Operations on arc diagrams and degenerations for invariant subspaces of linear operators

Justyna Kosakowska, Toruń

A report on a joint project by Justyna Kosakowska, Toruń, and Markus Schmidmeier, FAU

ICRA 2012, Bielefeld

August 13, 2012
Main aim

\(\alpha, \beta, \gamma \) — partitions, \(\alpha = (\alpha_1, \alpha_2, \ldots) \) such that \(\alpha_1 \leq 2 \)
Main aim

\[\alpha, \beta, \gamma \text{ — partitions, } \alpha = (\alpha_1, \alpha_2, \ldots) \text{ such that } \alpha_1 \leq 2 \]

\[N(\alpha) = \bigoplus_{i=1}^{s} K[T]/(T^{\alpha_i}) \text{ — nilpotent linear operator} \]
\(\alpha, \beta, \gamma\) — partitions, \(\alpha = (\alpha_1, \alpha_2, \ldots)\) such that \(\alpha_1 \leq 2\)

\(N(\alpha) = \bigoplus_{i=1}^{s} K[T]/(T^{\alpha_i})\) — nilpotent linear operator

Consider mono’s \(N(\alpha) \xrightarrow{f} N(\beta)\) such that \(\text{Coker } f \cong M(\gamma)\)
Main aim

\(\alpha, \beta, \gamma \) — partitions, \(\alpha = (\alpha_1, \alpha_2, \ldots) \) such that \(\alpha_1 \leq 2 \)

\(N(\alpha) = \bigoplus_{i=1}^{s} K[T]/(T^{\alpha_i}) \) — nilpotent linear operator

Consider mono’s \(N(\alpha) \xrightarrow{f} N(\beta) \) such that \(\text{Coker } f \cong M(\gamma) \)

\(\leq_{\text{deg}} \) — partial order given by degenerations
Main aim

\(\alpha, \beta, \gamma\) — partitions, \(\alpha = (\alpha_1, \alpha_2, \ldots)\) such that \(\alpha_1 \leq 2\)

\(N(\alpha) = \bigoplus_{i=1}^{s} K[T]/(T^{\alpha_i})\) — nilpotent linear operator

Consider mono’s \(N(\alpha) \xrightarrow{f} N(\beta)\) such that \(\text{Coker } f \cong M(\gamma)\)

\(\leq_{\text{deg}}\) — partial order given by degenerations

Combinatorial description (example):
Main aim

\(\alpha, \beta, \gamma \) — partitions, \(\alpha = (\alpha_1, \alpha_2, \ldots) \) such that \(\alpha_1 \leq 2 \)

\(N(\alpha) = \bigoplus_{i=1}^{s} K[T]/(T^{\alpha_i}) \) — nilpotent linear operator

Consider mono’s \(N(\alpha) \xrightarrow{f} N(\beta) \) such that \(\text{Coker } f \cong M(\gamma) \)

\(\leq_{\text{deg}} \) — partial order given by degenerations

Combinatorial description (example):

For \(\alpha = (2, 2, 1, 1), \beta = (5, 4, 3, 3, 2, 1), \gamma = (4, 3, 2, 2, 1) \):
Main aim

\(\alpha, \beta, \gamma \) — partitions, \(\alpha = (\alpha_1, \alpha_2, \ldots) \) such that \(\alpha_1 \leq 2 \)

\(N(\alpha) = \bigoplus_{i=1}^{s} K[T]/(T^{\alpha_i}) \) — nilpotent linear operator

Consider mono’s \(N(\alpha) \xrightarrow{f} N(\beta) \) such that \(\text{Coker } f \cong M(\gamma) \)

\(\leq_{\text{deg}} \) — partial order given by degenerations

Combinatorial description (example):

For \(\alpha = (2, 2, 1, 1), \beta = (5, 4, 3, 3, 2, 1), \gamma = (4, 3, 2, 2, 1) \):

\[
0 \longrightarrow N(\alpha) \xrightarrow{f} N(\beta) \longrightarrow N(\gamma) \longrightarrow 0
\]
Main aim

\(\alpha, \beta, \gamma\) — partitions, \(\alpha = (\alpha_1, \alpha_2, \ldots)\) such that \(\alpha_1 \leq 2\)

\[N(\alpha) = \bigoplus_{i=1}^{s} K[T]/(T^{\alpha_i})\] — nilpotent linear operator

