On selfinjective algebras without short cycles in the component quiver

Maciej Karpicz

Faculty of Mathematics and Computer Science Nicolaus Copernicus University, Toruń, Poland

ICRA 2012, Bielefeld, 14 August 2012

BAR 4 BA

Plan of the talk

Set-up

- Basics
- Component quiver and its properties
- Almost concealed canonical algebras
- Tubular algebras
- Selfinjective orbit algebras

2 Main result

Idea of the proof

- By an algebra we mean a basic, connected artin algebra over a commutative artin ring *k*.
- By mod *A* we denote the category of finitely generated right *A*-modules.
- Γ_A denotes AR-quiver of an algebra A.
- A component C in Γ_A is called generalized standard if for any $X, Y \in C$ we have $rad^{\infty}_A(X, Y) = 0$.

김희 지수는 지수는 지 않는

- By an algebra we mean a basic, connected artin algebra over a commutative artin ring *k*.
- By mod *A* we denote the category of finitely generated right *A*-modules.
- Γ_A denotes AR-quiver of an algebra A.
- A component C in Γ_A is called generalized standard if for any $X, Y \in C$ we have $rad^{\infty}_A(X, Y) = 0$.

・ 同 ト ・ 日 ト ・ 日 日

- By an algebra we mean a basic, connected artin algebra over a commutative artin ring *k*.
- By mod *A* we denote the category of finitely generated right *A*-modules.
- Γ_A denotes AR-quiver of an algebra A.
- A component C in Γ_A is called generalized standard if for any $X, Y \in C$ we have $rad^{\infty}_A(X, Y) = 0$.

- By an algebra we mean a basic, connected artin algebra over a commutative artin ring *k*.
- By mod *A* we denote the category of finitely generated right *A*-modules.
- Γ_A denotes AR-quiver of an algebra A.
- A component C in Γ_A is called generalized standard if for any $X, Y \in C$ we have $rad^{\infty}_A(X, Y) = 0$.

A 回 > A 国 > A 国 > 国 国 のQQ

- By an algebra we mean a basic, connected artin algebra over a commutative artin ring *k*.
- By mod *A* we denote the category of finitely generated right *A*-modules.
- Γ_A denotes AR-quiver of an algebra A.
- A component C in Γ_A is called generalized standard if for any $X, Y \in C$ we have $rad^{\infty}_A(X, Y) = 0$.

A 回 > A 国 > A 国 > 国 国 のQQ

The component quiver Σ_A of an algebra *A* is a quiver whose:

vertices

components of the AR-quiver Γ_A

arrows

 $\mathcal{C} \longrightarrow \mathcal{D} \text{ in } \Sigma_{\mathcal{A}}, \text{ where } \mathcal{C}, \mathcal{D} \in \Gamma_{\mathcal{A}}$

 $\operatorname{rad}_{\mathcal{A}}^{\infty}(X,Y) \neq 0$ for some modules X in C and Y in D

Maciej Karpicz (NCU)

On selfinjective algebras

14 August 2012 4 / 19

The component quiver Σ_A of an algebra *A* is a quiver whose:

vertices

components of the AR-quiver Γ_A

arrows

 $\mathcal{D} \xrightarrow{} \mathcal{D} \text{ in } \Sigma_{\mathcal{A}}, \text{ where } \mathcal{C}, \mathcal{D} \in \Gamma_{\mathcal{A}}$

 $\operatorname{rad}_{\mathcal{A}}^{\infty}(X,Y) \neq 0$ for some modules X in C and Y in D

Maciej Karpicz (NCU)

On selfinjective algebras

14 August 2012 4 / 19

The component quiver Σ_A of an algebra *A* is a quiver whose:

vertices

components of the AR-quiver Γ_A

arrows

 $\mathcal{C} \longrightarrow \mathcal{D}$ in Σ_A , where $\mathcal{C}, \mathcal{D} \in \Gamma_A$

 $\operatorname{rad}_{A}^{\infty}(X, Y) \neq 0$ for some modules X in C and Y in D

Maciej Karpicz (NCU)

The component quiver Σ_A of an algebra *A* is a quiver whose:

vertices

components of the AR-quiver Γ_A

arrows

 $\mathcal{C} \longrightarrow \mathcal{D} \text{ in } \Sigma_A, \text{ where } \mathcal{C}, \mathcal{D} \in \Gamma_A$

 $\operatorname{rad}_{A}^{\infty}(X, Y) \neq 0$ for some modules X in C and Y in D

Maciej Karpicz (NCU)

The component quiver Σ_A of an algebra *A* is a quiver whose:

vertices

components of the AR-quiver Γ_A

arrows

 $\mathcal{C} \xrightarrow{\wedge} \mathcal{D}$ in Σ_A , where $\mathcal{C}, \mathcal{D} \in \Gamma_A$

 $\operatorname{rad}_{A}^{\infty}(X, Y) \neq 0$ for some modules X in C and Y in D

Maciej Karpicz (NCU)

14 August 2012 4 / 19

The component quiver Σ_A of an algebra *A* is a quiver whose:

vertices

components of the AR-quiver Γ_A

arrows

 $\mathcal{C} \xrightarrow{} \mathcal{D} \text{ in } \Sigma_{\mathcal{A}} \text{, where } \mathcal{C}, \, \mathcal{D} \in \Gamma_{\mathcal{A}}$

 $\operatorname{rad}_{A}^{\infty}(X, Y) \neq 0$ for some modules X in C and Y in D

Maciej Karpicz (NCU)

The component quiver Σ_A of an algebra *A* is a quiver whose:

vertices

components of the AR-quiver Γ_A

arrows

$$\mathcal{C} \longrightarrow \mathcal{D} \text{ in } \Sigma_{\mathcal{A}}, \text{ where } \mathcal{C}, \mathcal{D} \in \Gamma_{\mathcal{A}}$$

 $\operatorname{rad}_{\mathcal{A}}^{\infty}(X, Y) \neq 0$ for some modules X in C and Y in D

Σ_A has no loop ⇒ every component in Γ_A is generalized standard.

- Σ_A is acyclic \iff *A* is generically of polynomial growth.
- Σ_A has no short cycle ⇒ modules in acyclic components are uniquelly determined by their images in K₀(A).

[Jaworska-Malicki-Skowroński]: Let C and D be components of Γ_A . Assume C is not a stable tube of rank 1 and does not lie on short cycle in Σ_A .

 $\mathcal{C} = \mathcal{D} \iff [\mathcal{C}] = [\mathcal{D}].$

不用 とうきょう ちょうし ちょう

Σ_A has no loop ⇒ every component in Γ_A is generalized standard.

