(eAe).$$

Corollary

Let $A = \operatorname{End}_R(R \oplus M)$ be an NCR and $e := \operatorname{id}_R \in A$. Then $R \cong eAe$, $K^b(\operatorname{proj} - R) \cong \operatorname{thick}(eA)$ and there is a triangle equivalence

$$\frac{\Delta_R(A)}{\mathsf{thick}(\mathsf{mod}\,{-}A/AeA)} \stackrel{\sim}{\longrightarrow} \mathcal{D}_{sg}(R)$$

A "purely commutative" application

Setup

Let (R,\mathfrak{m}) be a complete local **rational** normal surface singularity over an algebraically closed field of characteristic zero,

Setup

Let (R,\mathfrak{m}) be a complete local **rational** normal surface singularity over an algebraically closed field of characteristic zero, i.e. $H^1(X,\mathcal{O}_X)=0$, where $X\to \operatorname{Spec}(R)$ is a resolution of singularities.

Setup

Let (R,\mathfrak{m}) be a complete local **rational** normal surface singularity over an algebraically closed field of characteristic zero, i.e. $H^1(X,\mathcal{O}_X)=0$, where $X\to \operatorname{Spec}(R)$ is a resolution of singularities.

Example (Brieskorn)

Quotient singularities \mathbb{C}^2/G are rational.

Setup

Let (R,\mathfrak{m}) be a complete local **rational** normal surface singularity over an algebraically closed field of characteristic zero, i.e. $H^1(X,\mathcal{O}_X)=0$, where $X\to \operatorname{Spec}(R)$ is a resolution of singularities.

Example (Brieskorn)

Quotient singularities \mathbb{C}^2/G are rational.

Definition

A maximal Cohen–Macaulay R-module is **special** if $\operatorname{Ext}^1_R(M,R)=0$.

Setup

Let (R,\mathfrak{m}) be a complete local **rational** normal surface singularity over an algebraically closed field of characteristic zero, i.e. $H^1(X,\mathcal{O}_X)=0$, where $X\to \operatorname{Spec}(R)$ is a resolution of singularities.

Example (Brieskorn)

Quotient singularities \mathbb{C}^2/G are rational.

Definition

A maximal Cohen–Macaulay R-module is **special** if $\operatorname{Ext}^1_R(M,R)=0$.

Theorem (Wunram's generalization of the McKay-Correspondence)

There is a natural bijection between indecomposable special MCMs

Setup

Let (R,\mathfrak{m}) be a complete local **rational** normal surface singularity over an algebraically closed field of characteristic zero, i.e. $H^1(X,\mathcal{O}_X)=0$, where $X\to \operatorname{Spec}(R)$ is a resolution of singularities.

Example (Brieskorn)

Quotient singularities \mathbb{C}^2/G are rational.

Definition

A maximal Cohen–Macaulay R-module is **special** if $\operatorname{Ext}^1_R(M,R)=0$.

Theorem (Wunram's generalization of the McKay-Correspondence)

There is a natural bijection between indecomposable special MCMs and irreducible components of the exceptional curve $E=\pi^{-1}(\mathfrak{m})$,

Setup

Let (R,\mathfrak{m}) be a complete local **rational** normal surface singularity over an algebraically closed field of characteristic zero, i.e. $H^1(X,\mathcal{O}_X)=0$, where $X\to \operatorname{Spec}(R)$ is a resolution of singularities.

Example (Brieskorn)

Quotient singularities \mathbb{C}^2/G are rational.

Definition

A maximal Cohen–Macaulay R-module is **special** if $\operatorname{Ext}^1_R(M,R)=0$.

Theorem (Wunram's generalization of the McKay-Correspondence)

There is a natural bijection between indecomposable special MCMs and irreducible components of the exceptional curve $E = \pi^{-1}(\mathfrak{m})$, where $\pi \colon Y \to \operatorname{Spec}(R)$ is the minimal resolution of singularities.

In general, R is **not Gorenstein**. In that case, MCM(R) is **not Frobenius**. Moreover, the singularity category is **not Krull-Schmidt**.

In general, R is **not Gorenstein**. In that case, MCM(R) is **not Frobenius**. Moreover, the singularity category is **not Krull-Schmidt**.

Question

Are there "nice" triangulated categories for rational surface singularities?

In general, R is **not Gorenstein**. In that case, $\mathrm{MCM}(R)$ is **not Frobenius**. Moreover, the singularity category is **not Krull-Schmidt**.

Question

Are there "nice" triangulated categories for rational surface singularities?

The category of special MCMs (SCM(R)) has the following properties:

• Wunram's Theorem shows that SCM(R) is **representation-finite**.

In general, R is **not Gorenstein**. In that case, $\mathrm{MCM}(R)$ is **not Frobenius**. Moreover, the singularity category is **not Krull-Schmidt**.

