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Approximations

Definition

A right Ω-approximation of a module Y is a morphism
fY : XY → Y where XY is in Ω such that for all Z in Ω and
g : Z → Y , g factors through fY .
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fY // Y

0 // τ(Y ) // X // Y // 0

Then Xτ(Y ) = τΩ(Y )⊕ I such that I is an Ext-injective module
and τΩ(Y ) is indecomposable, but not Ext-injective.

Definition

τΩ(Y ) is the relative Auslander-Reiten translate of Y in Ω.
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Functorially finite subcategories

Definition

Ω is called

contravariantly finite, if every A-module has a right
Ω-approximation,

covariantly finite, if every A-module has a left
Ω-approximation,

functorially finite, if it is both contravariantly and covariantly
finite.

If Ω is contravariantly finite and closed under extensions, then Ω
has an Auslander-Reiten-quiver.
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Resolving subcategories

Definition

Ω is called resolving if

Ω is closed under extensions,

Ω is closed under kernels of epimorphisms,

A is in Ω.

If T is a generalized cotilting module, then ExtiA(−,T ) = 0 is a
contravariantly finite resolving subcategory.

Let Ω be a functorially finite resolving subcategory.
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Brauer-Thrall conjectures

Brauer-Thrall 1

Ω is representation finite if and only if the Jordan-Hölder length of
its indecomposable modules is bounded.

Brauer-Thrall 1.5

Let Ω be a functorially finite resolving subcategory such that there
exist a positive integer n such that there are N ≥ N0

non-isomorphic indecomposable modules of Jordan-Hölder length n
in Ω, where N0 is the cardinality of an infinite, countable set. Then
there are infinitely many positive integers n1, n2, . . . with N
non-isomorphic indecomposable modules of length ni in Ω for all
i ∈ N.



Brauer-Thrall conjectures

Brauer-Thrall 1

Ω is representation finite if and only if the Jordan-Hölder length of
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Sectional paths

Definition

A path

X0
// X1

// · · · // Xn−1
// Xn

in the Auslander-Reiten-quiver is called sectional if Xj � τΩ(Xj+2)
for all j = 0, . . . , n − 2.

[P1]

[P4 ∆2 ∇2 I4]

S3 X S2 Y S3

N2 M2 N3 M3 N2

S1 ∇3 S4 ∆3 S1

[P2] [P3]
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Sectional paths theorem

Theorem

Let

X0
f1 // X1

f2 // · · · fn−1 // Xn−1
fn // Xn

be a sectional path in the Auslander-Reiten-quiver of A-mod such
that X0 and Xn are in Ω while X1, . . . ,Xn−1 are not in Ω. Then
fn · · · f1 is irreducible in Ω.

Moreover, the cosets of all sectional paths from X0 to Xn in A-mod
such that all modules along these paths other than X0 and Xn are
not in Ω are linearly independent in radΩ(X0,Xn)/rad2

Ω(X0,Xn).

Does the converse hold as well, i.e is a morphism in Ω given by a
non-sectional path in A-mod reducible?
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Y2 Y3
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Y4

Let Y = Y1 ⊕ Y2 ⊕ Y3 ⊕ Y4

There is a short exact sequence

0 // X0
// Y

f // Xn
// 0

Y is in Ω

Every morphism g : X0 → Xn

factors through f

X0

g

  A
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f // Xn

There are no irreducible morphisms
from X0 to Xn
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Let Y = Y1 ⊕ Y2 ⊕ Y3

There is a commutative
diagram

0 // Z // Y // Xn
// 0

0 // XZ

fZ

OO

// XY
//

fY

OO

Xn
// 0

If XZ contains only one
direct summand that is not
Ext-injective, then there are
no Ω-irreducible morphisms
from X0 to Xn.
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A counterexample

[P1 S3 S2 I1]

[P2 τ2(I2) τ(I2) I2]

[P3 τ2(I3) τ(I3) I3]

[P4 τ2(I4) τ(I4) I4]

[P5 τ2(I5) τ(I5) I5]

T = P1 ⊕ P4 ⊕ P5 ⊕ S2 ⊕ I2 is a generalized cotilting module and
the functorially finite resolving subcategory Ω = ExtiA(−,T ) = 0
contains P2,P3 and I1 in addition to the direct summands of T .
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Sectional subgraphs

Let ΓΩ denote the Auslander-Reiten-quiver of Ω.

Definition

A sectional subgraph Σ is a connected subgraph of ΓΩ such that
all subpaths in Σ are sectional. Σ is called full, if any connected
subgraph Σ′ of ΓΩ such that Σ ( Σ′ is not a sectional subgraph.
The undirected graph Σ associated to Σ is called the type of Σ.

For certain left or right stable components the type of a full
sectional subgraph is independent from the choice of a path. In
these components we define the left and right subgraph type of a
component as the type of an arbitrary full sectional subgraph
respectively.
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The main result

Let Γl and Γr denote the subquivers of an Auslander-Reiten-quiver
consisting of all left stable and right stable modules in Ω
respectively.

Theorem

Let Ω be a functorially finite resolving subcategory. Then the
following is equivalent:

Ω is representation finite.

The left subgraph types of all connected components of Γl are
given by Dynkin diagrams.

The right subgraph types of all connected components of Γr

are given by Dynkin diagrams.
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