Operations on arc diagrams and degenerations for invariant subspaces of linear operators

Justyna Kosakowska, Toruń

A report on a joint project by Justyna Kosakowska, Toruń, and Markus Schmidmeier, FAU

ICRA 2012, Bielefeld

August 13, 2012

α, β, γ — partitions, $\alpha = (\alpha_1, \alpha_2, ...)$ such that $\alpha_1 \leq 2$

御 と く き と く き と …

3

 α, β, γ — partitions, $\alpha = (\alpha_1, \alpha_2, ...)$ such that $\alpha_1 \leq 2$ $N(\alpha) = \bigoplus_{i=1}^{s} K[T]/(T^{\alpha_i})$ — nilpotent linear operator

 $\alpha, \beta, \gamma - \text{partitions}, \alpha = (\alpha_1, \alpha_2, \ldots) \text{ such that } \alpha_1 \leq 2$ $N(\alpha) = \bigoplus_{i=1}^{s} K[T]/(T^{\alpha_i}) - \text{nilpotent linear operator}$ Consider mono's $N(\alpha) \xrightarrow{f} N(\beta)$ such that $\operatorname{Coker} f \cong M(\gamma)$

 $\alpha, \beta, \gamma - \text{partitions}, \alpha = (\alpha_1, \alpha_2, ...) \text{ such that } \alpha_1 \leq 2$ $N(\alpha) = \bigoplus_{i=1}^{s} K[T]/(T^{\alpha_i}) - \text{nilpotent linear operator}$ Consider mono's $N(\alpha) \xrightarrow{f} N(\beta)$ such that $\operatorname{Coker} f \cong M(\gamma)$ \leq_{deg} - partial order given by degenerations

 $\alpha, \beta, \gamma - \text{partitions}, \alpha = (\alpha_1, \alpha_2, ...)$ such that $\alpha_1 \leq 2$ $N(\alpha) = \bigoplus_{i=1}^{s} K[T]/(T^{\alpha_i}) - \text{nilpotent linear operator}$ Consider mono's $N(\alpha) \xrightarrow{f} N(\beta)$ such that Coker $f \cong M(\gamma)$ \leq_{deg} - partial order given by degenerations Combinatorial description (example):

 $\alpha, \beta, \gamma - \text{partitions}, \alpha = (\alpha_1, \alpha_2, ...)$ such that $\alpha_1 \leq 2$ $N(\alpha) = \bigoplus_{i=1}^{s} K[T]/(T^{\alpha_i}) - \text{nilpotent linear operator}$ Consider mono's $N(\alpha) \xrightarrow{f} N(\beta)$ such that $\operatorname{Coker} f \cong M(\gamma)$ $\leq_{\operatorname{deg}}$ - partial order given by degenerations Combinatorial description (example):

For $\alpha = (2, 2, 1, 1), \beta = (5, 4, 3, 3, 2, 1), \gamma = (4, 3, 2, 2, 1)$:

 $\alpha, \beta, \gamma - \text{partitions}, \alpha = (\alpha_1, \alpha_2, ...)$ such that $\alpha_1 \leq 2$ $N(\alpha) = \bigoplus_{i=1}^{s} K[T]/(T^{\alpha_i}) - \text{nilpotent linear operator}$ Consider mono's $N(\alpha) \xrightarrow{f} N(\beta)$ such that $\operatorname{Coker} f \cong M(\gamma)$ $\leq_{\operatorname{deg}}$ - partial order given by degenerations Combinatorial description (example):

For $\alpha = (2, 2, 1, 1), \beta = (5, 4, 3, 3, 2, 1), \gamma = (4, 3, 2, 2, 1):$ $0 \longrightarrow \mathcal{N}(\alpha) \xrightarrow{f} \mathcal{N}(\beta) \longrightarrow \mathcal{N}(\gamma) \longrightarrow 0$

 $\alpha, \beta, \gamma - \text{partitions}, \alpha = (\alpha_1, \alpha_2, ...)$ such that $\alpha_1 \leq 2$ $N(\alpha) = \bigoplus_{i=1}^{s} K[T]/(T^{\alpha_i}) - \text{nilpotent linear operator}$ Consider mono's $N(\alpha) \xrightarrow{f} N(\beta)$ such that $\operatorname{Coker} f \cong M(\gamma)$ $\leq_{\operatorname{deg}}$ - partial order given by degenerations Combinatorial description (example):

