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@ By an algebra we mean a basic, connected artin algebra over a
commutative artin ring k.
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@ By an algebra we mean a basic, connected artin algebra over a
commutative artin ring k.

@ By mod A we denote the category of finitely generated right
A-modules.

@ [ 4 denotes AR-quiver of an algebra A.

@ A component C in I 4 is called generalized standard if for any
X,Y € Cwe haverady’(X,Y)=0.

[Skowronski]: Let C be a generalized standard component of
4. Then C is almost periodic (all but finitely many 74-orbits are
periodic).
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Component quiver

The component quiver ¥ 4 of an algebra A is a quiver whose:
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Component quiver

The component quiver ¥ 4 of an algebra A is a quiver whose:

vertices

components of the AR-quiver I'4

arrows

C——DinXs whereC,Decly,

radz’ (X, Y) # 0 for some modules X inC and Y in D
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@ X 4 has no loop = every component in I is generalized
standard.
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@ X 5 has no loop = every component in I 4 is generalized
standard.

@ X, is acyclic <= Ais generically of polynomial growth.

@ Y 4 has no short cycle = modules in acyclic components are
uniquelly determined by their images in Ky(A).
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¥ 4 has no loop = every component in I 4 is generalized
standard.

¥ 4 is acyclic <= A is generically of polynomial growth.

3 4 has no short cycle = modules in acyclic components are
uniquelly determined by their images in Ky(A).

[Jaworska-Malicki-Skowronski]: Let C and D be components
of I'4. Assume C is not a stable tube of rank 1 and does not
lie on short cycle in X 4.
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@ Y 4 has no loop = every component in I4 is generalized
standard.

@ X 4is acyclic <= Ais generically of polynomial growth.

@ Y 5 has no short cycle = modules in acyclic components are
uniquelly determined by their images in Ky(A).

[Jaworska-Malicki-Skowronski]: Let C and D be components
of I'4. Assume C is not a stable tube of rank 1 and does not
lie on short cycle in X 4.

ﬂ [ [D] = {IX] € Ko(4) | X € D}
C =D« |[C] = [D].
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Almost concealed canonical algebras

@ Let A be a canonical algebra in the sens of Ringel.
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Almost concealed canonical algebras
@ Let A be a canonical algebra in the sens of Ringel.
@ Then I', admits a canonical decomposition
rA=P'v7"v ot

with 7" the canonical family of stable tubes separating P from
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@ An algebra B is said to be an almost concealed canonical algebra
if B is the endomorphism algebra Enda(T) of a tilting module T
from the additive category add(P" v 7).
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Almost concealed canonical algebras

@ Let A be a canonical algebra in the sens of Ringel.
@ Then I', admits a canonical decomposition
=P v71"voh

with 7" the canonical family of stable tubes separating P from
oM

@ An algebra B is said to be an almost concealed canonical algebra
if B is the endomorphism algebra Enda(T) of a tilting module T
from the additive category add(P" v 7).

Moreover, I'g admits the canonical decomposition

Mg =PBv 7B v QB with 77 the family of ray tubes (i.e.
components obtained from stable tubes by ray insertions).
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Qv 0
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We say that a canonical algebra A is of
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We say that a canonical algebra A is of

Euclidean type if Qx is a Dynkin quiver.
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o (2’1)‘_(272)‘__(27”1_1)
@

Qi 05 (21) + (22) s+ (22— 1)

>, é,.}

(2,1)<—(2,2)<—-E- —(2,n,—1)

We say that a canonical algebra A is of

wild type in the remaining cases.
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Tubular algebras

An almost concealed canonical algebra of type A, where A is a
canonical algebra of tubular type, is called a tubular algebra.
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An almost concealed canonical algebra of type A, where A is a
canonical algebra of tubular type, is called a tubular algebra.

For a field k of characteristic different from 2, the exceptional tubular
algebra Bey is given by the following ordinary quiver
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Tubular algebras

An almost concealed canonical algebra of type A, where A is a
canonical algebra of tubular type, is called a tubular algebra.