Consider mono's \(N(\alpha) \xrightarrow{f} N(\beta)\) such that \(\text{Coker } f \cong M(\gamma)\)

\(\leq_{\text{deg}}\) — partial order given by degenerations

Combinatorial description (example):

For \(\alpha = (2, 2, 1, 1), \beta = (5, 4, 3, 3, 2, 1), \gamma = (4, 3, 2, 2, 1)\):

\[
0 \longrightarrow N(\alpha) \xrightarrow{f} N(\beta) \longrightarrow N(\gamma) \longrightarrow 0
\]

\[\Gamma:\]

\[
\begin{array}{cccc}
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 2 \\
0 & 2 & 2 & 2 \\
\end{array}
\]
\(\alpha, \beta, \gamma\) — partitions, \(\alpha = (\alpha_1, \alpha_2, \ldots)\) such that \(\alpha_1 \leq 2\)

\(N(\alpha) = \bigoplus_{i=1}^{s} K[T]/(T^{\alpha_i})\) — nilpotent linear operator

Consider mono’s \(N(\alpha) \xrightarrow{f} N(\beta)\) such that \(\text{Coker } f \cong M(\gamma)\)

\(\leq_{\text{deg}}\) — partial order given by degenerations

Combinatorial description (example):
For \(\alpha = (2, 2, 1, 1), \beta = (5, 4, 3, 3, 2, 1), \gamma = (4, 3, 2, 2, 1)\):

\[0 \longrightarrow N(\alpha) \xrightarrow{f} N(\beta) \longrightarrow N(\gamma) \longrightarrow 0\]
Main aim

\(\alpha, \beta, \gamma\) — partitions, \(\alpha = (\alpha_1, \alpha_2, \ldots)\) such that \(\alpha_1 \leq 2\)

\(N(\alpha) = \bigoplus_{i=1}^{s} K[T]/(T^{\alpha_i})\) — nilpotent linear operator

Consider mono’s \(N(\alpha) \xrightarrow{f} N(\beta)\) such that \(\text{Coker } f \cong M(\gamma)\)

\(\leq_{\text{deg}}\) — partial order given by degenerations

Combinatorial description (example):

For \(\alpha = (2, 2, 1, 1), \beta = (5, 4, 3, 3, 2, 1), \gamma = (4, 3, 2, 2, 1)\):

\[0 \rightarrow N(\alpha) \xrightarrow{f} N(\beta) \rightarrow N(\gamma) \rightarrow 0\]

\(\Gamma:\)
\[
\begin{array}{ccccc}
\, & \, & \, & \, & 1 \\
\, & \, & \, & 1 \\
\, & 1 \\
2 & 11 \\
2 & 2
\end{array}
\]

\(\Pi:\)
\[
\begin{array}{ccccc}
\, & \, & \, & \, & 1 \\
\, & \, & \, & 1 \\
\, & 11 \\
2 & 11 \\
2 & 2_2 \\
2 & 2_3
\end{array}
\]

\(\Delta:\)
\[
\begin{array}{c}
5 \quad 4 \quad 3 \quad 2 \quad 1
\end{array}
\]
\(K \) — an algebraically closed field
Notation

\[K \] — an algebraically closed field

\[\alpha, \beta, \gamma \] — partitions
\(K \) — an algebraically closed field

\(\alpha, \beta, \gamma \) — partitions

For a partition \(\alpha = (\alpha_1, \alpha_2, \ldots) \) denote:

\[
N(\alpha) = \bigoplus_{i=1}^{s} K[T] / (T^{\alpha_i})
\]

— nilpotent linear operator

With partitions \(\alpha, \beta \), we associate:

\[
H_{\beta \alpha} = \text{Hom}_K(N(\alpha), N(\beta))
\]

— affine variety (Zariski topology)

\(V_{\beta \alpha, \gamma} \subseteq H_{\beta \alpha} \) — subset consisted of all monomorphisms \(f \) such that there exists a s. e. s.

\[
0 \rightarrow N(\alpha) \xrightarrow{f} N(\beta) \rightarrow N(\gamma) \rightarrow 0
\]