Question

Are there "nice" triangulated categories for rational surface singularities?

The category of special MCMs (SCM(R)) has the following properties:

• Wunram's Theorem shows that SCM(R) is **representation-finite**. Let $M_0=R,M_1,\ldots,M_t$ be the set of **indecomposable** special MCMs. The **reconstruction algebra** $\Lambda:=\operatorname{End}_R(\bigoplus_i M_i)$

In general, R is **not Gorenstein**. In that case, $\mathrm{MCM}(R)$ is **not Frobenius**. Moreover, the singularity category is **not Krull-Schmidt**.

Question

Are there "nice" triangulated categories for rational surface singularities?

The category of special MCMs (SCM(R)) has the following properties:

• Wunram's Theorem shows that $\mathsf{SCM}(R)$ is **representation-finite**. Let $M_0 = R, M_1, \dots, M_t$ be the set of **indecomposable** special MCMs. The **reconstruction algebra** $\Lambda := \operatorname{End}_R \left(\bigoplus_i M_i\right)$ has gl. dim ≤ 3 , by work of Wemyss.

In general, R is **not Gorenstein**. In that case, $\mathrm{MCM}(R)$ is **not Frobenius**. Moreover, the singularity category is **not Krull-Schmidt**.

Question

Are there "nice" triangulated categories for rational surface singularities?

The category of special MCMs (SCM(R)) has the following properties:

- Wunram's Theorem shows that $\mathsf{SCM}(R)$ is **representation-finite**. Let $M_0 = R, M_1, \dots, M_t$ be the set of **indecomposable** special MCMs. The **reconstruction algebra** $\Lambda := \operatorname{End}_R \left(\bigoplus_i M_i\right)$ has gl. dim ≤ 3 , by work of Wemyss.
- SCM(R) is a **Frobenius category** (Iyama & Wemyss),

In general, R is **not Gorenstein**. In that case, $\mathrm{MCM}(R)$ is **not Frobenius**. Moreover, the singularity category is **not Krull-Schmidt**.

Question

Are there "nice" triangulated categories for rational surface singularities?

The category of special MCMs (SCM(R)) has the following properties:

- Wunram's Theorem shows that $\mathsf{SCM}(R)$ is **representation-finite**. Let $M_0 = R, M_1, \dots, M_t$ be the set of **indecomposable** special MCMs. The **reconstruction algebra** $\Lambda := \operatorname{End}_R \left(\bigoplus_i M_i\right)$ has gl. dim ≤ 3 , by work of Wemyss.
- SCM(R) is a **Frobenius category** (Iyama & Wemyss),
- and the **projectives** are in bijection with (-n)-curves $n \ge 3$.

In general, R is **not Gorenstein**. In that case, $\mathrm{MCM}(R)$ is **not Frobenius**. Moreover, the singularity category is **not Krull-Schmidt**.

Question

Are there "nice" triangulated categories for rational surface singularities?

The category of special MCMs (SCM(R)) has the following properties:

- Wunram's Theorem shows that $\mathsf{SCM}(R)$ is **representation-finite**. Let $M_0 = R, M_1, \dots, M_t$ be the set of **indecomposable** special MCMs. The **reconstruction algebra** $\Lambda := \operatorname{End}_R \left(\bigoplus_i M_i\right)$ has gl. dim ≤ 3 , by work of Wemyss.
- SCM(R) is a **Frobenius category** (Iyama & Wemyss),
- and the **projectives** are in bijection with (-n)-curves $n \ge 3$.

Answer

We may take the **stable category** $\underline{\mathsf{SCM}}(R)$.

In general, R is **not Gorenstein**. In that case, $\mathrm{MCM}(R)$ is **not Frobenius**. Moreover, the singularity category is **not Krull-Schmidt**.

Question

Are there "nice" triangulated categories for rational surface singularities?

The category of special MCMs (SCM(R)) has the following properties:

- Wunram's Theorem shows that $\mathsf{SCM}(R)$ is **representation-finite**. Let $M_0 = R, M_1, \dots, M_t$ be the set of **indecomposable** special MCMs. The **reconstruction algebra** $\Lambda := \operatorname{End}_R \left(\bigoplus_i M_i\right)$ has gl. dim ≤ 3 , by work of Wemyss.
- SCM(R) is a **Frobenius category** (Iyama & Wemyss),
- and the **projectives** are in bijection with (-n)-curves $n \ge 3$.

Answer

We may take the **stable category** $\underline{\underline{SCM}}(R)$. If R is Gorenstein, then $\underline{SCM}(R) \cong \underline{MCM}(R) \cong \mathcal{D}_{sg}(R)$.

This is joint work with Osamu Iyama, Michael Wemyss & Dong Yang.

Theorem

Let R be a rational surface singularity with minimal resolution Y.