 Σ_A has no short cycl uniquelly determined es in acyclic components are ages in $K_0(A)$.

[Jaworska-Malicki-Skowroński]: Let C and D be components of Γ_A . Assume C is not a stable tube of rank 1 and does not lie on short cycle in Σ_A .

 $\mathcal{C} = \mathcal{D} \iff [\mathcal{C}] = [\mathcal{D}].$

Maciej Karpicz (NCU)

On selfinjective algebras

14 August 2012 5 / 19

- Σ_A has no loop ⇒ every component in Γ_A is generalized standard.
- Σ_A is acyclic $\iff A$ is generically of polynomial growth.
- Σ_A has no short cycle ⇒ modules in acyclic components are uniquelly determined by their images in K₀(A).

 $\mathcal{C} = \mathcal{D} \iff [\mathcal{C}] = [\mathcal{D}].$

不用 とうきょう ちょうし ちょう

- Σ_A has no loop ⇒ every component in Γ_A is generalized standard.
- Σ_A is acyclic $\iff A$ is generically of polynomial growth.
- Σ_A has no short cycle ⇒ modules in acyclic components are uniquelly determined by their images in K₀(A).

 $\mathcal{C} = \mathcal{D} \iff [\mathcal{C}] = [\mathcal{D}].$

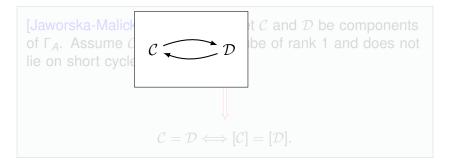
Maciej Karpicz (NCU)

On selfinjective algebras

14 August 2012 5 / 19

不良 とうきょう きょうしょう

- Σ_A has no loop ⇒ every component in Γ_A is generalized standard.
- Σ_A is acyclic $\iff A$ is generically of polynomial growth.
- Σ_A has no short cycle ⇒ modules in acyclic components are uniquelly determined by their images in K₀(A).



- Σ_A has no loop ⇒ every component in Γ_A is generalized standard.
- Σ_A is acyclic $\iff A$ is generically of polynomial growth.
- Σ_A has no short cycle ⇒ modules in acyclic components are uniquelly determined by their images in K₀(A).

▲□ ▲ ■ ▲ ■ ▲ ■ ■ ■ ● ● ●

- Σ_A has no loop ⇒ every component in Γ_A is generalized standard.
- Σ_A is acyclic $\iff A$ is generically of polynomial growth.
- Σ_A has no short cycle ⇒ modules in acyclic components are uniquelly determined by their images in K₀(A).

 $\mathcal{C} = \mathcal{D} \Longleftrightarrow [\mathcal{C}] = [\mathcal{D}].$

물 이 이 물 이 물 일 물

- Σ_A has no loop ⇒ every component in Γ_A is generalized standard.
- Σ_A is acyclic $\iff A$ is generically of polynomial growth.
- Σ_A has no short cycle ⇒ modules in acyclic components are uniquelly determined by their images in K₀(A).

$$\mathcal{C} = \mathcal{D} \Longleftrightarrow [\mathcal{C}] = [\mathcal{D}].$$

글 🖌 🖌 글 ト 🖉 글 날

- Σ_A has no loop ⇒ every component in Γ_A is generalized standard.
- Σ_A is acyclic $\iff A$ is generically of polynomial growth.
- Σ_A has no short cycle ⇒ modules in acyclic components are uniquelly determined by their images in K₀(A).

$$\mathcal{C} = \mathcal{D} \iff [\mathcal{C}] = [\mathcal{D}].$$

물 에 제 물 에 드릴 날

- Σ_A has no loop ⇒ every component in Γ_A is generalized standard.
- Σ_A is acyclic $\iff A$ is generically of polynomial growth.
- Σ_A has no short cycle ⇒ modules in acyclic components are uniquelly determined by their images in K₀(A).

$$\mathcal{C} = \mathcal{D} \iff [\mathcal{C}] = [\mathcal{D}].$$

$$[\mathcal{D}] = \{[X] \in K_0(A) \mid X \in \mathcal{D}\}$$

- Let Λ be a canonical algebra in the sens of Ringel.
- Then Γ_{Λ} admits a canonical decomposition

$$\Gamma_\Lambda = \mathcal{P}^\Lambda \vee \mathcal{T}^\Lambda \vee \mathcal{Q}^\Lambda$$

with \mathcal{T}^{Λ} the canonical family of stable tubes separating \mathcal{P}^{Λ} from $\mathcal{Q}^{\Lambda}.$

 An algebra *B* is said to be an almost concealed canonical algebra if *B* is the endomorphism algebra End_∧(*T*) of a tilting module *T* from the additive category add(*P*[∧] ∨ *T*[∧]).

Moreover, Γ_B admits the canonical decomposition $\Gamma_B = \mathcal{P}^B \lor \mathcal{T}^B \lor \mathcal{Q}^B$ with \mathcal{T}^B the family of ray tubes (i.e. components obtained from stable tubes by ray insertions).

- Let Λ be a canonical algebra in the sens of Ringel.
- Then Γ_{Λ} admits a canonical decomposition

$$\Gamma_\Lambda = \mathcal{P}^\Lambda \vee \mathcal{T}^\Lambda \vee \mathcal{Q}^\Lambda$$

with \mathcal{T}^{Λ} the canonical family of stable tubes separating \mathcal{P}^{Λ} from $\mathcal{Q}^{\Lambda}.$

 An algebra *B* is said to be an almost concealed canonical algebra if *B* is the endomorphism algebra End_Λ(*T*) of a tilting module *T* from the additive category add(*P*^Λ ∨ *T*^Λ).

Moreover, Γ_B admits the canonical decomposition $\Gamma_B = \mathcal{P}^B \lor \mathcal{T}^B \lor \mathcal{Q}^B$ with \mathcal{T}^B the family of ray tubes (i.e. components obtained from stable tubes by ray insertions).

- Let Λ be a canonical algebra in the sens of Ringel.
- Then Γ_{Λ} admits a canonical decomposition

$$\Gamma_{\Lambda} = \mathcal{P}^{\Lambda} \vee \mathcal{T}^{\Lambda} \vee \mathcal{Q}^{\Lambda}$$

with \mathcal{T}^{Λ} the canonical family of stable tubes separating \mathcal{P}^{Λ} from \mathcal{Q}^{Λ} .