For $\alpha = (2, 2, 1, 1), \beta = (5, 4, 3, 3, 2, 1), \gamma = (4, 3, 2, 2, 1):$ $0 \longrightarrow \mathcal{N}(\alpha) \xrightarrow{f} \mathcal{N}(\beta) \longrightarrow \mathcal{N}(\gamma) \longrightarrow 0$

 $\alpha, \beta, \gamma - \text{partitions}, \alpha = (\alpha_1, \alpha_2, ...)$ such that $\alpha_1 \leq 2$ $N(\alpha) = \bigoplus_{i=1}^{s} K[T]/(T^{\alpha_i}) - \text{nilpotent linear operator}$ Consider mono's $N(\alpha) \xrightarrow{f} N(\beta)$ such that Coker $f \cong M(\gamma)$ \leq_{deg} — partial order given by degenerations Combinatorial description (example):

For $\alpha = (2, 2, 1, 1), \beta = (5, 4, 3, 3, 2, 1), \gamma = (4, 3, 2, 2, 1):$ $0 \longrightarrow \mathcal{N}(\alpha) \xrightarrow{f} \mathcal{N}(\beta) \longrightarrow \mathcal{N}(\gamma) \longrightarrow 0$

 $\alpha, \beta, \gamma - \text{partitions}, \alpha = (\alpha_1, \alpha_2, ...)$ such that $\alpha_1 \leq 2$ $N(\alpha) = \bigoplus_{i=1}^{s} K[T]/(T^{\alpha_i}) - \text{nilpotent linear operator}$ Consider mono's $N(\alpha) \xrightarrow{f} N(\beta)$ such that $\operatorname{Coker} f \cong M(\gamma)$ $\leq_{\operatorname{deg}}$ - partial order given by degenerations Combinatorial description (example):

For $\alpha = (2, 2, 1, 1), \beta = (5, 4, 3, 3, 2, 1), \gamma = (4, 3, 2, 2, 1):$ $0 \longrightarrow \mathcal{N}(\alpha) \xrightarrow{f} \mathcal{N}(\beta) \longrightarrow \mathcal{N}(\gamma) \longrightarrow 0$

Justyna Kosakowska, Toruń Operations on arc diagrams and degenerations

K — an algebraically closed field

Image: Image:

э

K — an algebraically closed field α, β, γ — partitions

Image: A Image: A

э

K — an algebraically closed field

 $lpha,eta,\gamma$ — partitions

For a partition $\alpha = (\alpha_1, \alpha_2, \ldots)$ denote:

 $N(\alpha) = \bigoplus_{i=1}^{s} K[T]/(T^{\alpha_i})$ — nilpotent linear operator

K — an algebraically closed field

 $lpha,eta,\gamma$ — partitions

For a partition $\alpha = (\alpha_1, \alpha_2, \ldots)$ denote:

 $N(\alpha) = \bigoplus_{i=1}^{s} K[T]/(T^{\alpha_i})$ — nilpotent linear operator

With partitions α , β we associate:

 $H_{\alpha}^{\beta} = \operatorname{Hom}_{\kappa}(N(\alpha), N(\beta))$ — affine variety (Zariski topology)

K — an algebraically closed field

 α, β, γ — partitions

For a partition $\alpha = (\alpha_1, \alpha_2, \ldots)$ denote:

 $N(\alpha) = \bigoplus_{i=1}^{s} K[T]/(T^{\alpha_i})$ — nilpotent linear operator

With partitions α , β we associate:

 $H^{\beta}_{\alpha} = \operatorname{Hom}_{\kappa}(N(\alpha), N(\beta))$ — affine variety (Zariski topology)

 $V_{\alpha,\gamma}^{\beta} \subset H_{\alpha}^{\beta}$ — subset consisted of all monomorphisms f such that there exists a s. e. s.

$$0 \longrightarrow \mathcal{N}(\alpha) \stackrel{f}{\longrightarrow} \mathcal{N}(\beta) \longrightarrow \mathcal{N}(\gamma) \longrightarrow 0$$

