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A representation-finite algebra over an algebraically closed field of
positive characteristic remains representation-finite after change of
the characteristic of the base field to 0.



V - a valuation ring in an algebraically closed field K ,

m - the unique maximal ideal of V ,

R = V /m - the residue field.

A - a V -order = a V -algebra (associative, with a unit), free finitely
generated as a V -module.

Notation:

KA= the K-algebra A⊗V K,

A= the R-algebra A/mA ∼= A⊗V R.
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Main results:

Theorem 1. If the R-algebra A is representation-finite, then the
K-algebra KA is representation-finite.

Theorem 2. Given d ∈ N, there are polynomials H1, ...,Hr with
integral coefficients such that:

if L is an algebraically closed field and Λ is a d-dimensional
L-algebra then

Λ is representation-finite ⇔ Hi (γ) 6= 0 for some i ∈ {1, ..., r},

where γ is a tuple of structure constants of Λ with respect to a
basis of Λ.
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Theorem 2 yields:
I a positive answer to a question by Jensen and Lenzing (1989)
I a stronger version of Gabriel’s finite representation type is

open: there is an open Z-scheme of representation-finite
algebras
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From Theorem 1 to 2:
I finite axiomatizability of finite representation type (Herrmann,

Jensen and Lenzing, 1981): representation-finiteness can be
expressed as a first order property of structure constants,

I van den Dries’s test - a quantifier elimination theorem.
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finite axiomatizability of f.r.t + Tarski’s quantifier elimination
theorem:
Given a natural number d
there exist polynomials Gi ,j ,Hj (finitely many) with integral
coefficients, such that

Λ is representation-finite ⇔
∨

i (Hi (γ) 6= 0 ∧
∧

j Gi ,j(γ) = 0).

where γ is a tuple of structure constants of Λ with respect to a
basis of Λ.
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van den Dries’s theorem - a version for algebraically closed fields:
(allows to eliminate the conditions Gi ,j = 0)

φ(x1, ..., xn) - a first order formula in the language of rings.

The following conditions are equivalent:

(a) φ(x1, ..., xn) is equivalent (in the theory of algebraically closed
fields) to a formula

H1(x1, ..., xn) 6= 0 ∨ ... ∨ Hr (x1, ..., xn) 6= 0

for some polynomials H1, ...,Hr with integral coefficients,

(b) for any algebraically closed field K and a valuation ring V in K ,
any a1, ..., an ∈ V : if φ(a1, ..., an) holds in R = V /m then
φ(a1, ..., an) holds in K .

(a)⇒ (b) - easy.
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Outline of the proof of Theorem 1.

Given an algebra Λ, Λ-module E and natural numbers m, l consider

SubΛ(m, t,E )

= the projective variety of m-dimensional Λ-submodules of E with
at lest t-dimensional endomorphism algebra.

Λ is representation-infinite ⇔ dim SubΛ(m, t,E ) > md2 − t for
some m, t and an injective E , where dimΛ = d .
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Prove that

dim SubKA(m, t,E ) ≤ dim SubA(m, t,E ),

hence A is representation infinite.
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The dimension of the projective variety defined by F1, ...,Fr over K
is less than or equal to the dimension of projective variety defined
by F1, ...,Fr over R .
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An idea of the proof:
consider Gelfand-Kirillov dimension.


