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Preliminaries

Let K be an algebraically closed field,

A a finite dimensional associative K-algebra with
multiplicative identity,

A-mod the category of all finitely generated left A-modules,

Q a full subcategory of A-mod closed under direct sums,
direct summands and isomorphisms.
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A right Q-approximation of a module Y is a morphism

fy : Xy — Y where Xy is in Q such that for all Z in Q and
g:Z — Y, g factors through fy.
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fy : Xy — Y where Xy is in Q such that for all Z in Q and
g :Z — Y, g factors through fy.
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Then X (y) = 7a(Y) © / such that / is an Ext-injective module
and 7q(Y) is indecomposable, but not Ext-injective.

Definition
Tq(Y) is the relative Auslander-Reiten translate of Y in Q.
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Functorially finite subcategories

Q is called
@ contravariantly finite, if every A-module has a right
Q-approximation,
@ covariantly finite, if every A-module has a left
Q-approximation,
@ functorially finite, if it is both contravariantly and covariantly
finite.

If Q is contravariantly finite and closed under extensions, then Q2
has an Auslander-Reiten-quiver.
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Resolving subcategories

Definition

Q is called resolving if
@ Q is closed under extensions,
o Q is closed under kernels of epimorphisms,
@ Aisin Q.

If T is a generalized cotilting module, then Ext/;(—, T) =0 is a
contravariantly finite resolving subcategory.

Let © be a functorially finite resolving subcategory.



Brauer-Thrall conjectures



Brauer-Thrall conjectures

Brauer-Thrall 1

Q is representation finite if and only if the Jordan-Holder length of
its indecomposable modules is bounded.




Brauer-Thrall conjectures

Brauer-Thrall 1

Q is representation finite if and only if the Jordan-Holder length of
its indecomposable modules is bounded.

| \

Brauer-Thrall 1.5

Let Q be a functorially finite resolving subcategory such that there
exist a positive integer n such that there are N > Ny
non-isomorphic indecomposable modules of Jordan-Holder length n
in Q, where Ny is the cardinality of an infinite, countable set. Then
there are infinitely many positive integers ni, np, ... with N
non-isomorphic indecomposable modules of length n; in Q for all

i €N.
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Sectional paths

Definition
A path

Xo X1 i Xn-1 Xn

in the Auslander-Reiten-quiver is called sectional if X; 2 mo(Xjt2)
forall j=0,...,n—2.
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Sectional paths theorem

Let
f £ fo ,
Xo——>X; ——> -+ > X1 Xn

be a sectional path in the Auslander-Reiten-quiver of A-mod such
that Xy and X, are in Q while X1, ..., X,_1 are not in Q2. Then
fn---fi is irreducible in Q.

Moreover, the cosets of all sectional paths from Xy to X, in A-mod
such that all modules along these paths other than Xy and X,, are
not in Q are linearly independent in radg(Xo, X,)/rad2(Xo, Xn)-

Does the converse hold as well, i.e is a morphism in Q given by a
non-sectional path in A-mod reducible?
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Sectional paths

/\
AVAN
/NN
VAYAY:
AVAV,

\ﬂ/

Let Y=Y1oYoPYsP Y

@ There is a short exact sequence
0—Xo—= Y =X, —0
@ YisinQ
@ Every morphism g : Xo — X,
factors through f

@ There are no irreducible morphisms
from Xy to X,
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Sectional paths

Let Y = Yl@YQ@Y:),
/ \ / \ / \ @ There is a commutative

diagram

/ \ / \ / \/ ijfyfﬁxﬁo
\ / \ / Yz\ / . lfoxjcjft ;Sﬁ;ni@»o

direct summand that is not

\ / \ / Ext-injective, then there are
< Ys

no -irreducible morphisms
from Xy to X,.
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Sectional subgraphs

Let g denote the Auslander-Reiten-quiver of €2.

Definition

A sectional subgraph X is a connected subgraph of ' such that
all subpaths in ¥ are sectional. ¥ is called full, if any connected
subgraph ¥’ of g such that ¥ C Y/ is not a sectional subgraph.
The undirected graph ¥ associated to ¥ is called the type of ¥.

For certain left or right stable components the type of a full
sectional subgraph is independent from the choice of a path. In
these components we define the left and right subgraph type of a
component as the type of an arbitrary full sectional subgraph
respectively.
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The main result

Let 'y and I, denote the subquivers of an Auslander-Reiten-quiver
consisting of all left stable and right stable modules in Q
respectively.

Theorem

Let Q be a functorially finite resolving subcategory. Then the
following is equivalent:

e  is representation finite.

@ The left subgraph types of all connected components of 'y are
given by Dynkin diagrams.

@ The right subgraph types of all connected components of T,
are given by Dynkin diagrams.