K — an algebraically closed field

 α, β, γ — partitions

For a partition $\alpha = (\alpha_1, \alpha_2, \ldots)$ denote:

 $N(\alpha) = \bigoplus_{i=1}^{s} K[T]/(T^{\alpha_i})$ — nilpotent linear operator

With partitions α , β we associate:

 $H^{\beta}_{\alpha} = \operatorname{Hom}_{\kappa}(N(\alpha), N(\beta))$ — affine variety (Zariski topology)

 $V_{\alpha,\gamma}^{\beta} \subset H_{\alpha}^{\beta}$ — subset consisted of all monomorphisms f such that there exists a s. e. s.

$$0 \longrightarrow \mathcal{N}(\alpha) \stackrel{f}{\longrightarrow} \mathcal{N}(\beta) \longrightarrow \mathcal{N}(\gamma) \longrightarrow 0$$

Group action: $G = \operatorname{Aut}_{\kappa[T]} N(\alpha) \times \operatorname{Aut}_{\kappa[T]} N(\beta)$ acts on $V_{\alpha,\gamma}^{\beta}$.

Categorification

$$\mathcal{S}^{\scriptscriptstyleeta}_{\scriptscriptstylelpha,\gamma}$$
 — the category consisted of all systems

 $X = (N(\alpha), N(\beta), f)$

where $f : N(\alpha) \to N(\beta)$ is a monomorphism and Coker $f \cong M(\gamma)$; morph. in $S^{\beta}_{\alpha,\gamma}$ are defined in a natural way;

Categorification

$$\mathcal{S}^{\scriptscriptstyleeta}_{lpha,\gamma}$$
 — the category consisted of all systems

 $X = (N(\alpha), N(\beta), f)$

where $f : N(\alpha) \to N(\beta)$ is a monomorphism and Coker $f \cong M(\gamma)$; morph. in $S^{\beta}_{\alpha,\gamma}$ are defined in a natural way; The *G*-orbits in $V^{\beta}_{\alpha,\gamma}$ are in 1 – 1-correspondence with the equivalence classes of objects in $S^{\beta}_{\alpha,\gamma}$.

Categorification

$$\mathcal{S}^{\scriptscriptstyleeta}_{lpha,\gamma}$$
 — the category consisted of all systems

 $X = (N(\alpha), N(\beta), f)$

where $f : N(\alpha) \to N(\beta)$ is a monomorphism and Coker $f \cong M(\gamma)$; morph. in $S^{\beta}_{\alpha,\gamma}$ are defined in a natural way; The *G*-orbits in $V^{\beta}_{\alpha,\gamma}$ are in 1 – 1-correspondence with the equivalence classes of objects in $S^{\beta}_{\alpha,\gamma}$.

 \mathcal{S}_2 — the category consisted of all systems

 $(N(\alpha), N(\beta), f)$

where α and β are partitions, $\alpha_1 \leq 2$, and $f : N(\alpha) \rightarrow N(\beta)$ is a monomorphism and Coker $f \cong M(\gamma)$; morphisms in S_2 are def. in a natural way;

For $f \in V_{\alpha,\gamma}^{\beta}$ denote by \mathcal{O}_f the orbit of f under the action of G.

< ∃ →

For $f \in V_{\alpha,\gamma}^{\beta}$ denote by \mathcal{O}_f the orbit of f under the action of G.

We define the following partial order (degeneration order). For $f, g \in V_{\alpha,\gamma}^{\beta}$ (resp. $X, Y \in S_{\alpha,\gamma}^{\beta}$):

For $f \in V_{\alpha,\gamma}^{\beta}$ denote by \mathcal{O}_f the orbit of f under the action of G.

We define the following partial order (degeneration order). For $f, g \in V_{\alpha,\gamma}^{\beta}$ (resp. $X, Y \in S_{\alpha,\gamma}^{\beta}$):

 $X \leq_{\mathsf{deg}} Y \quad :\iff \quad f \leq_{\mathsf{deg}} g \quad :\iff \quad \mathcal{O}_g \subseteq \overline{\mathcal{O}_f}$

For $f \in V_{\alpha,\gamma}^{\beta}$ denote by \mathcal{O}_f the orbit of f under the action of G.