An algebra B is \mathcal{D}^{Λ} \mathcal{Q}^{Λ}

ed canonical algebra

- Let Λ be a canonical algebra in the sens of Ringel.
- Then Γ_{Λ} admits a canonical decomposition

$$\Gamma_\Lambda = \mathcal{P}^\Lambda \vee \mathcal{T}^\Lambda \vee \mathcal{Q}^\Lambda$$

with \mathcal{T}^{Λ} the canonical family of stable tubes separating \mathcal{P}^{Λ} from \mathcal{Q}^{Λ} .

 An algebra *B* is said to be an almost concealed canonical algebra if *B* is the endomorphism algebra End_Λ(*T*) of a tilting module *T* from the additive category add(*P*^Λ ∨ *T*^Λ).

Moreover, Γ_B admits the canonical decomposition $\Gamma_B = \mathcal{P}^B \lor \mathcal{T}^B \lor \mathcal{Q}^B$ with \mathcal{T}^B the family of ray tubes (i.e. components obtained from stable tubes by ray insertions).

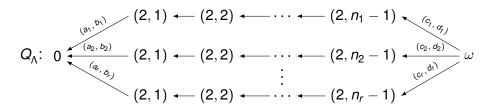
- Let Λ be a canonical algebra in the sens of Ringel.
- Then Γ_{Λ} admits a canonical decomposition

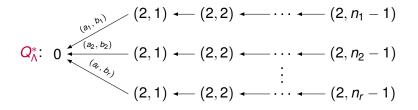
$$\Gamma_\Lambda = \mathcal{P}^\Lambda \vee \mathcal{T}^\Lambda \vee \mathcal{Q}^\Lambda$$

with \mathcal{T}^{Λ} the canonical family of stable tubes separating \mathcal{P}^{Λ} from $\mathcal{Q}^{\Lambda}.$

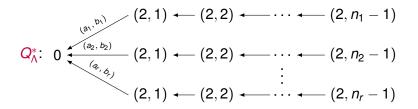
 An algebra *B* is said to be an almost concealed canonical algebra if *B* is the endomorphism algebra End_Λ(*T*) of a tilting module *T* from the additive category add(*P*^Λ ∨ *T*^Λ).

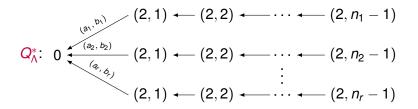
Moreover, Γ_B admits the canonical decomposition $\Gamma_B = \mathcal{P}^B \vee \mathcal{T}^B \vee \mathcal{Q}^B$ with \mathcal{T}^B the family of ray tubes (i.e. components obtained from stable tubes by ray insertions).



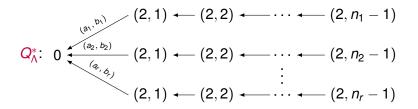


14 August 2012 7 / 19

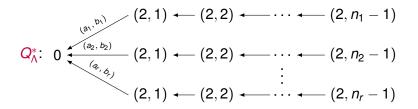




Euclidean type if Q^*_{Λ} is a Dynkin quiver.



tubular type if Q^*_{Λ} is a Euclidean quiver.



wild type in the remaining cases.

Tubular algebras

An almost concealed canonical algebra of type Λ , where Λ is a canonical algebra of tubular type, is called a tubular algebra.

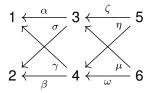
For a field k of characteristic different from 2, the exceptional tubular algebra B_{ex} is given by the following ordinary quiver

and the relations $\alpha \zeta = \gamma \eta$, $\alpha \mu = \gamma \omega$, $\sigma \zeta = \beta \eta$ and $\sigma \mu = -\beta \omega$.

Tubular algebras

An almost concealed canonical algebra of type Λ , where Λ is a canonical algebra of tubular type, is called a tubular algebra.

For a field k of characteristic different from 2, the exceptional tubular algebra B_{ex} is given by the following ordinary quiver

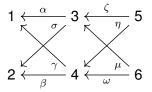


and the relations $\alpha \zeta = \gamma \eta$, $\alpha \mu = \gamma \omega$, $\sigma \zeta = \beta \eta$ and $\sigma \mu = -\beta \omega$.

Tubular algebras

An almost concealed canonical algebra of type Λ , where Λ is a canonical algebra of tubular type, is called a tubular algebra.

For a field k of characteristic different from 2, the exceptional tubular algebra B_{ex} is given by the following ordinary quiver



and the relations $\alpha \zeta = \gamma \eta$, $\alpha \mu = \gamma \omega$, $\sigma \zeta = \beta \eta$ and $\sigma \mu = -\beta \omega$.

An automorphism φ of the exceptional tubular algebra B_{ex} is said to be distinguished if:

$$\begin{split} \varphi(\gamma) &= a\sigma, \, \varphi(\sigma) = b\gamma, \, \varphi(\beta) = c\alpha, \, \varphi(\alpha) = d\beta, \, \varphi(\mu) = e\eta, \, \varphi(\eta) = r\mu, \\ \varphi(\omega) &= u\zeta \text{ and } \varphi(\zeta) = v\omega \end{split}$$

for *a*, *b*, *c*, *d*, *e*, *r*, *u*, $v \in k \setminus \{0\}$ satisfying the following relations

$$dv = -ar$$
, $de = au$, $bv = cr$ and $be = -cu$.

An automorphism φ of the exceptional tubular algebra B_{ex} is said to be distinguished if:

$$\begin{aligned} \varphi(\gamma) &= a\sigma, \, \varphi(\sigma) = b\gamma, \, \varphi(\beta) = c\alpha, \, \varphi(\alpha) = d\beta, \, \varphi(\mu) = e\eta, \, \varphi(\eta) = r\mu, \\ \varphi(\omega) &= u\zeta \text{ and } \varphi(\zeta) = v\omega \end{aligned}$$

for *a*, *b*, *c*, *d*, *e*, *r*, *u*, $v \in k \setminus \{0\}$ satisfying the following relations

dv = -ar, de = au, bv = cr and be = -cu.

An automorphism φ of the exceptional tubular algebra B_{ex} is said to be distinguished if:

$$\begin{aligned} \varphi(\gamma) &= a\sigma, \, \varphi(\sigma) = b\gamma, \, \varphi(\beta) = c\alpha, \, \varphi(\alpha) = d\beta, \, \varphi(\mu) = e\eta, \, \varphi(\eta) = r\mu, \\ \varphi(\omega) &= u\zeta \text{ and } \varphi(\zeta) = v\omega \end{aligned}$$

for *a*, *b*, *c*, *d*, *e*, *r*, *u*, $v \in k \setminus \{0\}$ satisfying the following relations

$$dv = -ar$$
, $de = au$, $bv = cr$ and $be = -cu$.