For a field k of characteristic different from 2, the exceptional tubular
algebra Bey is given by the following ordinary quiver

and the relations a{ = yn, ap = yw, 0 = nand op = —SBw.
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An automorphism ¢ of the exceptional tubular algebra Bey is said to be
distinguished if:
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An automorphism ¢ of the exceptional tubular algebra Bey is said to be
distinguished if:

o(7) = ao, p(o) = by, p(B) = ca, p(a) = dB, p(u) = en, p(n) = ry,
¢(w) = u¢ and () = vw

fora, b,c,d, e r,u, vek)\{0} satisfying the following relations

dv = —ar, de = au, bv = cr and be = —cu.
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Selfinjective orbit algebras

@ For an algebra A, we denote by D the standard duality
Hom(—, E) on mod A, where E is a minimal injective cogenerator
in mod k.
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Selfinjective orbit algebras

@ For an algebra A, we denote by D the standard duality
Homy(—, E) on mod A, where E is a minimal injective cogenerator
in mod k.

@ An algebra Ais selfinjective if and only if A= D(A) in mod A.

@ A component C in T4, where A is selfinjective algebra, is called a
quasitube if its stable part C* is a stable tube.

A = selfinjective algebra, C = a generalized standard compo-
nent of Iy

C is a quasitube or C® = ZA for a finite acyclic valued quiver A.
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The repetitive algebra Bof Bis an algebra (without identity) whose
k-module structure is that of
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The repetitive algebra Bof Bis an algebra (without identity) whose
k-module structure is that of

D (Bn© D(B)m)

mezZ

where By, = B and D(B), = D(B) for all m € Z, and the multiplication
is defined by

(@m; fm)m - (bm, 9m)m = (@mbm, @mgm + fmbm—1)m

for am, bm € Bm, fm,9m € D(B)m.
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E={ei |1 <i< n}afixed set of orthogonal primitive idempotents of
B with 13291 + -+ €p
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E={ei |1 <i< n}afixed set of orthogonal primitive idempotents of
B with 15291 + -+ €p

£ = {emi| meZ, 1 <i< n}acorresponding set of orthogonal
primitive idempotents of B such that

~

em,iB = (€iB)m © (& D(B))m

formeZand1<i<n.
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@ By an automorphism of B we mean a k-algebra automorphism of
B which fixes the chosen set & of orthogonal primitive
idempotents of B.
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@ A group G of automorphisms of Bis said to be admissible if the
induced action of G on £ is free and has finitely many orbits.
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@ By an automorphism of B we mean a k-algebra automorphism of
B which fixes the chosen set & of orthogonal primitive
idempotents of B.

@ A group G of automorphisms of Bis said to be admissible if the
induced action of G on & is free and has finitely many orbits.

@ The orbit algebra B/A G is a finite dimensional selfinjective algebra
and the G-orbits in £ form a canonical set of orthogonal primitive
idempotents of B/G whose sum is the identity of B/G.
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We denote by v the Nakayama automorphism of B such that

vg(em,i) = emi1,i

foralmeZ,1<i<n.
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We denote by v the Nakayama automorphism of B such that
vg(em,i) = emi1,i
foralmeZ,1<i<n.

An automorphism ¢ of Bis said to be
@ positive if ¢(Bm) C 3>, B forany m € Z.

Q rigid if ¢(Bm) = By, forany m e Z.
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We denote by v the Nakayama automorphism of B such that
vg(em,i) = emi1,i
foralmeZ,1<i<n.

An automorphism ¢ of Bis said to be
@ positive if ¢(Bm) C 3>, B forany m € Z.

Q rigid if o(Bm) = Bm for any m € Z.
© strictly positive if o is positive but not rigid.
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Main result

[K’2012]: Let A be a basic, connected, selfinjective artin alge-
bra of infinite representation type, over a commutative artin ring
K.
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Main result

[K’2012]: Let A be a basic, connected, selfinjective artin alge-
bra of infinite representation type, over a commutative artin ring
k. TFAE:

(i) The component quiver X4 has no short cycles.

(i) k is a field and A is isomorphic to an orbit algebra E/G,

where B is a tilted algebra of Euclidean type or a tubular
algebra over k and G is an infinite cyclic group of

automorphisms of B of one of the following forms:
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Main result

[K’2012]: Let A be a basic, connected, selfinjective artin alge-

bra of infinite representation type, over a commutative artin ring
k. TFAE:

(i) The component quiver ¥4 has no short cycles.