We define the following partial order (degeneration order). For $f, g \in V_{\alpha,\gamma}^{\beta}$ (resp. $X, Y \in S_{\alpha,\gamma}^{\beta}$):

$$X \leq_{\deg} Y : \iff f \leq_{\deg} g : \iff \mathcal{O}_g \subseteq \overline{\mathcal{O}_f}$$

Problem.

1. describe \leq_{deg} combinatorically in $S_2 \cap S^{\beta}_{\alpha,\gamma}$

For $f \in V_{\alpha,\gamma}^{\beta}$ denote by \mathcal{O}_f the orbit of f under the action of G.

We define the following partial order (degeneration order). For $f, g \in V_{\alpha,\gamma}^{\beta}$ (resp. $X, Y \in S_{\alpha,\gamma}^{\beta}$):

$$X \leq_{\mathsf{deg}} Y \quad :\Longleftrightarrow \quad f \leq_{\mathsf{deg}} g \quad :\Longleftrightarrow \quad \mathcal{O}_g \subseteq \overline{\mathcal{O}_f}$$

Problem.

- 1. describe \leq_{deg} combinatorically in $S_2 \cap S_{\alpha,\gamma}^{\beta}$
- 2. determine $\dim \mathcal{O}_f$.

The category \mathcal{S}_2

Theorem (Beers, Hunter, Walker, 1983): *The category* S_2 *has the Krull-Remak-Schmidt property.*

The category \mathcal{S}_2

Theorem (Beers, Hunter, Walker, 1983): The category S_2 has the Krull-Remak-Schmidt property. Each indecomposable object in S_2 is isomorphic to one of the following.

$$\begin{array}{ccccc} P_0^m : & 0 \subseteq & \mathcal{N}(m) & (m \ge 1) \\ P_1^m : & (T^{m-1}) \subseteq & \mathcal{N}(m) & (m \ge 1) \\ P_2^m : & (T^{m-2}) \subseteq & \mathcal{N}(m) & (m \ge 2) \\ B_2^{m,r} : & ((T^{m-2}, T^{r-1})) \subseteq & \mathcal{N}(m,r) & (m-2 \ge r \ge 1) \end{array}$$

The category \mathcal{S}_2

Theorem (Beers, Hunter, Walker, 1983): The category S_2 has the Krull-Remak-Schmidt property. Each indecomposable object in S_2 is isomorphic to one of the following.

Proposition: For partitions α , β , γ with $\alpha_1 \leq 2$, there is a one-to-one correspondence

 $Obj(\mathcal{S}^{\beta}_{\alpha,\gamma})/_{\cong} \xleftarrow{1-1} \{ Klein \ tableaux \ of \ type \ (\alpha,\beta,\gamma) \}.$

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

э

A B + A B +

э

Justyna Kosakowska, Toruń

Operations on arc diagrams and degenerations

Justyna Kosakowska, Toruń

Operations on arc diagrams and degenerations

Justyna Kosakowska, Toruń

Operations on arc diagrams and degenerations

The arc diagram of an object

The Klein tableau for a direct sum $M \oplus M'$ has a diagram given by the union $\beta \cup \beta'$ of the partitions representing the ambient spaces, and in each row the entries are obtained by lexicographically ordering the entries in the corresponding rows in the tableaux for M and M', with empty boxes coming first.

The arc diagram of an object

The Klein tableau for a direct sum $M \oplus M'$ has a diagram given by the union $\beta \cup \beta'$ of the partitions representing the ambient spaces, and in each row the entries are obtained by lexicographically ordering the entries in the corresponding rows in the tableaux for M and M', with empty boxes coming first.

 $\mathcal{S}_2
i X \mapsto \Pi(X) \mapsto \Delta(X)$

The arc diagram of an object

The Klein tableau for a direct sum $M \oplus M'$ has a diagram given by the union $\beta \cup \beta'$ of the partitions representing the ambient spaces, and in each row the entries are obtained by lexicographically ordering the entries in the corresponding rows in the tableaux for M and M', with empty boxes coming first.

