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By an algebra we mean a basic, connected artin algebra over a
commutative artin ring k .
By mod A we denote the category of finitely generated right
A-modules.
ΓA denotes AR-quiver of an algebra A.
A component C in ΓA is called generalized standard if for any
X ,Y ∈ C we have rad∞A (X ,Y ) = 0.

[Skowroński]: Let C be a generalized standard component of
ΓA. Then C is almost periodic (all but finitely many τA-orbits are
periodic).
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Component quiver

The component quiver ΣA of an algebra A is a quiver whose:

vertices

components of the AR-quiver ΓA

arrows

C D in ΣA, where C, D ∈ ΓA

rad∞A (X ,Y ) 6= 0 for some modules X in C and Y in D
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ΣA has no loop =⇒ every component in ΓA is generalized
standard.
ΣA is acyclic⇐⇒ A is generically of polynomial growth.
ΣA has no short cycle =⇒ modules in acyclic components are
uniquelly determined by their images in K0(A).

[Jaworska-Malicki-Skowroński]: Let C and D be components
of ΓA. Assume C is not a stable tube of rank 1 and does not
lie on short cycle in ΣA.

C = D ⇐⇒ [C] = [D].
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ΣA has no loop =⇒ every component in ΓA is generalized
standard.
ΣA is acyclic⇐⇒ A is generically of polynomial growth.
ΣA has no short cycle =⇒ modules in acyclic components are
uniquelly determined by their images in K0(A).

[Jaworska-Malicki-Skowroński]: Let C and D be components
of ΓA. Assume C is not a stable tube of rank 1 and does not
lie on short cycle in ΣA.

C = D ⇐⇒ [C] = [D].

[D] = {[X ] ∈ K0(A) | X ∈ D}
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Almost concealed canonical algebras

Let Λ be a canonical algebra in the sens of Ringel.

Then ΓΛ admits a canonical decomposition

ΓΛ = PΛ ∨ T Λ ∨QΛ

with T Λ the canonical family of stable tubes separating PΛ from
QΛ.

An algebra B is said to be an almost concealed canonical algebra
if B is the endomorphism algebra EndΛ(T ) of a tilting module T
from the additive category add(PΛ ∨ T Λ).

Moreover, ΓB admits the canonical decomposition
ΓB = PB ∨ T B ∨QB with T B the family of ray tubes (i.e.
components obtained from stable tubes by ray insertions).
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QΛ: 0 ω

(2,1) (2,2) (2,n1 − 1) (c1 , d1 )(a 1,
b 1)

(2,1) (2,2) (2,n2 − 1)
(c2, d2)(a2, b2)

(2,1) (2,2) (2,nr − 1)

(c r,
d r)

(ar , br )

We say that a canonical algebra Λ is of
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Euclidean type if Q∗Λ is a Dynkin quiver.
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Tubular algebras

An almost concealed canonical algebra of type Λ, where Λ is a
canonical algebra of tubular type, is called a tubular algebra.

For a field k of characteristic different from 2, the exceptional tubular
algebra Bex is given by the following ordinary quiver

1 3 5

2 4 6

α

σ

ζ

η

β

γ

ω

µ

and the relations αζ = γη, αµ = γω, σζ = βη and σµ = −βω.
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An automorphism ϕ of the exceptional tubular algebra Bex is said to be
distinguished if:

ϕ(γ) = aσ, ϕ(σ) = bγ, ϕ(β) = cα, ϕ(α) = dβ, ϕ(µ) = eη, ϕ(η) = rµ,
ϕ(ω) = uζ and ϕ(ζ) = vω

for a, b, c, d , e, r , u, v ∈ k \ {0} satisfying the following relations

dv = −ar , de = au, bv = cr and be = −cu.
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Selfinjective orbit algebras

For an algebra A, we denote by D the standard duality
Homk (−,E) on mod A, where E is a minimal injective cogenerator
in mod k .
An algebra A is selfinjective if and only if A ∼= D(A) in mod A.
A component C in ΓA, where A is selfinjective algebra, is called a
quasitube if its stable part Cs is a stable tube.

A = selfinjective algebra, C = a generalized standard compo-
nent of ΓA

C is a quasitube or Cs = Z∆ for a finite acyclic valued quiver ∆.
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The repetitive algebra B̂ of B is an algebra (without identity) whose
k -module structure is that of⊕

m∈Z
(Bm ⊕ D(B)m)

where Bm = B and D(B)m = D(B) for all m ∈ Z, and the multiplication
is defined by

(am, fm)m · (bm,gm)m = (ambm,amgm + fmbm−1)m

for am,bm ∈ Bm, fm,gm ∈ D(B)m.
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E = {ei | 1 ≤ i ≤ n} a fixed set of orthogonal primitive idempotents of
B with 1B = e1 + · · ·+ en
Ê = {em,i | m ∈ Z, 1 ≤ i ≤ n} a corresponding set of orthogonal
primitive idempotents of B̂ such that

em,i B̂ = (eiB)m ⊕ (ei D(B))m

for m ∈ Z and 1 ≤ i ≤ n.
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and the G-orbits in Ê form a canonical set of orthogonal primitive
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We denote by νB̂ the Nakayama automorphism of B̂ such that

νB̂(em,i) = em+1,i

for all m ∈ Z, 1 ≤ i ≤ n.