Group action:

\[
G = \text{Aut}_K[\mathcal{T}] \times \text{Aut}_K[\mathcal{T}]
\]

acts on \(V_{\beta \alpha, \gamma} \).
Notation

\(K \) — an algebraically closed field

\(\alpha, \beta, \gamma \) — partitions

For a partition \(\alpha = (\alpha_1, \alpha_2, \ldots) \) denote:

\[
N(\alpha) = \bigoplus_{i=1}^{s} K[T]/(T^{\alpha_i})
\]

— nilpotent linear operator

With partitions \(\alpha, \beta \) we associate:

\[
H^\beta_\alpha = \text{Hom}_K(N(\alpha), N(\beta))
\]

— affine variety (Zariski topology)
Notation

\(K \) — an algebraically closed field

\(\alpha, \beta, \gamma \) — partitions

For a partition \(\alpha = (\alpha_1, \alpha_2, \ldots) \) denote:

\[
N(\alpha) = \bigoplus_{i=1}^{s} K[T]/(T^{\alpha_i})
\]

— nilpotent linear operator

With partitions \(\alpha, \beta \) we associate:

\[
H^\beta_\alpha = \text{Hom}_K(N(\alpha), N(\beta))
\]

— affine variety (Zariski topology)

\[
V^\beta_{\alpha, \gamma} \subset H^\beta_\alpha
\]

— subset consisted of all monomorphisms \(f \) such that there exists a s. e. s.

\[
0 \rightarrow N(\alpha) \xrightarrow{f} N(\beta) \rightarrow N(\gamma) \rightarrow 0
\]
Notation

\(K \) — an algebraically closed field
\(\alpha, \beta, \gamma \) — partitions

For a partition \(\alpha = (\alpha_1, \alpha_2, \ldots) \) denote:

\(N(\alpha) = \bigoplus_{i=1}^{s} K[T]/(T^{\alpha_i}) \) — nilpotent linear operator

With partitions \(\alpha, \beta \) we associate:

\(H^{\beta}_{\alpha} = \text{Hom}_K(N(\alpha), N(\beta)) \) — affine variety (Zariski topology)

\(V^{\beta}_{\alpha, \gamma} \subset H^{\beta}_{\alpha} \) — subset consisted of all monomorphisms \(f \) such that there exists a s. e. s.

\[
0 \longrightarrow N(\alpha) \xrightarrow{f} N(\beta) \longrightarrow N(\gamma) \longrightarrow 0
\]

Group action: \(G = \text{Aut}_{K[T]} N(\alpha) \times \text{Aut}_{K[T]} N(\beta) \) acts on \(V^{\beta}_{\alpha, \gamma} \).
\(S^\beta_{\alpha,\gamma} \) — the category consisted of all systems

\[X = (N(\alpha), N(\beta), f) \]

where \(f : N(\alpha) \to N(\beta) \) is a monomorphism and \(\text{Coker } f \cong M(\gamma) \); morph. in \(S^\beta_{\alpha,\gamma} \) are defined in a natural way;
\(S_{\alpha,\gamma}^\beta \) — the category consisted of all systems

\[X = (N(\alpha), N(\beta), f) \]

where \(f : N(\alpha) \to N(\beta) \) is a monomorphism and \(\text{Coker } f \cong M(\gamma) \); morph. in \(S_{\alpha,\gamma}^\beta \) are defined in a natural way;

The \(G \)-orbits in \(V_{\alpha,\gamma}^\beta \) are in 1–1-correspondence with the equivalence classes of objects in \(S_{\alpha,\gamma}^\beta \).
Categorification

$S^\beta_{\alpha,\gamma}$ — the category consisted of all systems

\[X = (N(\alpha), N(\beta), f) \]

where $f : N(\alpha) \to N(\beta)$ is a monomorphism and $\text{Coker } f \cong M(\gamma)$; morph. in $S^\beta_{\alpha,\gamma}$ are defined in a natural way;

The G-orbits in $V^\beta_{\alpha,\gamma}$ are in 1–1-correspondence with the equivalence classes of objects in $S^\beta_{\alpha,\gamma}$.

S_2 — the category consisted of all systems

\[(N(\alpha), N(\beta), f) \]

where α and β are partitions, $\alpha_1 \leq 2$, and $f : N(\alpha) \to N(\beta)$ is a monomorphism and $\text{Coker } f \cong M(\gamma)$; morphisms in S_2 are def. in a natural way;
Problem

For $f \in V^\beta_{\alpha,\gamma}$ denote by O_f the orbit of f under the action of G.