 $\mathcal{S}_2
i X \mapsto \Pi(X) \mapsto \Delta(X)$

Example:

$$X = B_2^{5,3} \oplus B_2^{4,2} \oplus P_1^3 \oplus P_1^1.$$

Justyna Kosakowska, Toruń Operations on arc diagrams and degenerations

 $\mathcal{S}^{eta}_{lpha,\gamma}
i X \longmapsto \Delta(X)$ — arc diagram of X

э

・ 同 ト ・ ヨ ト ・ ヨ ト

$\mathcal{S}^{\beta}_{\alpha,\gamma} \ni X \qquad \longmapsto \qquad \Delta(X) - \text{arc diagram of } X$

Two arc-diagrams are said to be in **arc order** if the first is obtained from the second by a sequence of moves of types:

 $S_{\alpha,\gamma}^{\beta} \ni X \longrightarrow \Delta(X)$ — arc diagram of X Two arc-diagrams are said to be in **arc order** if the first is obtained from the second by a sequence of moves of types:

Definition: $X \leq_{\operatorname{arc}} Y$ if and only if $\Delta(X) \leq_{\operatorname{arc}} \Delta(Y)$

• For $Y, Z \in S^{\beta}_{\alpha,\gamma}$ we have

 $Y \leq_{deg} Z$ if and only if $Y \leq_{arc} Z$.

• For $Y, Z \in S^{\beta}_{\alpha,\gamma}$ we have

 $Y \leq_{deg} Z$ if and only if $Y \leq_{arc} Z$.

Suppose the arc diagram Δ of an invariant subspace $Y = (N_{\alpha}, N_{\beta}, f)$ in $S_{\alpha, \gamma}^{\beta}$ has $x(\Delta)$ crossings. Then

 $\dim \mathcal{O}_f = m(\beta) - m(\alpha) - m(\gamma) - x(\Delta) + |\alpha| + 2m(\alpha).$

伺 ト イ ヨ ト イ ヨ ト

• For $Y, Z \in S^{\beta}_{\alpha,\gamma}$ we have

 $Y \leq_{deg} Z$ if and only if $Y \leq_{arc} Z$.

Suppose the arc diagram Δ of an invariant subspace $Y = (N_{\alpha}, N_{\beta}, f)$ in $S_{\alpha, \gamma}^{\beta}$ has $x(\Delta)$ crossings. Then

 $\dim \mathcal{O}_f = m(\beta) - m(\alpha) - m(\gamma) - x(\Delta) + |\alpha| + 2m(\alpha).$

Definition: $m(\alpha) = \sum_{i=1}^{s} \alpha_i(i-1)$ is the **moment** of the partition $\alpha = (\alpha_1, \dots, \alpha_s)$ and $|\alpha| = \alpha_1 + \alpha_2 + \dots$

and there is the unique orbit ≤_{arc}-maximal (equivalently ≤_{deg}-maximal),

- and there is the unique orbit ≤_{arc}-maximal (equivalently ≤_{deg}-maximal),
- e there are $c_{\alpha,\gamma}^{\beta}$ orbits \leq_{arc} -minimal (equivalently \leq_{deg} -minimal).

- and there is the unique orbit ≤_{arc}-maximal (equivalently ≤_{deg}-maximal),
- there are $c_{\alpha,\gamma}^{\beta}$ orbits \leq_{arc} -minimal (equivalently \leq_{deg} -minimal).

The **Littlewood-Richardson coefficient** $c^{\beta}_{\alpha,\gamma}$ counts the number of LR-tableaux of type (α, β, γ) .

Example: The deg-order in $V_{211,321}^{4321}$

Justyna Kosakowska, Toruń Operations on arc diagrams and degenerations

э

Example: The deg-order in $V_{211,321}^{4321}$

Justyna Kosakowska, Toruń Operations on arc diagrams and degenerations

The proof of Theorem 1.1

- \bullet uses properties of AR-quiver of the category \mathcal{S}_2
- if $\Delta \leq_{\sf arc} \Delta',$ gives algorithm that find sequense of moves

$$\Delta\mapsto\Delta_1\mapsto\ldots\mapsto\Delta'$$

Justyna Kosakowska and Markus Schmidmeier, *Operations on arc diagrams and degenerations for invariant subspaces of linear operators*, arXiv:1202.2813v1 [math.RT].