Auslander-Reiten-quivers of functorially finite subcategories

Matthias Krebs

University of East Anglia

August 13, 2012

Preliminaries

• Let K be an algebraically closed field,

- Let K be an algebraically closed field,
- A a finite dimensional associative K-algebra with multiplicative identity,

- Let K be an algebraically closed field,
- A a finite dimensional associative K-algebra with multiplicative identity,
- A-mod the category of all finitely generated left A-modules,

- Let K be an algebraically closed field,
- A a finite dimensional associative K-algebra with multiplicative identity,
- A-mod the category of all finitely generated left A-modules,
- Ω a full subcategory of *A*-mod closed under direct sums, direct summands and isomorphisms.

A right Ω -approximation of a module Y is a morphism $f_Y : X_Y \to Y$ where X_Y is in Ω such that for all Z in Ω and $g : Z \to Y$, g factors through f_Y .

A right Ω -approximation of a module Y is a morphism $f_Y : X_Y \to Y$ where X_Y is in Ω such that for all Z in Ω and $g : Z \to Y$, g factors through f_Y .

A right Ω -approximation of a module Y is a morphism $f_Y : X_Y \to Y$ where X_Y is in Ω such that for all Z in Ω and $g : Z \to Y$, g factors through f_Y .

Then $X_{\tau(Y)} = \tau_{\Omega}(Y) \oplus I$ such that I is an Ext-injective module and $\tau_{\Omega}(Y)$ is indecomposable, but not Ext-injective.

A right Ω -approximation of a module Y is a morphism $f_Y : X_Y \to Y$ where X_Y is in Ω such that for all Z in Ω and $g : Z \to Y$, g factors through f_Y .

Then $X_{\tau(Y)} = \tau_{\Omega}(Y) \oplus I$ such that I is an Ext-injective module and $\tau_{\Omega}(Y)$ is indecomposable, but not Ext-injective.

Definition

 $\tau_{\Omega}(Y)$ is the relative Auslander-Reiten translate of Y in Ω .

- Ω is called
 - contravariantly finite, if every A-module has a right Ω -approximation,

- $\boldsymbol{\Omega}$ is called
 - contravariantly finite, if every A-module has a right Ω -approximation,
 - covariantly finite, if every A-module has a left Ω-approximation,

- Ω is called
 - contravariantly finite, if every A-module has a right Ω -approximation,
 - covariantly finite, if every A-module has a left Ω -approximation,
 - functorially finite, if it is both contravariantly and covariantly finite.

 $\boldsymbol{\Omega}$ is called

- contravariantly finite, if every A-module has a right Ω -approximation,
- covariantly finite, if every A-module has a left Ω-approximation,
- functorially finite, if it is both contravariantly and covariantly finite.

If Ω is contravariantly finite and closed under extensions, then Ω has an Auslander-Reiten-quiver.

 $\boldsymbol{\Omega}$ is called resolving if

 $\boldsymbol{\Omega}$ is called resolving if

• Ω is closed under extensions,

 $\boldsymbol{\Omega}$ is called resolving if

- Ω is closed under extensions,
- Ω is closed under kernels of epimorphisms,

 $\boldsymbol{\Omega}$ is called resolving if

- Ω is closed under extensions,
- Ω is closed under kernels of epimorphisms,
- A is in Ω .

 $\boldsymbol{\Omega}$ is called resolving if

- Ω is closed under extensions,
- Ω is closed under kernels of epimorphisms,
- A is in Ω .

If T is a generalized cotilting module, then $\operatorname{Ext}_{A}^{i}(-, T) = 0$ is a contravariantly finite resolving subcategory.

 $\boldsymbol{\Omega}$ is called resolving if

- Ω is closed under extensions,
- Ω is closed under kernels of epimorphisms,
- A is in Ω .

If T is a generalized cotilting module, then $\operatorname{Ext}_{A}^{i}(-, T) = 0$ is a contravariantly finite resolving subcategory.

Let $\boldsymbol{\Omega}$ be a functorially finite resolving subcategory.

Brauer-Thrall conjectures

Brauer-Thrall 1

 Ω is representation finite if and only if the Jordan-Hölder length of its indecomposable modules is bounded.