(i) k is a field and A is isomorphic to an orbit algebra E/G,
where B is a tilted algebra of Euclidean type or a tubular
algebra over k and G is an infinite cyclic group of

automorphisms of B of one of the following forms:
(a) G= ((pV%), for a strictly positive automorphism ¢ of B,
(b) G= (<pz/§B), for an exceptional tubular algebra B and a rigid

automorphism ¢ of B, whose restriction to B is a
distinguished automorphism of B,

where v is the Nakayama automorphism of B.
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The structure of I'4
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The structure of I'4

c()

cr=1) c

. ©

for some integer r > 1, where A = B/G and each () is an infinite
family of quasitubes
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The structure of I'4

B is tilted algebra of

‘ ‘ Euclidean type
c()

cr=1) c

for some integer r > 1, where A = B/G and each () is an infinite
family of quasitubes
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The structure of I'4

B is tilted algebra of

‘ ‘ Euclidean type
c()

clr=1 cM every X is an
acyclic component
of Euclidean type

(the stable part is of
the form ZA for a
Euclidean quiver A)

for some integer r > 1, where A = B/G and each () is an infinite
family of quasitubes
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The structure of I'4

B is a tubular alge-

7N bra
() )
qu@,’f+1 Cq qu@§+1 Cq
v c© v
clr=1 c () — oW
A = qu<@;+1 Cq's
where ¢Y is an infi-
. a
TN N nite family of stable
v e v e tubes for each q €
a€Q 4 9 acyyq 9 Qi =Qn(i,i+1)

for some integer r > 1, where A = B/G and each () is an infinite
family of quasitubes
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First step

[K.-Skowronski-Yamagata)]: Let A be a basic, connected, selfinjective artin algebra.
TFAE:
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First step

(ii)

[K.—Skowrohski—Yamagata]: Let A be a basic, connected, selfinjective artin algebra.
TFAE

(i) FA admits a family C = (C;);¢/ of quasitubes having common composition factors,

closed on composition factors, and consisting of modules which do not lie on
infinite short cycles in mod A.

A is isomorphic to an orbit algebra E/G, where B is an almost concealed
canonical algebra and G is an infinite cyclic group of automorphisms of B of one
of the forms

(@) G = (pv ) for a strictly positive automorphism ¢ of B,

(b) G= (gal/é), for B a tubular algebra and ¢ a rigid automorphism of B,

(c) G= (Lpl/%), for B of Euclidean or wild type and ¢ a rigid automorphism of B

acting freely on the nonstable tubes of the unique separating family 72 of ray
tubes of I'g,
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[K Skowrohski—Yamagata]: Let A be a basic, connected, selfinjective artin algebra
of quasitubes having common composition factors,

closed on composmon factors and consisting of modules which do not lie on
TNite Short cycles I mod

(i) 4 X - indecomposable A- ebra B/G, where B is an almost concealed
infinite cyclic group of automorphisms of B of one

module
If [X] =[Y] for some Y € C

then X € C. R
a) G = (pv2), for a strictly positive automorphism ¢ of B,

(b) G = (@r2), for B a tubular algebra and ¢ a rigid automorphism of B,

() G = (pv2), for B of Euclidean or wild type and ¢ a rigid automorphism of B

B
acting freely on the nonstable tubes of the unique separating family 72 of ray

(i)

tubes of I'g,
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FAE

(i) FA admlts a famlly C = (Cj)ie/ of quasitubes having common composition factors,
on composition factors, and consisting of modules which do not lie on

|nf|n|te short cycles)in mod A.

(ii) X, Y indecompos- n orbit algebra E/G, where B is an almost concealeg
able nd G is an infinite cyclic group of automorphisms of B of one
f g
X=>Y=>X
rgag%of is from a strictly positive automorphism ¢ of B,

O] G = (prg), Tor B a tubular algebra and ¢ a rigid automorphism of B,
(c) G= (Lpl/%), for B of Euclidean or wild type and ¢ a rigid automorphism of B

acting freely on the nonstable tubes of the unique separating family 72 of ray
tubes of I'g,

where v is the Nakayama automorphism of B.

Maciej Karpicz (NCU) On selfinjective algebras 14 August 2012 17/19



Second step

(1) In the second step we show that tubular algebras except the
exceptional one have fixed points.
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Second step

(1) In the second step we show that tubular algebras except the
exceptional one have fixed points.

(2) Next, we show that automorphism ¢ : B — B, from the statement
of the theorem, is of the desired form.
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