- For an algebra A, we denote by D the standard duality Hom_k(-, E) on mod A, where E is a minimal injective cogenerator in mod k.
- An algebra A is selfinjective if and only if $A \cong D(A)$ in mod A.
- A component C in Γ_A, where A is selfinjective algebra, is called a quasitube if its stable part C^s is a stable tube.

A = selfinjective algebra, C = a generalized standard component of Γ_A

C is a quasitube or $C^s = \mathbb{Z}\Delta$ for a finite acyclic valued quiver Δ .

- For an algebra A, we denote by D the standard duality Hom_k(-, E) on mod A, where E is a minimal injective cogenerator in mod k.
- An algebra A is selfinjective if and only if $A \cong D(A)$ in mod A.
- A component C in Γ_A, where A is selfinjective algebra, is called a quasitube if its stable part C^s is a stable tube.

A = selfinjective algebra, C = a generalized standard component of Γ_A

C is a quasitube or $C^s = \mathbb{Z}\Delta$ for a finite acyclic valued quiver Δ .

- For an algebra A, we denote by D the standard duality Hom_k(-, E) on mod A, where E is a minimal injective cogenerator in mod k.
- An algebra A is selfinjective if and only if $A \cong D(A)$ in mod A.
- A component C in Γ_A, where A is selfinjective algebra, is called a quasitube if its stable part C^s is a stable tube.

- For an algebra A, we denote by D the standard duality Hom_k(-, E) on mod A, where E is a minimal injective cogenerator in mod k.
- An algebra A is selfinjective if and only if $A \cong D(A)$ in mod A.
- A component C in Γ_A, where A is selfinjective algebra, is called a quasitube if its stable part C^s is a stable tube.

A = selfinjective algebra, C = a generalized standard component of Γ_A

 ${\mathcal C}$ is a quasitube or ${\mathcal C}^s={\mathbb Z}\Delta$ for a finite acyclic valued quiver Δ

- For an algebra A, we denote by D the standard duality Hom_k(-, E) on mod A, where E is a minimal injective cogenerator in mod k.
- An algebra A is selfinjective if and only if $A \cong D(A)$ in mod A.
- A component C in Γ_A, where A is selfinjective algebra, is called a quasitube if its stable part C^s is a stable tube.

A = selfinjective algebra, C = a generalized standard component of Γ_A

 \mathcal{C} is a quasitube or $\mathcal{C}^s = \mathbb{Z}\Delta$ for a finite acyclic valued quiver Δ

- For an algebra A, we denote by D the standard duality Hom_k(-, E) on mod A, where E is a minimal injective cogenerator in mod k.
- An algebra A is selfinjective if and only if $A \cong D(A)$ in mod A.
- A component C in Γ_A, where A is selfinjective algebra, is called a quasitube if its stable part C^s is a stable tube.

A = selfinjective algebra, \mathcal{C} = a generalized standard component of Γ_A

 \mathcal{C} is a quasitube or $\mathcal{C}^{s} = \mathbb{Z}\Delta$ for a finite acyclic valued quiver Δ .

 $\bigoplus_{m\in\mathbb{Z}}(B_m\oplus\mathsf{D}(B)_m)$

where $B_m = B$ and $D(B)_m = D(B)$ for all $m \in \mathbb{Z}$, and the multiplication is defined by

 $(a_m, f_m)_m \cdot (b_m, g_m)_m = (a_m b_m, a_m g_m + f_m b_{m-1})_m$

for $a_m, b_m \in B_m$, $f_m, g_m \in D(B)_m$.

 $\bigoplus_{m\in\mathbb{Z}}(B_m\oplus\mathsf{D}(B)_m)$

where $B_m = B$ and $D(B)_m = D(B)$ for all $m \in \mathbb{Z}$, and the multiplication is defined by

 $(a_m, f_m)_m \cdot (b_m, g_m)_m = (a_m b_m, a_m g_m + f_m b_{m-1})_m$

for $a_m, b_m \in B_m$, $f_m, g_m \in D(B)_m$.

$$\bigoplus_{m\in\mathbb{Z}}(B_m\oplus\mathsf{D}(B)_m)$$

where $B_m = B$ and $D(B)_m = D(B)$ for all $m \in \mathbb{Z}$, and the multiplication is defined by

 $(a_m, f_m)_m \cdot (b_m, g_m)_m = (a_m b_m, a_m g_m + f_m b_{m-1})_m$

for $a_m, b_m \in B_m$, $f_m, g_m \in D(B)_m$.

$$\bigoplus_{m\in\mathbb{Z}}(B_m\oplus\mathsf{D}(B)_m)$$

where $B_m = B$ and $D(B)_m = D(B)$ for all $m \in \mathbb{Z}$, and the multiplication is defined by

$$(a_m, f_m)_m \cdot (b_m, g_m)_m = (a_m b_m, a_m g_m + f_m b_{m-1})_m$$

for $a_m, b_m \in B_m$, $f_m, g_m \in D(B)_m$.

$\mathcal{E} = \{ \mathbf{e}_i \mid 1 \le i \le n \} \text{ a fixed set of orthogonal primitive idempotents of } B \text{ with } \mathbf{1}_B = \mathbf{e}_1 + \dots + \mathbf{e}_n$ $\widehat{\mathcal{E}} = \{ \mathbf{e}_{m,i} \mid m \in \mathbb{Z}, \ 1 \le i \le n \} \text{ a corresponding set of orthogonal}$

primitive idempotents of \widehat{B} such that

$$e_{m,i}\widehat{B}=(e_iB)_m\oplus(e_i\,\mathsf{D}(B))_m$$

for $m \in \mathbb{Z}$ and $1 \leq i \leq n$.

 $\mathcal{E} = \{ e_i \mid 1 \le i \le n \} \text{ a fixed set of orthogonal primitive idempotents of } \\ B \text{ with } \mathbf{1}_B = e_1 + \dots + e_n \\ \widehat{\mathcal{E}} = \{ e_{m,i} \mid m \in \mathbb{Z}, \ 1 \le i \le n \} \text{ a corresponding set of orthogonal } \\ \text{primitive idempotents of } \widehat{B} \text{ such that } \\ \end{cases}$

$$oldsymbol{e}_{m,i}\widehat{B}=(oldsymbol{e}_iB)_m\oplus(oldsymbol{e}_i\,\mathsf{D}(B))_m$$

for $m \in \mathbb{Z}$ and $1 \leq i \leq n$.