Brauer-Thrall 1

 Ω is representation finite if and only if the Jordan-Hölder length of its indecomposable modules is bounded.

Brauer-Thrall 1.5

Let Ω be a functorially finite resolving subcategory such that there exist a positive integer n such that there are $N \ge N_0$ non-isomorphic indecomposable modules of Jordan-Hölder length n in Ω , where N_0 is the cardinality of an infinite, countable set. Then there are infinitely many positive integers n_1, n_2, \ldots with N non-isomorphic indecomposable modules of length n_i in Ω for all $i \in \mathbb{N}$.

Definition

A path

$$X_0 \longrightarrow X_1 \longrightarrow \cdots \longrightarrow X_{n-1} \longrightarrow X_n$$

in the Auslander-Reiten-quiver is called sectional if $X_j \ncong \tau_{\Omega}(X_{j+2})$ for all j = 0, ..., n - 2.

Definition

A path

$$X_0 \longrightarrow X_1 \longrightarrow \cdots \longrightarrow X_{n-1} \longrightarrow X_n$$

in the Auslander-Reiten-quiver is called sectional if $X_j \ncong \tau_{\Omega}(X_{j+2})$ for all j = 0, ..., n-2.

Definition

A path

$$X_0 \longrightarrow X_1 \longrightarrow \cdots \longrightarrow X_{n-1} \longrightarrow X_n$$

in the Auslander-Reiten-quiver is called sectional if $X_j \ncong \tau_{\Omega}(X_{j+2})$ for all j = 0, ..., n-2.

Definition

A path

$$X_0 \longrightarrow X_1 \longrightarrow \cdots \longrightarrow X_{n-1} \longrightarrow X_n$$

in the Auslander-Reiten-quiver is called sectional if $X_j \ncong \tau_{\Omega}(X_{j+2})$ for all j = 0, ..., n-2.

Theorem

Let

$$X_0 \xrightarrow{f_1} X_1 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} X_{n-1} \xrightarrow{f_n} X_n$$

be a sectional path in the Auslander-Reiten-quiver of A-mod such that X_0 and X_n are in Ω while X_1, \ldots, X_{n-1} are not in Ω . Then $f_n \cdots f_1$ is irreducible in Ω .

Theorem

Let

$$X_0 \xrightarrow{f_1} X_1 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} X_{n-1} \xrightarrow{f_n} X_n$$

be a sectional path in the Auslander-Reiten-quiver of A-mod such that X_0 and X_n are in Ω while X_1, \ldots, X_{n-1} are not in Ω . Then $f_n \cdots f_1$ is irreducible in Ω .

Moreover, the cosets of all sectional paths from X_0 to X_n in A-mod such that all modules along these paths other than X_0 and X_n are not in Ω are linearly independent in $\operatorname{rad}_{\Omega}(X_0, X_n)/\operatorname{rad}_{\Omega}^2(X_0, X_n)$.

Theorem

Let

$$X_0 \xrightarrow{f_1} X_1 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} X_{n-1} \xrightarrow{f_n} X_n$$

be a sectional path in the Auslander-Reiten-quiver of A-mod such that X_0 and X_n are in Ω while X_1, \ldots, X_{n-1} are not in Ω . Then $f_n \cdots f_1$ is irreducible in Ω .

Moreover, the cosets of all sectional paths from X_0 to X_n in A-mod such that all modules along these paths other than X_0 and X_n are not in Ω are linearly independent in $\operatorname{rad}_{\Omega}(X_0, X_n)/\operatorname{rad}_{\Omega}^2(X_0, X_n)$.

Does the converse hold as well, i.e is a morphism in Ω given by a non-sectional path in A-mod reducible?