1. describe \leq_{deg} combinatorially in $S_2 \cap S^\beta_{\alpha,\gamma}$
2. determine $\dim O_f$.

Justyna Kosakowska, Toruń
For \(f \in V^\beta_{\alpha, \gamma} \) denote by \(O_f \) the orbit of \(f \) under the action of \(G \).

We define the following partial order (\textit{degeneration order}).

For \(f, g \in V^\beta_{\alpha, \gamma} \) (resp. \(X, Y \in S^\beta_{\alpha, \gamma} \)):
For $f \in V_{\alpha, \gamma}^\beta$ denote by O_f the orbit of f under the action of G.

We define the following partial order (degeneration order). For $f, g \in V_{\alpha, \gamma}^\beta$ (resp. $X, Y \in S_{\alpha, \gamma}^\beta$):

$$X \leq_{\text{deg}} Y :\iff f \leq_{\text{deg}} g :\iff O_g \subseteq \overline{O_f}$$
For $f \in V^\beta_{\alpha,\gamma}$ denote by O_f the orbit of f under the action of G.

We define the following partial order (degeneration order). For $f, g \in V^\beta_{\alpha,\gamma}$ (resp. $X, Y \in S^\beta_{\alpha,\gamma}$):

$$X \leq_{\text{deg}} Y \iff f \leq_{\text{deg}} g \iff O_g \subseteq O_f$$

Problem.

1. describe \leq_{deg} combinatorically in $S_2 \cap S^\beta_{\alpha,\gamma}$
For $f \in V_{\alpha,\gamma}^\beta$ denote by O_f the orbit of f under the action of G.

We define the following partial order (degeneration order). For $f, g \in V_{\alpha,\gamma}^\beta$ (resp. $X, Y \in S_{\alpha,\gamma}^\beta$):

$$X \leq_{\text{deg}} Y :\iff f \leq_{\text{deg}} g :\iff O_g \subseteq O_f$$

Problem.

1. describe \leq_{deg} combinatorially in $S_2 \cap S_{\alpha,\gamma}^\beta$
2. determine $\dim O_f$.
Theorem (Beers, Hunter, Walker, 1983): The category S_2 has the Krull-Remak-Schmidt property.

Each indecomposable object in S_2 is isomorphic to one of the following.

- $P_m^0: 0 \subseteq \mathbb{N}(m)$ ($m \geq 1$)
- $P_m^1: (T_m-1) \subseteq \mathbb{N}(m)$ ($m \geq 1$)
- $P_m^2: (T_m-2) \subseteq \mathbb{N}(m)$ ($m \geq 2$)
- $B_m^2: ((T_m-2), (T_r-1)) \subseteq \mathbb{N}(m, r)$ ($m-2 \geq r \geq 1$)

Proposition: For partitions α, β, γ with $\alpha_1 \leq 2$, there is a one-to-one correspondence $\text{Obj}(S_{\beta \alpha, \gamma})/\sim \cong \{\text{Klein tableaux of type } (\alpha, \beta, \gamma)\}$.

Justyna Kosakowska, Toruń

Operations on arc diagrams and degenerations
The category \mathcal{S}_2

Theorem (Beers, Hunter, Walker, 1983): *The category \mathcal{S}_2 has the Krull-Remak-Schmidt property. Each indecomposable object in \mathcal{S}_2 is isomorphic to one of the following.*

$$
\begin{align*}
P_0^m : & \quad 0 \subseteq N(m) \quad (m \geq 1) \\
P_1^m : & \quad (T^{m-1}) \subseteq N(m) \quad (m \geq 1) \\
P_2^m : & \quad (T^{m-2}) \subseteq N(m) \quad (m \geq 2) \\
B_{2}^{m,r} : & \quad (T^{m-2}, T^{r-1}) \subseteq N(m, r) \quad (m - 2 \geq r \geq 1)
\end{align*}
$$
The category S_2

Theorem (Beers, Hunter, Walker, 1983): The category S_2 has the Krull-Remak-Schmidt property. Each indecomposable object in S_2 is isomorphic to one of the following.