- By an automorphism of \widehat{B} we mean a *k*-algebra automorphism of \widehat{B} which fixes the chosen set $\widehat{\mathcal{E}}$ of orthogonal primitive idempotents of \widehat{B} .
- A group *G* of automorphisms of \widehat{B} is said to be admissible if the induced action of *G* on $\widehat{\mathcal{E}}$ is *free and has finitely many orbits*.
- The orbit algebra \widehat{B}/G is a finite dimensional selfinjective algebra and the *G*-orbits in $\widehat{\mathcal{E}}$ form a canonical set of orthogonal primitive idempotents of \widehat{B}/G whose sum is the identity of \widehat{B}/G .

- By an automorphism of \widehat{B} we mean a *k*-algebra automorphism of \widehat{B} which fixes the chosen set $\widehat{\mathcal{E}}$ of orthogonal primitive idempotents of \widehat{B} .
- A group *G* of automorphisms of \widehat{B} is said to be admissible if the induced action of *G* on $\widehat{\mathcal{E}}$ is *free and has finitely many orbits*.
- The orbit algebra \widehat{B}/G is a finite dimensional selfinjective algebra and the *G*-orbits in $\widehat{\mathcal{E}}$ form a canonical set of orthogonal primitive idempotents of \widehat{B}/G whose sum is the identity of \widehat{B}/G .

- By an automorphism of \widehat{B} we mean a *k*-algebra automorphism of \widehat{B} which fixes the chosen set $\widehat{\mathcal{E}}$ of orthogonal primitive idempotents of \widehat{B} .
- A group *G* of automorphisms of \widehat{B} is said to be admissible if the induced action of *G* on $\widehat{\mathcal{E}}$ is *free and has finitely many orbits*.
- The orbit algebra \widehat{B}/G is a finite dimensional selfinjective algebra and the *G*-orbits in $\widehat{\mathcal{E}}$ form a canonical set of orthogonal primitive idempotents of \widehat{B}/G whose sum is the identity of \widehat{B}/G .

```
\nu_{\widehat{B}}(\boldsymbol{e}_{m,i}) = \boldsymbol{e}_{m+1,i}
```

for all $m \in \mathbb{Z}$, $1 \leq i \leq n$.

An automorphism φ of \widehat{B} is said to be

- positive if $\varphi(B_m) \subseteq \sum_{j \ge m} B_j$ for any $m \in \mathbb{Z}$.
- ② rigid if $\varphi(B_m) = B_m$ for any $m \in \mathbb{Z}$.
- If φ is positive but not rigid.

$$\nu_{\widehat{B}}(\boldsymbol{e}_{m,i}) = \boldsymbol{e}_{m+1,i}$$

for all $m \in \mathbb{Z}$, $1 \leq i \leq n$.

An automorphism φ of \hat{B} is said to be

- positive if $\varphi(B_m) \subseteq \sum_{j \ge m} B_j$ for any $m \in \mathbb{Z}$.
- ② rigid if $\varphi(B_m) = B_m$ for any $m \in \mathbb{Z}$.
- If φ is positive but not rigid.

$$\nu_{\widehat{B}}(\boldsymbol{e}_{m,i}) = \boldsymbol{e}_{m+1,i}$$

for all $m \in \mathbb{Z}$, $1 \leq i \leq n$.

An automorphism φ of \widehat{B} is said to be

- positive if $\varphi(B_m) \subseteq \sum_{j \ge m} B_j$ for any $m \in \mathbb{Z}$.
- (2) rigid if $\varphi(B_m) = B_m$ for any $m \in \mathbb{Z}$.
- If φ is positive if φ is positive but not rigid.

$$\nu_{\widehat{B}}(\boldsymbol{e}_{m,i}) = \boldsymbol{e}_{m+1,i}$$

for all $m \in \mathbb{Z}$, $1 \leq i \leq n$.

An automorphism φ of \widehat{B} is said to be

- **1** positive if $\varphi(B_m) \subseteq \sum_{j \ge m} B_j$ for any $m \in \mathbb{Z}$.
- ② rigid if $\varphi(B_m) = B_m$ for any $m \in \mathbb{Z}$.
- (1) strictly positive if φ is positive but not rigid.

$$\nu_{\widehat{B}}(\boldsymbol{e}_{m,i}) = \boldsymbol{e}_{m+1,i}$$

for all $m \in \mathbb{Z}$, $1 \leq i \leq n$.

An automorphism φ of \widehat{B} is said to be

1 positive if $\varphi(B_m) \subseteq \sum_{j \ge m} B_j$ for any $m \in \mathbb{Z}$.

2 rigid if
$$\varphi(B_m) = B_m$$
 for any $m \in \mathbb{Z}$.

If φ is positive if φ is positive but not rigid.

$$\nu_{\widehat{B}}(\boldsymbol{e}_{m,i}) = \boldsymbol{e}_{m+1,i}$$

for all $m \in \mathbb{Z}$, $1 \leq i \leq n$.

An automorphism φ of \widehat{B} is said to be

1 positive if $\varphi(B_m) \subseteq \sum_{j \ge m} B_j$ for any $m \in \mathbb{Z}$.

2 rigid if
$$\varphi(B_m) = B_m$$
 for any $m \in \mathbb{Z}$.

Strictly positive if φ is positive but not rigid.

[K.'2012]: Let A be a basic, connected, selfinjective artin algebra of infinite representation type, over a commutative artin ring k. TFAE:

- i) The component quiver Σ_A has no short cycles.
- (ii) k is a field and A is isomorphic to an orbit algebra \widehat{B}/G , where B is a tilted algebra of Euclidean type or a tubular algebra over k and G is an infinite cyclic group of automorphisms of \widehat{B} of one of the following forms:

(a)
$$G = (\varphi \nu_{\widehat{B}}^2)$$
, for a strictly positive automorphism φ of \widehat{B} ,

b)
$$G = (\varphi \nu_{\widehat{B}}^2)$$
, for an exceptional tubular algebra *B* and a rigid

automorphism φ of B, whose restriction to B is a distinguished automorphism of B,

where $\nu_{\widehat{B}}$ is the Nakayama automorphism of \widehat{B} .

(日本) (日本) (日本) (日本)

[K.'2012]: Let A be a basic, connected, selfinjective artin algebra of infinite representation type, over a commutative artin ring k. **TFAE**:

-) The component quiver Σ_A has no short cycles.
- i) k is a field and A is isomorphic to an orbit algebra \widehat{B}/G , where B is a tilted algebra of Euclidean type or a tubular algebra over k and G is an infinite cyclic group of automorphisms of \widehat{B} of one of the following forms:

(a)
$$G = (\varphi \nu_{\widehat{B}}^2)$$
, for a strictly positive automorphism φ of \widehat{B} ,

b) $G = (\varphi \nu_{\hat{B}}^2)$, for an exceptional tubular algebra *B* and a rigid

automorphism φ of *B*, whose restriction to *B* is a distinguished automorphism of *B*,

where $\nu_{\widehat{B}}$ is the Nakayama automorphism of \widehat{B} .