Let
$$Y = Y_1 \oplus Y_2 \oplus Y_3 \oplus Y_4$$

• There is a short exact sequence

$$0 \longrightarrow X_0 \longrightarrow Y \stackrel{f}{\longrightarrow} X_n \longrightarrow 0$$

Let
$$Y = Y_1 \oplus Y_2 \oplus Y_3 \oplus Y_4$$

• There is a short exact sequence

$$0 \longrightarrow X_0 \longrightarrow Y \stackrel{f}{\longrightarrow} X_n \longrightarrow 0$$

• Y is in Ω

Let
$$Y = Y_1 \oplus Y_2 \oplus Y_3 \oplus Y_4$$

• There is a short exact sequence

$$0 \longrightarrow X_0 \longrightarrow Y \stackrel{f}{\longrightarrow} X_n \longrightarrow 0$$

- Y is in Ω
- Every morphism g : X₀ → X_n factors through f

Let
$$Y = Y_1 \oplus Y_2 \oplus Y_3 \oplus Y_4$$

• There is a short exact sequence

$$0 \longrightarrow X_0 \longrightarrow Y \stackrel{f}{\longrightarrow} X_n \longrightarrow 0$$

- Y is in Ω
- Every morphism g : X₀ → X_n factors through f

• There are no irreducible morphisms from X₀ to X_n

Let $Y = Y_1 \oplus Y_2 \oplus Y_3$

Let $Y = Y_1 \oplus Y_2 \oplus Y_3$

• There is a commutative diagram

Let $Y = Y_1 \oplus Y_2 \oplus Y_3$

 There is a commutative diagram

 If X_Z contains only one direct summand that is not Ext-injective, then there are no Ω-irreducible morphisms from X₀ to X_n.

 $T = P_1 \oplus P_4 \oplus P_5 \oplus S_2 \oplus I_2$ is a generalized cotilting module and the functorially finite resolving subcategory $\Omega = \operatorname{Ext}_A^i(-, T) = 0$ contains P_2, P_3 and I_1 in addition to the direct summands of T.

 $T = P_1 \oplus P_4 \oplus P_5 \oplus S_2 \oplus I_2$ is a generalized cotilting module and the functorially finite resolving subcategory $\Omega = \operatorname{Ext}_A^i(-, T) = 0$ contains P_2, P_3 and I_1 in addition to the direct summands of T.

 $T = P_1 \oplus P_4 \oplus P_5 \oplus S_2 \oplus I_2$ is a generalized cotilting module and the functorially finite resolving subcategory $\Omega = \text{Ext}_A^i(-, T) = 0$ contains P_2, P_3 and I_1 in addition to the direct summands of T.

Sectional subgraphs

Let Γ_{Ω} denote the Auslander-Reiten-quiver of Ω .

Let Γ_{Ω} denote the Auslander-Reiten-quiver of Ω .

Definition

A sectional subgraph Σ is a connected subgraph of Γ_{Ω} such that all subpaths in Σ are sectional. Σ is called full, if any connected subgraph Σ' of Γ_{Ω} such that $\Sigma \subsetneq \Sigma'$ is not a sectional subgraph. The undirected graph $\overline{\Sigma}$ associated to Σ is called the type of Σ .

Let Γ_{Ω} denote the Auslander-Reiten-quiver of Ω .

Definition

A sectional subgraph Σ is a connected subgraph of Γ_{Ω} such that all subpaths in Σ are sectional. Σ is called full, if any connected subgraph Σ' of Γ_{Ω} such that $\Sigma \subsetneq \Sigma'$ is not a sectional subgraph. The undirected graph $\overline{\Sigma}$ associated to Σ is called the type of Σ .

For certain left or right stable components the type of a full sectional subgraph is independent from the choice of a path. In these components we define the left and right subgraph type of a component as the type of an arbitrary full sectional subgraph respectively.

Theorem

Let Ω be a functorially finite resolving subcategory. Then the following is equivalent:

Theorem

Let Ω be a functorially finite resolving subcategory. Then the following is equivalent:

• Ω is representation finite.

Theorem

Let Ω be a functorially finite resolving subcategory. Then the following is equivalent:

- Ω is representation finite.
- The left subgraph types of all connected components of Γ₁ are given by Dynkin diagrams.

Theorem

Let Ω be a functorially finite resolving subcategory. Then the following is equivalent:

- Ω is representation finite.
- The left subgraph types of all connected components of Γ₁ are given by Dynkin diagrams.
- The right subgraph types of all connected components of Γ_r are given by Dynkin diagrams.