An automorphism ϕ of B̂ is said to be
1 positive if ϕ(Bm) ⊆

∑
j≥m Bj for any m ∈ Z.

2 rigid if ϕ(Bm) = Bm for any m ∈ Z.
3 strictly positive if ϕ is positive but not rigid.
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Main result

[K.’2012]: Let A be a basic, connected, selfinjective artin alge-
bra of infinite representation type, over a commutative artin ring
k . TFAE:

(i) The component quiver ΣA has no short cycles.

(ii) k is a field and A is isomorphic to an orbit algebra B̂/G,
where B is a tilted algebra of Euclidean type or a tubular
algebra over k and G is an infinite cyclic group of
automorphisms of B̂ of one of the following forms:
(a) G = (ϕν2

B̂
), for a strictly positive automorphism ϕ of B̂,

(b) G = (ϕν2
B̂

), for an exceptional tubular algebra B and a rigid

automorphism ϕ of B̂, whose restriction to B is a
distinguished automorphism of B,

where νB̂ is the Nakayama automorphism of B̂.
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The structure of ΓA

X (0)X (r−1)

X (r−2) X (1)

C(0)

C(1)C(r−1)

for some integer r ≥ 1, where A = B̂/G and each C(i) is an infinite
family of quasitubes
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The structure of ΓA

X (0)X (r−1)

X (r−2) X (1)

C(0)

C(1)C(r−1)

B is a tubular alge-
bra∨

q∈Qi
i+1
C(i)

q
∨

q∈Qi
i+1
C(i)

q

∨
q∈Qi

i+1
C(i)

q
∨

q∈Qi
i+1
C(i)

q

X (i) =
∨

q∈Qi
i+1

C(i)
q ,

where C(i)
q is an infi-

nite family of stable
tubes for each q ∈
Qi

i+1 = Q ∩ (i, i + 1)
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First step

[K.-Skowroński-Yamagata]: Let A be a basic, connected, selfinjective artin algebra.
TFAE:

(i) ΓA admits a family C = (Ci )i∈I of quasitubes having common composition factors,
closed on composition factors, and consisting of modules which do not lie on
infinite short cycles in mod A.

(ii) A is isomorphic to an orbit algebra B̂/G, where B is an almost concealed
canonical algebra and G is an infinite cyclic group of automorphisms of B̂ of one
of the forms
(a) G = (ϕν2

B̂
), for a strictly positive automorphism ϕ of B̂,

(b) G = (ϕν2
B̂

), for B a tubular algebra and ϕ a rigid automorphism of B̂,

(c) G = (ϕν2
B̂

), for B of Euclidean or wild type and ϕ a rigid automorphism of B̂

acting freely on the nonstable tubes of the unique separating family T B of ray
tubes of ΓB ,

where νB̂ is the Nakayama automorphism of B̂.
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∀i,j∈I there are X ∈ Ci and
Y ∈ Cj such that [X ] = [Y ]
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[K.-Skowroński-Yamagata]: Let A be a basic, connected, selfinjective artin algebra.
TFAE:

(i) ΓA admits a family C = (Ci )i∈I of quasitubes having common composition factors,
closed on composition factors, and consisting of modules which do not lie on
infinite short cycles in mod A.

(ii) A is isomorphic to an orbit algebra B̂/G, where B is an almost concealed
canonical algebra and G is an infinite cyclic group of automorphisms of B̂ of one
of the forms
(a) G = (ϕν2

B̂
), for a strictly positive automorphism ϕ of B̂,

(b) G = (ϕν2
B̂

), for B a tubular algebra and ϕ a rigid automorphism of B̂,

(c) G = (ϕν2
B̂

), for B of Euclidean or wild type and ϕ a rigid automorphism of B̂

acting freely on the nonstable tubes of the unique separating family T B of ray
tubes of ΓB ,

where νB̂ is the Nakayama automorphism of B̂.

Maciej Karpicz (NCU) On selfinjective algebras 14 August 2012 17 / 19

X - indecomposable A-
module
If [X ] = [Y ] for some Y ∈ C
then X ∈ C.
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X , Y indecompos-
able
X f→ Y

g→ X
g or f is from
rad∞A



Second step

(1) In the second step we show that tubular algebras except the
exceptional one have fixed points.

(2) Next, we show that automorphism ϕ : B̂ → B̂, from the statement
of the theorem, is of the desired form.
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