(日本) (日本) (日本) (日本)

[K.'2012]: Let A be a basic, connected, selfinjective artin algebra of infinite representation type, over a commutative artin ring k. **TFAE**:

(i) The component quiver Σ_A has no short cycles.

) *k* is a field and *A* is isomorphic to an orbit algebra B/G, where *B* is a tilted algebra of Euclidean type or a tubular algebra over *k* and *G* is an infinite cyclic group of automorphisms of \hat{B} of one of the following forms:

(a)
$$G = (\varphi \nu_{\widehat{B}}^2)$$
, for a strictly positive automorphism φ of \widehat{B} ,

b) $G = (\varphi \nu_{\widehat{B}}^2)$, for an exceptional tubular algebra *B* and a rigid

automorphism φ of B, whose restriction to B is a distinguished automorphism of B,

where $\nu_{\widehat{B}}$ is the Nakayama automorphism of \widehat{B} .

[K.'2012]: Let A be a basic, connected, selfinjective artin algebra of infinite representation type, over a commutative artin ring k. **TFAE**:

- (i) The component quiver Σ_A has no short cycles.
- (ii) *k* is a field and *A* is isomorphic to an orbit algebra \widehat{B}/G , where *B* is a tilted algebra of Euclidean type or a tubular algebra over *k* and *G* is an infinite cyclic group of automorphisms of \widehat{B} of one of the following forms:

(a) G = (φν²_B), for a strictly positive automorphism φ of B,
(b) G = (φν²_B), for an exceptional tubular algebra B and a rigid automorphism φ of B, whose restriction to B is a distinguished automorphism of B,
where ν₃ is the Nakavama automorphism of B.

▲□ ▲ ■ ▲ ■ ▲ ■ ■ ■ ● ● ●

[K.'2012]: Let A be a basic, connected, selfinjective artin algebra of infinite representation type, over a commutative artin ring k. **TFAE**:

- (i) The component quiver Σ_A has no short cycles.
- (ii) *k* is a field and *A* is isomorphic to an orbit algebra \widehat{B}/G , where *B* is a tilted algebra of Euclidean type or a tubular algebra over *k* and *G* is an infinite cyclic group of automorphisms of \widehat{B} of one of the following forms:

(a)
$$G = (\varphi \nu_{\widehat{B}}^2)$$
, for a strictly positive automorphism φ of \widehat{B} ,

(b) $G = (\varphi \nu_{\widehat{B}}^2)$, for an exceptional tubular algebra *B* and a rigid automorphism φ of \widehat{B} , whose restriction to *B* is a distinguished automorphism of *B*, where $\mu_{\widehat{A}}$ is the Nakayama automorphism of \widehat{B} .

[K.'2012]: Let A be a basic, connected, selfinjective artin algebra of infinite representation type, over a commutative artin ring k. **TFAE**:

- (i) The component quiver Σ_A has no short cycles.
- (ii) *k* is a field and *A* is isomorphic to an orbit algebra \widehat{B}/G , where *B* is a tilted algebra of Euclidean type or a tubular algebra over *k* and *G* is an infinite cyclic group of automorphisms of \widehat{B} of one of the following forms:

(a) $G = (\varphi \nu_{\widehat{B}}^2)$, for a strictly positive automorphism φ of \widehat{B} ,

(b) $G = (\varphi \nu_{\widehat{B}}^{2})$, for an exceptional tubular algebra *B* and a rigid automorphism φ of \widehat{B} , whose restriction to *B* is a distinguished automorphism of *B*,

where $\nu_{\widehat{P}}$ is the Nakayama automorphism of *B*.

A 回 > A 国 > A 国 > 国 国 のQQ

[K.'2012]: Let A be a basic, connected, selfinjective artin algebra of infinite representation type, over a commutative artin ring k. **TFAE**:

- (i) The component quiver Σ_A has no short cycles.
- (ii) *k* is a field and *A* is isomorphic to an orbit algebra \widehat{B}/G , where *B* is a tilted algebra of Euclidean type or a tubular algebra over *k* and *G* is an infinite cyclic group of automorphisms of \widehat{B} of one of the following forms:

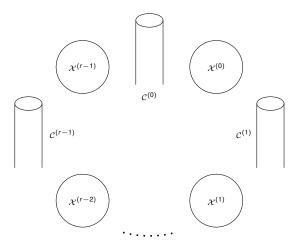
(a)
$$G = (\varphi \nu_{\widehat{B}}^2)$$
, for a strictly positive automorphism φ of \widehat{B} ,

(b) $G = (\varphi \nu_{\widehat{B}}^{\widetilde{2}})$, for an exceptional tubular algebra *B* and a rigid automorphism φ of \widehat{B} , whose restriction to *B* is a distinguished automorphism of *B*,

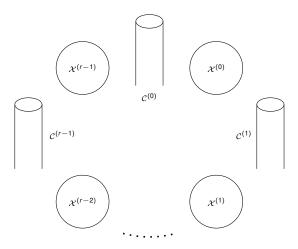
where $\nu_{\hat{B}}$ is the Nakayama automorphism of \hat{B} .

A 回 > A 国 > A 国 > 国 国 のQQ

The structure of Γ_A



The structure of Γ_A

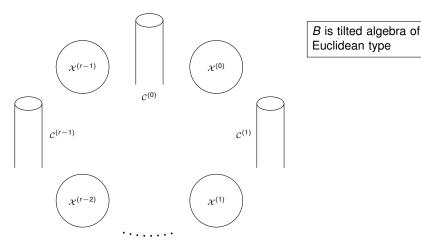


for some integer $r \ge 1$, where $A = \widehat{B}/G$ and each $\mathcal{C}^{(i)}$ is an infinite family of quasitubes

-

b 4 Te

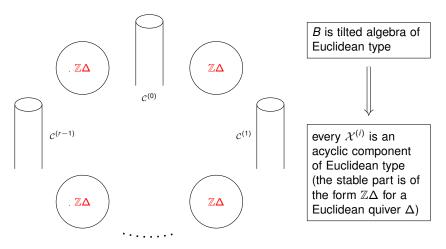
The structure of Γ_A



for some integer $r \ge 1$, where $A = \widehat{B}/G$ and each $\mathcal{C}^{(i)}$ is an infinite family of quasitubes