This is joint work with Osamu Iyama, Michael Wemyss & Dong Yang.

Theorem

Let R be a rational surface singularity with minimal resolution Y. Let X be obtained from Y by contracting the exceptional (-2)-curves.

This is joint work with Osamu Iyama, Michael Wemyss & Dong Yang.

Theorem

Let R be a rational surface singularity with minimal resolution Y. Let X be obtained from Y by contracting the exceptional (-2)-curves. It is well-known that $\mathsf{Sing}(X)$ consists of isolated singularities, which are rational double points.

This is joint work with Osamu Iyama, Michael Wemyss & Dong Yang.

Theorem

Let R be a rational surface singularity with minimal resolution Y. Let X be obtained from Y by contracting the exceptional (-2)-curves. It is well-known that $\operatorname{Sing}(X)$ consists of isolated singularities, which are rational double points. Then there are triangle equivalences

$$\underline{\underline{\mathrm{SCM}}}(R) \cong \mathcal{D}_{sg}(X) \cong \bigoplus_{x \in \mathrm{Sing}(X)} \underline{\mathrm{MCM}}\big(\widehat{\mathcal{O}}_x\big).$$

This is joint work with Osamu Iyama, Michael Wemyss & Dong Yang.

Theorem

Let R be a rational surface singularity with minimal resolution Y. Let X be obtained from Y by contracting the exceptional (-2)-curves. It is well-known that $\mathsf{Sing}(X)$ consists of isolated singularities, which are rational double points. Then there are triangle equivalences

$$\underline{\underline{\mathrm{SCM}}}(R) \cong \mathcal{D}_{sg}(X) \cong \bigoplus_{x \in \mathrm{Sing}(X)} \underline{\mathrm{MCM}}\big(\widehat{\mathcal{O}}_x\big).$$

In particular, $\underline{\underline{\rm SCM}}(R)$ is 1-CY and there is a natural isomorphism $[2]\cong \operatorname{id}.$

This is joint work with Osamu Iyama, Michael Wemyss & Dong Yang.

Theorem

Let R be a rational surface singularity with minimal resolution Y. Let X be obtained from Y by contracting the exceptional (-2)-curves. It is well-known that $\mathsf{Sing}(X)$ consists of isolated singularities, which are rational double points. Then there are triangle equivalences

$$\underline{\underline{\mathrm{SCM}}}(R) \cong \mathcal{D}_{sg}(X) \cong \bigoplus_{x \in \mathrm{Sing}(X)} \underline{\mathrm{MCM}}\big(\widehat{\mathcal{O}}_x\big).$$

In particular, $\underline{\underline{\rm SCM}}(R)$ is 1-CY and there is a natural isomorphism $[2]\cong \operatorname{id}.$

The second equivalence follows from Orlov's Localization Theorem and Buchweitz' equivalence.

This is joint work with Osamu Iyama, Michael Wemyss & Dong Yang.

Theorem

Let R be a rational surface singularity with minimal resolution Y. Let X be obtained from Y by contracting the exceptional (-2)-curves. It is well-known that $\mathsf{Sing}(X)$ consists of isolated singularities, which are rational double points. Then there are triangle equivalences

$$\underline{\underline{\mathrm{SCM}}}(R) \cong \mathcal{D}_{sg}(X) \cong \bigoplus_{x \in \mathrm{Sing}(X)} \underline{\mathrm{MCM}}\big(\widehat{\mathcal{O}}_x\big).$$

In particular, $\underline{\underline{\rm SCM}}(R)$ is 1-CY and there is a natural isomorphism $[2]\cong \operatorname{id}.$

The second equivalence follows from Orlov's Localization Theorem and Buchweitz' equivalence.

$$ullet$$
 $\mathcal{D}^b(X)\cong\mathcal{D}^b(e\Lambda e)$,

- \bullet $\mathcal{D}^b(X) \cong \mathcal{D}^b(e\Lambda e)$, where
 - X: rational double point resolution of R,
 - Λ : reconstruction algebra,
 - $e = 1_P \in \Lambda$: idempotent (where add(P) = proj SCM(R)).

- $\bullet \ \mathcal{D}^b(X) \cong \mathcal{D}^b(e\Lambda e)$, where
 - X: rational double point resolution of R,
 - Λ : reconstruction algebra,
 - $e = 1_P \in \Lambda$: idempotent (where add(P) = proj SCM(R)).
- $\bullet \implies \mathcal{D}_{sg}(X) \cong \mathcal{D}_{sg}(e\Lambda e)$