- $P^m_0 : 0 \subseteq N(m)$ ($m \geq 1$)
- $P^m_1 : (T^{m-1}) \subseteq N(m)$ ($m \geq 1$)
- $P^m_2 : (T^{m-2}) \subseteq N(m)$ ($m \geq 2$)
- $B^{m,r}_2 : ((T^{m-2}, T^{r-1})) \subseteq N(m, r)$ ($m - 2 \geq r \geq 1$)

Proposition: For partitions α, β, γ with $\alpha_1 \leq 2$, there is a one-to-one correspondence

$$\text{Obj}(S^\beta_{\alpha, \gamma}) / \simeq \longleftrightarrow \{ \text{Klein tableaux of type } (\alpha, \beta, \gamma) \}.$$
Combinatorial invariants

Invariants for the indecomposable objects in S_2

<table>
<thead>
<tr>
<th>X :</th>
<th>P_0^m</th>
<th>P_1^m</th>
<th>P_2^m</th>
<th>$B_2^{m,r}$</th>
</tr>
</thead>
</table>
| $\Gamma(X)$: | \[
\begin{array}{c}
\vdots \\
\vdots \\
1 \\
2
\end{array}
\] | \[
\begin{array}{c}
\vdots \\
\vdots \\
1
\end{array}
\] | \[
\begin{array}{c}
\vdots \\
1 \\
2
\end{array}
\] | \[
\begin{array}{c}
\vdots \\
1 \\
2
\end{array}
\] |
Combinatorial invariants

Invariants for the indecomposable objects in S_2

<table>
<thead>
<tr>
<th>X</th>
<th>P_0^m</th>
<th>P_1^m</th>
<th>P_2^m</th>
<th>$B_{2,m,r}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma(X)$:</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>$\Pi(X)$:</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>$r = m-1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$r < m-1$</td>
</tr>
</tbody>
</table>

Justyna Kosakowska, Toruń

Operations on arc diagrams and degenerations
Combinatorial invariants

Invariants for the indecomposable objects in S_2

<table>
<thead>
<tr>
<th>X</th>
<th>P^m_0</th>
<th>P^m_1</th>
<th>P^m_2</th>
<th>$B^{m,r}_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma(X)$:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Pi(X)$:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta(X)$:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Combinatorial invariants

Invariants for the indecomposable objects in S_2

<table>
<thead>
<tr>
<th>X</th>
<th>P_0^m</th>
<th>P_1^m</th>
<th>P_2^m</th>
<th>$B_2^{m,r}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma(X)$:</td>
<td>![Diagram]</td>
<td>![Diagram]</td>
<td>![Diagram]</td>
<td>![Diagram]</td>
</tr>
<tr>
<td>$\Pi(X)$:</td>
<td>![Diagram]</td>
<td>![Diagram]</td>
<td>![Diagram]</td>
<td>![Diagram]</td>
</tr>
<tr>
<td>$\Delta(X)$:</td>
<td>![Diagram]</td>
<td>![Diagram]</td>
<td>![Diagram]</td>
<td>![Diagram]</td>
</tr>
</tbody>
</table>
Combinatorial invariants

Invariants for the indecomposable objects in S_2

<table>
<thead>
<tr>
<th>X</th>
<th>P_0^m</th>
<th>P_1^m</th>
<th>P_2^m</th>
<th>$B_2^{m,r}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma(X)$:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Pi(X)$:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta(X)$:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **$\Gamma(X)$**:
 - P_0^m: m boxes
 - P_1^m: m boxes, 1 and 2
 - P_2^m: m boxes, 1 and 2

- **$\Pi(X)$**:
 - P_0^m: m boxes
 - P_1^m: m boxes, 1 and 2
 - P_2^m: m boxes, 1 and 2

- **$\Delta(X)$**:
 - \emptyset
 - m boxes
 - $m-1$ boxes

![Diagram](image)
Invariants for the indecomposable objects in S_2

<table>
<thead>
<tr>
<th>X</th>
<th>P_0^m</th>
<th>P_1^m</th>
<th>P_2^m</th>
<th>$B_2^{m,r}$</th>
</tr>
</thead>
</table>
| $\Gamma(X)$ | \[
\begin{array}{c}
\vdots \\
\vdots \\
1 \\
2 \\
\vdots \\
\vdots
\end{array}
\] | \[
\begin{array}{c}
\vdots \\
\vdots \\
1 \\
2 \\
\vdots \\
\vdots
\end{array}
\] | \[
\begin{array}{c}
\vdots \\
\vdots \\
\vdots \\
1 \\
2 \\
\vdots \\
\vdots
\end{array}
\] | m \[
\begin{array}{c}
\vdots \\
\vdots \\
\vdots \\
\vdots \\
1 \\
2 \\
\vdots
\end{array}
\] r |
| $\Pi(X)$ | \[
\begin{array}{c}
\vdots \\
\vdots \\
1 \\
2r \\
\vdots \\
\vdots
\end{array}
\] | \[
\begin{array}{c}
\vdots \\
\vdots \\
1 \\
2r \\
\vdots \\
\vdots
\end{array}
\] | m \[
\begin{array}{c}
\vdots \\
\vdots \\
\vdots \\
\vdots \\
1 \\
2r \\
\vdots
\end{array}
\] $r=m-1$ |
| $\Delta(X)$ | \emptyset | m | $m \quad m-1$ | $m \quad r$ |
The arc diagram of an object