1.2

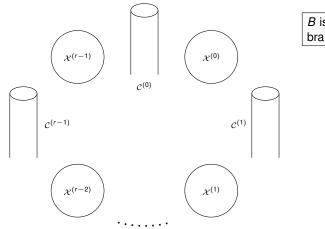
The structure of Γ_A



for some integer $r \ge 1$, where $A = \widehat{B}/G$ and each $\mathcal{C}^{(i)}$ is an infinite family of quasitubes

< 6 b

The structure of Γ_A

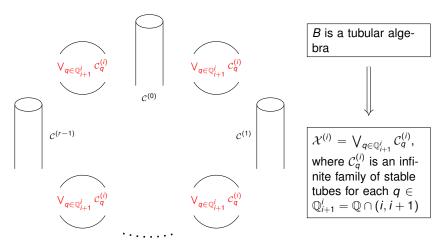


B is a tubular alge-

for some integer $r \ge 1$, where $A = \widehat{B}/G$ and each $\mathcal{C}^{(i)}$ is an infinite family of quasitubes

BAR 4 BA

The structure of Γ_A



for some integer $r \ge 1$, where $A = \widehat{B}/G$ and each $\mathcal{C}^{(i)}$ is an **infinite** family of quasitubes

-

B 6 4 B 6 B

[K.-Skowroński-Yamagata]: Let *A* be a basic, connected, selfinjective artin algebra. **TFAE**:

- Γ_A admits a family C = (C_i)_{i∈I} of quasitubes having common composition factors, closed on composition factors, and consisting of modules which do not lie on infinite short cycles in mod A.
- (ii) A is isomorphic to an orbit algebra B/G, where B is an almost concealed canonical algebra and G is an infinite cyclic group of automorphisms of B of one of the forms
 - (a) $G = (\varphi \nu_{\widehat{\alpha}}^2)$, for a strictly positive automorphism φ of \widehat{B} ,
 - (b) $G = (\varphi \nu_{\widehat{\alpha}}^2)$, for *B* a tubular algebra and φ a rigid automorphism of \widehat{B} ,
 - (c) $G = (\varphi \nu_B^2)$, for *B* of Euclidean or wild type and φ a rigid automorphism of \hat{B} acting freely on the nonstable tubes of the unique separating family \mathcal{T}^B of ray tubes of Γ_B ,

where $\nu_{\hat{B}}$ is the Nakayama automorphism of \hat{B} .

[K.-Skowroński-Yamagata]: Let *A* be a basic, connected, selfinjective artin algebra. **TFAE**:

- (i) Γ_A admits a family C = (C_i)_{i∈I} of quasitubes having common composition factors, closed on composition factors, and consisting of modules which do not lie on infinite short cycles in mod A.
- (ii) A is isomorphic to an orbit algebra B/G, where B is an almost concealed canonical algebra and G is an infinite cyclic group of automorphisms of B of one of the forms
 - (a) $G = (\varphi \nu_{\widehat{\rho}}^2)$, for a strictly positive automorphism φ of \widehat{B} ,
 - (b) $G = (\varphi \nu_{\widehat{B}}^2)$, for *B* a tubular algebra and φ a rigid automorphism of \widehat{B} ,
 - (c) $G = (\varphi \nu_B^2)$, for *B* of Euclidean or wild type and φ a rigid automorphism of \hat{B} acting freely on the nonstable tubes of the unique separating family \mathcal{T}^B of ray tubes of Γ_B ,

where $\nu_{\hat{B}}$ is the Nakayama automorphism of \hat{B} .

[K.-Skowroński-Yamagata]: Let A be a basic, connected, selfinjective artin algebra. **TFAE**:

- (i) Γ_A admits a family C = (C_i)_{i∈I} of quasitubes having common composition factors, closed on composition factors, and consisting of modules which do not lie on infinite short cycles in mod A.
- (ii) *A* is isomorphic to an orbit algebra \widehat{B}/G , where *B* is an almost concealed canonical algebra and *G* is an infinite cyclic group of automorphisms of \widehat{B} of one of the forms
 - (a) $G = (arphi
 u_{\widehat{m{
 ho}}}^2)$, for a strictly positive automorphism arphi of \widehat{B} ,
 - (b) $G = (\varphi \nu_{\widehat{\alpha}}^2)$, for *B* a tubular algebra and φ a rigid automorphism of \widehat{B} ,
 - (c) $G = (\varphi \nu_B^2)$, for *B* of Euclidean or wild type and φ a rigid automorphism of \hat{B} acting freely on the nonstable tubes of the unique separating family \mathcal{T}^B of ray tubes of Γ_B ,

where $\nu_{\hat{B}}$ is the Nakayama automorphism of \hat{B} .

[K.-Skowroński-Yamagata]: Let A be a basic, connected, selfinjective artin algebra. **TFAE**:

(i) Γ_A admits a family C = (C_i)_{i∈I} of quasitubes having common composition factors, closed on composition factors, and consisting of modules which do not lie on infinite short cycles in mod A.

(ii) *A* is isomorphic to an orbit algebra \widehat{B}/G , where *B* is an almost concealed canonical algebra and *G* is an infinite cyclic group of automorphisms of \widehat{B} of one of the forms

(a)
$$G = (\varphi \nu_{\widehat{p}}^2)$$
, for a strictly positive automorphism φ of \widehat{B}_{i}

(b) $G = (\varphi \nu_{\widehat{p}}^2)$, for *B* a tubular algebra and φ a rigid automorphism of \widehat{B} ,

(c) $G = (\varphi v_{\widehat{B}}^2)$, for *B* of Euclidean or wild type and φ a rigid automorphism of \widehat{B} acting freely on the nonstable tubes of the unique separating family \mathcal{T}^B of ray tubes of Γ_B ,

where $\nu_{\widehat{B}}$ is the Nakayama automorphism of \widehat{B} .

[K.-Skowroński-Yamagata]: Let A be a basic, connected, selfinjective artin algebra. **TFAE**:

- (i) Γ_A admits a family C = (C_i)_{i∈I} of quasitubes having common composition factors, closed on composition factors, and consisting of modules which do not lie on infinite short cycles in mod A.
- (ii) *A* is isomorphic to an orbit algebra \widehat{B}/G , where *B* is an almost concealed canonical algebra and *G* is an infinite cyclic group of automorphisms of \widehat{B} of one of the forms
 - (a) $G = (\varphi \nu_{\widehat{B}}^2)$, for a strictly positive automorphism φ of \widehat{B} ,
 - (b) $G = (\varphi \nu_{\widehat{B}}^2)$, for *B* a tubular algebra and φ a rigid automorphism of \widehat{B} ,
 - (c) $G = (\varphi \nu_{\widehat{B}}^2)$, for *B* of Euclidean or wild type and φ a rigid automorphism of \widehat{B} acting freely on the nonstable tubes of the unique separating family \mathcal{T}^B of ray tubes of Γ_B ,

where $\nu_{\hat{B}}$ is the Nakayama automorphism of \hat{B} .

