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Main aim

α, β, γ — partitions, α = (α1, α2, . . .) such that α1 ≤ 2

N(α) =
⊕s

i=1 K [T ]/(Tαi ) — nilpotent linear operator

Consider mono’s N(α)
f−→ N(β) such that Coker f ∼= M(γ)

≤deg — partial order given by degenerations

Combinatorial description (example):

For α = (2, 2, 1, 1), β = (5, 4, 3, 3, 2, 1), γ = (4, 3, 2, 2, 1):

0 −→ N(α)
f−→ N(β) −→ N(γ) −→ 0

Γ :

1
1

1 1
2

2

Π :

1
1

1 1
22

23

∆ :
• • • • •
5 4 3 2 1

� �� �
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Justyna Kosakowska, Toruń Operations on arc diagrams and degenerations



Main aim

α, β, γ — partitions, α = (α1, α2, . . .) such that α1 ≤ 2

N(α) =
⊕s

i=1 K [T ]/(Tαi ) — nilpotent linear operator

Consider mono’s N(α)
f−→ N(β) such that Coker f ∼= M(γ)

≤deg — partial order given by degenerations

Combinatorial description (example):

For α = (2, 2, 1, 1), β = (5, 4, 3, 3, 2, 1), γ = (4, 3, 2, 2, 1):

0 −→ N(α)
f−→ N(β) −→ N(γ) −→ 0

Γ :

1
1

1 1
2

2

Π :

1
1

1 1
22

23

∆ :
• • • • •
5 4 3 2 1

� �� �
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Notation

K — an algebraically closed field

α, β, γ — partitions

For a partition α = (α1, α2, . . .) denote:

N(α) =
⊕s

i=1 K [T ]/(Tαi ) — nilpotent linear operator

With partitions α, β we associate:

Hβ
α = HomK (N(α),N(β)) — affine variety (Zariski topology)

V β
α,γ ⊂ Hβ

α — subset consisted of all monomorphisms f such
that there exists a s. e. s.

0 −→ N(α)
f−→ N(β) −→ N(γ) −→ 0

Group action: G = AutK [T ]N(α)×AutK [T ]N(β) acts on V β
α,γ.
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Categorification

Sβα,γ — the category consisted of all systems

X = (N(α),N(β), f )

where f : N(α)→ N(β) is a monomorphism and
Coker f ∼= M(γ); morph. in Sβα,γ are defined in a natural way;

The G -orbits in V β
α,γ are in 1− 1-correspondence with the

equivalence classes of objects in Sβα,γ.

S2 — the category consisted of all systems

(N(α),N(β), f )

where α and β are partitions, α1 ≤ 2, and f : N(α)→ N(β)
is a monomorphism and Coker f ∼= M(γ); morphisms in S2 are
def. in a natural way;
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Justyna Kosakowska, Toruń Operations on arc diagrams and degenerations



Problem

For f ∈ V β
α,γ denote by Of the orbit of f under the action of

G .

We define the following partial order (degeneration order).
For f , g ∈ V β

α,γ (resp. X ,Y ∈ Sβα,γ):

X ≤deg Y :⇐⇒ f ≤deg g :⇐⇒ Og ⊆ Of

Problem.

1. describe ≤deg combinatorically in S2 ∩ Sβα,γ
2. determine dimOf .
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Justyna Kosakowska, Toruń Operations on arc diagrams and degenerations



Problem

For f ∈ V β
α,γ denote by Of the orbit of f under the action of

G .

We define the following partial order (degeneration order).
For f , g ∈ V β

α,γ (resp. X ,Y ∈ Sβα,γ):

X ≤deg Y :⇐⇒ f ≤deg g :⇐⇒ Og ⊆ Of

Problem.

1. describe ≤deg combinatorically in S2 ∩ Sβα,γ

2. determine dimOf .

Justyna Kosakowska, Toruń Operations on arc diagrams and degenerations



Problem

For f ∈ V β
α,γ denote by Of the orbit of f under the action of

G .

We define the following partial order (degeneration order).
For f , g ∈ V β

α,γ (resp. X ,Y ∈ Sβα,γ):

X ≤deg Y :⇐⇒ f ≤deg g :⇐⇒ Og ⊆ Of

Problem.

1. describe ≤deg combinatorically in S2 ∩ Sβα,γ
2. determine dimOf .
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The category S2

Theorem (Beers, Hunter, Walker, 1983): The category S2

has the Krull-Remak-Schmidt property.

Each indecomposable
object in S2 is isomorphic to one of the following.

