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A representation-finite algebra over an algebraically closed field of
positive characteristic remains representation-finite after change of
the characteristic of the base field to 0.



V' - a valuation ring in an algebraically closed field K,



V' - a valuation ring in an algebraically closed field K,

m - the unique maximal ideal of V,



V' - a valuation ring in an algebraically closed field K,
m - the unique maximal ideal of V,

R =V /m - the residue field.



V' - a valuation ring in an algebraically closed field K,
m - the unique maximal ideal of V,

R = V/m - the residue field.

A - a V-order



V' - a valuation ring in an algebraically closed field K,
m - the unique maximal ideal of V,

R =V /m - the residue field.

A - a V-order = a V-algebra (associative, with a unit), free finitely
generated as a V-module.



V' - a valuation ring in an algebraically closed field K,
m - the unique maximal ideal of V,
R = V/m - the residue field.

A - a V-order = a V-algebra (associative, with a unit), free finitely
generated as a V-module.

Notation:

KA= the K-algebra ARy K,

A= the R-algebra A/mA= A®y R.
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Theorem 2. Given d € N, there are polynomials Hy, ..., H, with
integral coefficients such that:

if L is an algebraically closed field and N is a d-dimensional
L-algebra then

N is representation-finite < Hi(y) # 0 for some i € {1,...,r},

where v is a tuple of structure constants of A\ with respect to a
basis of A.
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Theorem 2 yields:
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> a stronger version of Gabriel's finite representation type is
open: there is an open Z-scheme of representation-finite
algebras
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» finite axiomatizability of finite representation type (Herrmann,
Jensen and Lenzing, 1981): representation-finiteness can be
expressed as a first order property of structure constants,

» van den Dries's test - a quantifier elimination theorem.
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finite axiomatizability of f.r.t + Tarski's quantifier elimination
theorem:

Given a natural number d

there exist polynomials G;j, H; (finitely many) with integral
coefficients, such that

N is representation-finite < \/;(Hi(y) # 0 A /\J- Gij(v) =0).

where 7 is a tuple of structure constants of A with respect to a
basis of A.
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van den Dries's theorem - a version for algebraically closed fields:
(allows to eliminate the conditions G;; = 0)

¢(x1, ..., xn) - a first order formula in the language of rings.

The following conditions are equivalent:

(a) ¢(xa, ..., xn) is equivalent (in the theory of algebraically closed
fields) to a formula

Hi(Xx1, s Xn) Z 0V o V Hp(X1, .oy Xn) # 0

for some polynomials Hy, ..., H, with integral coefficients,

(b) for any algebraically closed field K and a valuation ring V in K,
any ai,...,ap € V: if ¢(a1,...,3,) holds in R = V/m then
¢(ai,...,an) holds in K.

(a)= (b) - easy.



From Theorem 1 to 2:



From Theorem 1 to 2:

> ¢ - a formula determining representation-finiteness,



From Theorem 1 to 2:
> ¢ - a formula determining representation-finiteness,
» Theorem 1 = (b) of v.d.D. theorem,



From Theorem 1 to 2:
> ¢ - a formula determining representation-finiteness,
» Theorem 1 = (b) of v.d.D. theorem,
» (a) of v.d.D = Theorem 2.
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Outline of the proof of Theorem 1.

Given an algebra A, A-module E and natural numbers m, | consider
Subp(m, t, E)

= the projective variety of m-dimensional A-submodules of E with
at lest t-dimensional endomorphism algebra.

A is representation-infinite <> dim Suba(m, t, E) > md? — t for
some m, t and an injective E, where dimA = d.
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Assume KA is representation-infinite.

Choose suitable m, t and injective E defined over V.
Prove that

dim Subka(m, t, E) < dim Subz(m, t, E),

hence A is representation infinite.
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Main lemma:

Let F1, ..., F, be homogeneous polynomials with coefficients in V.
The dimension of the projective variety defined by Fi, ..., F, over K
is less than or equal to the dimension of projective variety defined
by Fi,..., F, over R.



An idea of the proof:
consider Gelfand-Kirillov dimension.