イロト 不得 トイヨト イヨト 正言 ろくの

[K.-Skowroński-Yamagata]: Let *A* be a basic, connected, selfinjective artin algebra. **TFAE**:

(i) Γ_A admits a family C = (C_i)_{i∈I} of quasitubes having common composition factors, closed on composition factors, and consisting of modules which do not lie on infinite short cycles in mod A.

(ii) *A* is isomorphic to an orbit algebra \widehat{B}/G , where *B* is an almost concealed canonical algebra and *G* is an infinite cyclic group of automorphisms of \widehat{B} of one of the forms

(a)
$$G = (\varphi \nu_{\widehat{B}}^2)$$
, for a strictly positive automorphism φ of \widehat{B} ,

(b)
$$G = (\varphi \nu_{\widehat{B}}^2)$$
, for *B* a tubular algebra and φ a rigid automorphism of \widehat{B} ,

(c) $G = (\varphi \nu_{\widehat{B}}^2)$, for *B* of Euclidean or wild type and φ a rigid automorphism of \widehat{B} acting freely on the nonstable tubes of the unique separating family \mathcal{T}^B of ray tubes of Γ_B ,

where $\nu_{\widehat{B}}$ is the Nakayama automorphism of *B*.

[K.-Skowroński-Yamagata]: Let *A* be a basic, connected, selfinjective artin algebra. **TFAE**:

(i) Γ_A admits a family C = (C_i)_{i∈I} of quasitubes having common composition factors, closed on composition factors, and consisting of modules which do not lie on infinite short cycles in mod A.

(ii) A is isomorphic to an orbit algebra \widehat{B}/G , where B is an almost concealed canonical algebra and G is an infinite cyclic group of automorphisms of \widehat{B} of one of the forms

(a)
$$G = (\varphi \nu_{\widehat{B}}^2)$$
, for a strictly positive automorphism φ of \widehat{B} ,

(b)
$$G = (\varphi \nu_{\widehat{B}}^2)$$
, for *B* a tubular algebra and φ a rigid automorphism of \widehat{B} ,

(c) $G = (\varphi \nu_{\widehat{B}}^2)$, for *B* of Euclidean or wild type and φ a rigid automorphism of \widehat{B} acting freely on the nonstable tubes of the unique separating family \mathcal{T}^B of ray tubes of Γ_B ,

where $\nu_{\widehat{B}}$ is the Nakayama automorphism of \widehat{B} .

[K.-Skowroński-Yamagata]: Let A be a basic, connected, selfinjective artin algebra.

(i) Γ_A admits a family C = (C_i)_{i∈I} of quasitubes having common composition factors, closed on composition factors, and consisting of modules which do not lie on infinite short cycles in mod A.

(ii) *A* is isomorphic to an orbit algebra \widehat{B}/G , where $\forall_{i,j\in I}$ there are $X \in C_i$ and canonical algebra and *G* is an infinite cyclic group $Y \in C_j$ such that [X] = [Y] one of the forms

(a)
$$G = (\varphi \nu_{\widehat{B}}^2)$$
, for a strictly positive automorphism φ of \widehat{B} ,

(b)
$$G = (\varphi \nu_{\widehat{B}}^2)$$
, for *B* a tubular algebra and φ a rigid automorphism of \widehat{B} ,

(c) G = (φν²_B), for B of Euclidean or wild type and φ a rigid automorphism of B acting freely on the nonstable tubes of the unique separating family T^B of ray tubes of Γ_B,

where $\nu_{\widehat{B}}$ is the Nakayama automorphism of \widehat{B} .

・同下 ・ 日下 ・ 日下

[K.-Skowroński-Yamagata]: Let *A* be a basic, connected, selfinjective artin algebra. **TFAE**:

- (i) Γ_A admits a family $C = (C_i)_{i \in A}$ of quasitubes having common composition factors, closed on composition factors, and consisting of modules which do not lie on infinite short cycles in mod A.
- (ii) X indecomposable A-module ebra B̂/G, where B is an almost concealed infinite cyclic group of automorphisms of B̂ of one then X ∈ C.
 (a) G = (φν²_{B̂}), for a strictly positive automorphism φ of B̂,
 (b) G = (φν²_{B̂}), for B a tubular algebra and φ a rigid automorphism of B̂,
 (c) G = (φν²_{B̂}), for B of Euclidean or wild type and φ a rigid automorphism of B̂ acting freely on the nonstable tubes of the unique separating family T^B of ray tubes of Γ_B,
 where ν_{B̂} is the Nakayama automorphism of B̂.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ● ●

[K.-Skowroński-Yamagata]: Let *A* be a basic, connected, selfinjective artin algebra. **TFAE**:

- (i) Γ_A admits a family C = (C_i)_{i∈I} of quasitubes having common composition factors, closed on composition factors, and consisting of modules which do not lie on (infinite short cycles) in mod A.
- (ii) X, Y indecomposable x → Y → X g or f is from rad[∞]_A.
 (b) G = (φν[±]_B), for B a tubular algebra and φ a rigid automorphism of B,
 (c) G = (φν[±]_B), for B of Euclidean or wild type and φ a rigid automorphism of B acting freely on the nonstable tubes of the unique separating family T^B of ray tubes of Γ_B,
 where ν_β is the Nakayama automorphism of B.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ● ●

Second step

- (1) In the second step we show that tubular algebras except the exceptional one have fixed points.
- (2) Next, we show that automorphism $\varphi : \widehat{B} \to \widehat{B}$, from the statement of the theorem, is of the desired form.

Second step

- (1) In the second step we show that tubular algebras except the exceptional one have fixed points.
- (2) Next, we show that automorphism $\varphi : \widehat{B} \to \widehat{B}$, from the statement of the theorem, is of the desired form.

For Further Reading

M. Karpicz

On selfinjective algebras without short cycles in the component quiver.

Preprint, Toruń 2012.

嗪 M. Karpicz, A. Skowroński, K. Yamagata

On selfinjective artin algebras having generalized standard quasitubes.

J. Pure Appl. Algebra 215 (2011) 2738–2760