The Klein tableau for a direct sum $M \oplus M'$ has a diagram given by the union $\beta \cup \beta'$ of the partitions representing the ambient spaces, and in each row the entries are obtained by lexicographically ordering the entries in the corresponding rows in the tableaux for M and M', with empty boxes coming first.
The arc diagram of an object

The Klein tableau for a direct sum $M \oplus M'$ has a diagram given by the union $\beta \cup \beta'$ of the partitions representing the ambient spaces, and in each row the entries are obtained by lexicographically ordering the entries in the corresponding rows in the tableaux for M and M', with empty boxes coming first.

$$S_2 \ni X \mapsto \Pi(X) \mapsto \Delta(X)$$
The arc diagram of an object

The Klein tableau for a direct sum $M \oplus M'$ has a diagram given by the union $\beta \cup \beta'$ of the partitions representing the ambient spaces, and in each row the entries are obtained by lexicographically ordering the entries in the corresponding rows in the tableaux for M and M', with empty boxes coming first.

$$S_2 \ni X \mapsto \Pi(X) \mapsto \Delta(X)$$

Example:

$$X = B_2^{5,3} \oplus B_2^{4,2} \oplus P_1^3 \oplus P_1^1.$$
Two arc-diagrams are said to be in arc order if the first is obtained from the second by a sequence of moves of types:

\[S_{\alpha,\gamma}^\beta \ni X \quad \longrightarrow \quad \Delta(X) \quad \text{— arc diagram of } X \]
Arc order

\[S^\beta_{\alpha, \gamma} \ni X \quad \longmapsto \quad \Delta(X) \] — arc diagram of \(X \)

Two arc-diagrams are said to be in **arc order** if the first is obtained from the second by a sequence of moves of types:
Two arc-diagrams are said to be in arc order if the first is obtained from the second by a sequence of moves of types:
\[S^{\beta}_{\alpha, \gamma} \ni X \quad \rightarrow \quad \Delta(X) \quad - \text{arc diagram of } X \]

Two arc-diagrams are said to be in **arc order** if the first is obtained from the second by a sequence of moves of types:

- **(A)**: \(< \text{arc} \)
- **(B)**: \(> \text{arc} \)
- **(C)**: \(\quad > \text{arc} \quad \)
- **(D)**: \(\quad < \text{arc} \quad \)

Definition: \(X \leq_{\text{arc}} Y \) if and only if \(\Delta(X) \leq_{\text{arc}} \Delta(Y) \)
Theorem [K-Schmidmeier 2011]. Suppose that K is an algebraically closed field and that α, β, γ are partitions with $\alpha_1 \leq 2$.

For $Y, Z \in S_{\beta, \alpha, \gamma}$ we have $Y \leq \deg Z$ if and only if $Y \leq \arc Z$.

Suppose the arc diagram Δ of an invariant subspace $Y = (N_{\alpha}, N_{\beta}, f)$ in $S_{\beta, \alpha, \gamma}$ has $\chi(\Delta)$ crossings. Then $\dim O_f = m(\beta) - m(\alpha) - m(\gamma) - \chi(\Delta) + |\alpha| + 2m(\alpha)$.

Definition: $m(\alpha) = \sum_{i=1}^{s} \alpha_i (i - 1)$ is the moment of the partition $\alpha = (\alpha_1, ..., \alpha_s)$ and $|\alpha| = \alpha_1 + \alpha_2 + ...$.

Justyna Kosakowska, Toruń
Operations on arc diagrams and degenerations
Main result

Theorem [K-Schmidmeier 2011]. Suppose that K is an algebraically closed field and that α, β, γ are partitions with $\alpha_1 \leq 2$.