Pm
0 : 0 ⊆ N(m) (m ≥ 1)

Pm
1 : (Tm−1) ⊆ N(m) (m ≥ 1)

Pm
2 : (Tm−2) ⊆ N(m) (m ≥ 2)

Bm,r
2 : ((Tm−2,T r−1)) ⊆ N(m, r) (m − 2 ≥ r ≥ 1)

Proposition: For partitions α, β, γ with α1 ≤ 2, there is a
one-to-one correspondence

Obj(Sβα,γ)/∼=
1−1←→

{
Klein tableaux of type (α, β, γ)

}
.
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Combinatorial invariants

Invariants for the indecomposable objects in S2

X : Pm
0 Pm

1 Pm
2 Bm,r

2

Γ(X ) : ...
}

m
1

...
}

m
2
1

...
}

m

m


2

...
1

...
...
}

r

Π(X ) : ...
}
m

1

...
}

m 1

...

2r

}
m

r=m−1

m


2r

...
1

...
...
}

r

r<m−1

∆(X ) : ∅ •
m

• •
� �
m m−1

• • •
� �
m r
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The arc diagram of an object

The Klein tableau for a direct sum M ⊕M ′ has a diagram
given by the union β ∪ β′ of the partitions representing the
ambient spaces, and in each row the entries are obtained by
lexicographically ordering the entries in the corresponding rows
in the tableaux for M and M ′, with empty boxes coming first.

S2 3 X 7→ Π(X ) 7→ ∆(X )

Example:
X = B5,3

2 ⊕ B4,2
2 ⊕ P3

1 ⊕ P1
1 .

Γ :

1
1

1 1
2

2

Π :

1
1

1 1
22

23

∆ :
• • • • •
5 4 3 2 1

� �� �
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Arc order

Sβα,γ 3 X 7−→ ∆(X ) — arc diagram of X

Two arc-diagrams are said to be in arc order if the first is
obtained from the second by a sequence of moves of types:

• • • •
� ���

• • • •

� �� �
�
�
� (A)

<ar
c

@
@
@(C)

>
arc

• • • •
� � � �

• • •
� �

• • •

� �

• • •
� �

�
�
� (B)

<ar
c

@
@
@(D)

>
arc

Definition:

X ≤arc Y if and only if ∆(X ) ≤arc ∆(Y )
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Main result

Theorem [K-Schmidmeier 2011]. Suppose that K is an
algebraically closed field and that α, β, γ are partitions with
α1 ≤ 2.

1 For Y ,Z ∈ Sβα,γ we have

Y ≤deg Z if and only if Y ≤arc Z .

2 Suppose the arc diagram ∆ of an invariant subspace
Y = (Nα,Nβ, f ) in Sβα,γ has x(∆) crossings. Then

dimOf = m(β)−m(α)−m(γ)− x(∆) + |α|+ 2m(α).

Definition: m(α) =
∑s

i=1 αi(i − 1) is the moment of the
partition α = (α1, . . . , αs) and |α| = α1 + α2 + . . ..
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Properties of the partial order ≤deg

Theorem [K-Schmidmeier 2011]. Suppose that K is an
algebraically closed field and that α, β, γ are partitions with
α1 ≤ 2. In V β

α,γ:

1 and there is the unique orbit ≤arc-maximal (equivalently
≤deg-maximal),

2 there are cβα,γ orbits ≤arc-minimal (equivalently
≤deg-minimal).

The Littlewood-Richardson coefficient cβα,γ counts the
number of LR-tableaux of type (α, β, γ).
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Justyna Kosakowska, Toruń Operations on arc diagrams and degenerations



Properties of the partial order ≤deg

Theorem [K-Schmidmeier 2011]. Suppose that K is an
algebraically closed field and that α, β, γ are partitions with
α1 ≤ 2. In V β

α,γ:

1 and there is the unique orbit ≤arc-maximal (equivalently
≤deg-maximal),

2 there are cβα,γ orbits ≤arc-minimal (equivalently
≤deg-minimal).

The Littlewood-Richardson coefficient cβα,γ counts the
number of LR-tableaux of type (α, β, γ).
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Example: The deg-order in V 4321
211,321

∆6 :

• • • •
4 3 2 1
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∆4 :

• • • •
4 3 2 1
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• • • •
4 3 2 1

� �
6 6

∆1 :

• • • •
4 3 2 1
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• • • •
4 3 2 1
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�
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∆2 :

• • • •
4 3 2 1
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 dim = 12

 dim = 11

 dim = 13
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About proof

The proof of Theorem 1.1

uses properties of AR-quiver of the category S2

if ∆ ≤arc ∆′, gives algorithm that find sequense of moves

∆ 7→ ∆1 7→ . . . 7→ ∆′

Justyna Kosakowska and Markus Schmidmeier, Operations on
arc diagrams and degenerations for invariant subspaces of
linear operators, arXiv:1202.2813v1 [math.RT].
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