- ullet $\mathcal{D}^b(X)\cong\mathcal{D}^b(e\Lambda e)$, where
 - X: rational double point resolution of R,
 - Λ : reconstruction algebra,
 - $e = 1_P \in \Lambda$: idempotent (where add(P) = proj SCM(R)).
- $\bullet \Longrightarrow \mathcal{D}_{sg}(X) \cong \mathcal{D}_{sg}(e\Lambda e)$
- Recall from Part I that we always have a triangle equivalence

$$\frac{\mathcal{D}^{b}(\operatorname{mod}-\Lambda)/\operatorname{thick}(e\Lambda)}{\operatorname{thick}(\operatorname{mod}-\Lambda/\Lambda e\Lambda)} \stackrel{\sim}{\longrightarrow} \mathcal{D}_{sg}(e\Lambda e)$$

$$\Lambda \longmapsto \Lambda e$$

- ullet $\mathcal{D}^b(X)\cong\mathcal{D}^b(e\Lambda e)$, where
 - X: rational double point resolution of R,
 - Λ : reconstruction algebra,
 - $e = 1_P \in \Lambda$: idempotent (where add(P) = proj SCM(R)).
- $\bullet \Longrightarrow \mathcal{D}_{sg}(X) \cong \mathcal{D}_{sg}(e\Lambda e)$
- Recall from Part I that we always have a triangle equivalence

- ullet $\mathcal{D}^b(X)\cong\mathcal{D}^b(e\Lambda e)$, where
 - X: rational double point resolution of R,
 - Λ : reconstruction algebra,
 - $e = 1_P \in \Lambda$: idempotent (where add(P) = proj SCM(R)).
- $\bullet \Longrightarrow \mathcal{D}_{sg}(X) \cong \mathcal{D}_{sg}(e\Lambda e)$
- Recall from Part I that we always have a triangle equivalence

 $\bullet \ \, \mathsf{gl.\,dim}(\Lambda) < \infty \qquad \Longrightarrow \qquad \mathcal{D}_{sg}(e\Lambda e) \cong \underline{\underline{\mathsf{SCM}}}(R)$

Let $G\subseteq \mathrm{GL}(2,\mathbb{C})$ be the cyclic group of order 27 generated by

$$g = \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{19} \end{pmatrix} \in \mathrm{GL}(2, \mathbb{C}),$$

where ζ is a primitive 27th root of unity.

Let $G\subseteq \mathrm{GL}(2,\mathbb{C})$ be the cyclic group of order 27 generated by

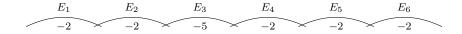
$$g = \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{19} \end{pmatrix} \in \mathrm{GL}(2, \mathbb{C}),$$

where ζ is a primitive 27th root of unity. Let $R_{27,19}:=\mathbb{C}[\![x,y]\!]^G$ be the corresponding quotient singularity.

Let $G \subseteq \operatorname{GL}(2,\mathbb{C})$ be the cyclic group of order 27 generated by

$$g = \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{19} \end{pmatrix} \in \mathrm{GL}(2, \mathbb{C}),$$

where ζ is a primitive 27th root of unity. Let $R_{27,19} := \mathbb{C}[\![x,y]\!]^G$ be the corresponding quotient singularity. The exceptional divisor of the minimal resolution of $\operatorname{Spec}(R)$ is given by the following chain of rational curves



Let $G \subseteq \operatorname{GL}(2,\mathbb{C})$ be the cyclic group of order 27 generated by

$$g = \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{19} \end{pmatrix} \in \mathrm{GL}(2, \mathbb{C}),$$

where ζ is a primitive 27th root of unity. Let $R_{27,19} := \mathbb{C}[\![x,y]\!]^G$ be the corresponding quotient singularity. The exceptional divisor of the minimal resolution of $\operatorname{Spec}(R)$ is given by the following chain of rational curves

$$\mathbb{A}_2 \xrightarrow{E_3} \mathbb{A}_3 \subseteq X$$

Let $G \subseteq \operatorname{GL}(2,\mathbb{C})$ be the cyclic group of order 27 generated by

$$g = \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{19} \end{pmatrix} \in \mathrm{GL}(2, \mathbb{C}),$$

where ζ is a primitive 27th root of unity. Let $R_{27,19} := \mathbb{C}[\![x,y]\!]^G$ be the corresponding quotient singularity. The exceptional divisor of the minimal resolution of $\operatorname{Spec}(R)$ is given by the following chain of rational curves

$$\mathbb{A}_2 \xrightarrow{E_3} \mathbb{A}_3 \subseteq X$$

Our Theorem yields a description of the stable category of SCMs:

$$\underline{\underline{\mathsf{SCM}}}(R_{27,19}) \cong \mathcal{D}_{sg}(X) \cong \underline{\mathrm{MCM}}\left(\frac{\mathbb{C}[\![x,y,z]\!]}{(x^3+yz)}\right) \, \oplus \, \underline{\mathrm{MCM}}\left(\frac{\mathbb{C}[\![x,y,z]\!]}{(x^4+yz)}\right)$$

Thank you!