1. For $Y, Z \in S_{\alpha, \gamma}^\beta$ we have

\[Y \leq_{\text{deg}} Z \quad \text{if and only if} \quad Y \leq_{\text{arc}} Z. \]
Theorem [K-Schmidmeier 2011]. Suppose that K is an algebraically closed field and that α, β, γ are partitions with $\alpha_1 \leq 2$.

1. For $Y, Z \in S_{\alpha, \gamma}^\beta$ we have

$$Y \leq_{\text{deg}} Z \quad \text{if and only if} \quad Y \leq_{\text{arc}} Z.$$

2. Suppose the arc diagram Δ of an invariant subspace $Y = (N_\alpha, N_\beta, f)$ in $S_{\alpha, \gamma}^\beta$ has $x(\Delta)$ crossings. Then

$$\dim O_f = m(\beta) - m(\alpha) - m(\gamma) - x(\Delta) + |\alpha| + 2m(\alpha).$$
Theorem [K-Schmidmeier 2011]. Suppose that K is an algebraically closed field and that α, β, γ are partitions with $\alpha_1 \leq 2$.

1. For $Y, Z \in S^{\beta}_{\alpha, \gamma}$ we have

$$Y \leq_{\text{deg}} Z \quad \text{if and only if} \quad Y \leq_{\text{arc}} Z.$$

2. Suppose the arc diagram Δ of an invariant subspace $Y = (N_\alpha, N_\beta, f)$ in $S^{\beta}_{\alpha, \gamma}$ has $x(\Delta)$ crossings. Then

$$\dim \mathcal{O}_f = m(\beta) - m(\alpha) - m(\gamma) - x(\Delta) + |\alpha| + 2m(\alpha).$$

Definition: $m(\alpha) = \sum_{i=1}^{s} \alpha_i(i-1)$ is the moment of the partition $\alpha = (\alpha_1, \ldots, \alpha_s)$ and $|\alpha| = \alpha_1 + \alpha_2 + \ldots$.
Theorem [K-Schmidmeier 2011]. Suppose that K is an algebraically closed field and that α, β, γ are partitions with $\alpha_1 \leq 2$. In $V^\beta_{\alpha, \gamma}$:
Theorem [K-Schmidmeier 2011]. Suppose that K is an algebraically closed field and that α, β, γ are partitions with $\alpha_1 \leq 2$. In $V^\beta_{\alpha, \gamma}$:

1. and there is the unique orbit \leq_{arc}-maximal (equivalently \leq_{deg}-maximal),
Theorem [K-Schmidmeier 2011]. Suppose that K is an algebraically closed field and that α, β, γ are partitions with $\alpha_1 \leq 2$. In $V^\beta_{\alpha,\gamma}$:

1. and there is the unique orbit \leq_{arc}-maximal (equivalently \leq_{deg}-maximal),

2. there are $c^\beta_{\alpha,\gamma}$ orbits \leq_{arc}-minimal (equivalently \leq_{deg}-minimal).
Properties of the partial order \leq_{deg}

Theorem [K-Schmidmeier 2011]. Suppose that K is an algebraically closed field and that α, β, γ are partitions with $\alpha_1 \leq 2$. In $V_{\alpha,\gamma}^\beta$:

1. and there is the unique orbit \leq_{arc}-maximal (equivalently \leq_{deg}-maximal),

2. there are $c_{\alpha,\gamma}^\beta$ orbits \leq_{arc}-minimal (equivalently \leq_{deg}-minimal).

The Littlewood-Richardson coefficient $c_{\alpha,\gamma}^\beta$ counts the number of LR-tableaux of type (α, β, γ).
Example: The deg-order in $V_{211,321}^{4321}$
Example: The deg-order in $V_{211,321}^{4321}$

$\Delta_6:$

$\Delta_4:$

$\Delta_5:$

$\Delta_1:$

$\Delta_2:$

$\Delta_3:$

\[$\begin{align*}
\dim &= 11 \\
\dim &= 12 \\
\dim &= 13
\end{align*}\$
The proof of Theorem 1.1

- uses properties of AR-quiver of the category S_2
- if $\Delta \leq_{\text{arc}} \Delta'$, gives algorithm that finds sequence of moves

$$\Delta \mapsto \Delta_1 \mapsto \ldots \mapsto \Delta'$$