Representation type and Auslander-Reiten theory of Frobenius-Lusztig kernels

Julian Külshammer

University of Kiel, Germany

08.2012

J. Külshammer

University of Kiel, Germany

Denote by:

▶ k an algebraically closed field (of characteristic $p \ge 0$)

Representation type and Auslander-Reiten theory of Frobenius-Lusztig kernels

- ▶ k an algebraically closed field (of characteristic $p \ge 0$)
- Fix a Dynkin diagram $\mathbb{A}_n, \ldots, \mathbb{G}_2$

- ▶ k an algebraically closed field (of characteristic $p \ge 0$)
- Fix a Dynkin diagram $\mathbb{A}_n, \ldots, \mathbb{G}_2$
- g corresponding Lie algebra

- ▶ k an algebraically closed field (of characteristic $p \ge 0$)
- Fix a Dynkin diagram $\mathbb{A}_n, \ldots, \mathbb{G}_2$
- g corresponding Lie algebra
- G_r *r*-th Frobenius kernel of algebraic group with Lie(G) = \mathfrak{g}

- ▶ k an algebraically closed field (of characteristic $p \ge 0$)
- Fix a Dynkin diagram $\mathbb{A}_n, \ldots, \mathbb{G}_2$
- g corresponding Lie algebra
- G_r *r*-th Frobenius kernel of algebraic group with Lie(G) = \mathfrak{g}
- ▶ $\ell \ge 3$ an odd integer

- ▶ k an algebraically closed field (of characteristic $p \ge 0$)
- Fix a Dynkin diagram $\mathbb{A}_n, \ldots, \mathbb{G}_2$
- g corresponding Lie algebra
- G_r *r*-th Frobenius kernel of algebraic group with Lie(G) = \mathfrak{g}
- ▶ $\ell \ge 3$ an odd integer
- ζ a primitive ℓ -th root of unity

Definition

The Lusztig form of the quantised enveloping algebra is obtained in three steps:

(i) Drinfeld-Jimbo quantum group $U_q(\mathfrak{g})$ over $\mathbb{Q}(q)$ with generators $E_i, F_i, K_i^{\pm 1}, i = 1, \ldots, n$ and quantum Serre relations

Definition

The Lusztig form of the quantised enveloping algebra is obtained in three steps:

- (i) Drinfeld-Jimbo quantum group $U_q(\mathfrak{g})$ over $\mathbb{Q}(q)$ with generators $E_i, F_i, K_i^{\pm 1}, i = 1, \ldots, n$ and quantum Serre relations
- (ii) a $\mathbb{Z}[q, q^{-1}]$ -subalgebra $U_{\mathbb{Z}}(\mathfrak{g})$ generated by the divided powers $E_i^{(n)}, F_i^{(n)}, K_i^{\pm 1}$

Definition

The Lusztig form of the quantised enveloping algebra is obtained in three steps:

- (i) Drinfeld-Jimbo quantum group $U_q(\mathfrak{g})$ over $\mathbb{Q}(q)$ with generators $E_i, F_i, K_i^{\pm 1}, i = 1, \ldots, n$ and quantum Serre relations
- (ii) a $\mathbb{Z}[q, q^{-1}]$ -subalgebra $U_{\mathbb{Z}}(\mathfrak{g})$ generated by the divided powers $E_i^{(n)}, F_i^{(n)}, K_i^{\pm 1}$
- (iii) $U_{\zeta}(\mathfrak{g})$ obtained by specialising to k via $q \mapsto \zeta$

Definition

The Lusztig form of the quantised enveloping algebra is obtained in three steps:

- (i) Drinfeld-Jimbo quantum group $U_q(\mathfrak{g})$ over $\mathbb{Q}(q)$ with generators $E_i, F_i, K_i^{\pm 1}, i = 1, \ldots, n$ and quantum Serre relations
- (ii) a $\mathbb{Z}[q, q^{-1}]$ -subalgebra $U_{\mathbb{Z}}(\mathfrak{g})$ generated by the divided powers $E_i^{(n)}, F_i^{(n)}, K_i^{\pm 1}$

(iii) $U_{\zeta}(\mathfrak{g})$ obtained by specialising to k via $q \mapsto \zeta$ The **small quantum group** $U_{\zeta}(G_0)$ is now the k-subalgebra generated by $E_i, F_i, K_i^{\pm 1}$

Example

For $\mathfrak{g} = \mathfrak{sl}_2$ the **small quantum group** is the *k*-algebra with generators $E, F, K^{\pm 1}$ and relations:

J. Külshammer

University of Kiel, Germany

Example

For $\mathfrak{g} = \mathfrak{sl}_2$ the **small quantum group** is the *k*-algebra with generators $E, F, K^{\pm 1}$ and relations:

(R2)
$$KEK^{-1} = \zeta^2 E$$

(R3) $KFK^{-1} = \zeta^{-2}F$

Example

For $\mathfrak{g} = \mathfrak{sl}_2$ the **small quantum group** is the *k*-algebra with generators $E, F, K^{\pm 1}$ and relations:

(R2) $KEK^{-1} = \zeta^2 E$ (R3) $KFK^{-1} = \zeta^{-2}F$ (R4) $EF - FE = \frac{K-K^{-1}}{\zeta-\zeta^{-1}}$

J. Külshammer

University of Kiel, Germany

Example

For $\mathfrak{g} = \mathfrak{sl}_2$ the **small quantum group** is the *k*-algebra with generators $E, F, K^{\pm 1}$ and relations:

(R2)
$$KEK^{-1} = \zeta^2 E$$

(R3) $KFK^{-1} = \zeta^{-2}F$
(R4) $EF - FE = \frac{K - K^{-1}}{\zeta - \zeta^{-1}}$
(s) $E^{\ell} = F^{\ell} = K^{\ell} - 1 = 0$

J. Külshammer

Why Frobenius-Lusztig kernel?

In positive characteristic:

$$k
ightarrow U_{\zeta}(G_0)
ightarrow U_{\zeta}(G_r) \stackrel{\mathsf{Fr}_{\zeta}}{
ightarrow} \mathsf{Dist}(G_r)
ightarrow k$$

J. Külshammer

Why Frobenius-Lusztig kernel?

In positive characteristic:

$$k
ightarrow U_{\zeta}(G_0)
ightarrow U_{\zeta}(G_r) \stackrel{\mathsf{Fr}_{\zeta}}{
ightarrow} \mathsf{Dist}(G_r)
ightarrow k$$

Properties of $U_{\zeta}(G_r)$:

J. Külshammer

Why Frobenius-Lusztig kernel?

In positive characteristic:

$$k
ightarrow U_{\zeta}(G_0)
ightarrow U_{\zeta}(G_r) \stackrel{\mathsf{Fr}_{\zeta}}{
ightarrow} \mathsf{Dist}(G_r)
ightarrow k$$

Properties of $U_{\zeta}(G_r)$:

finite dimensional

J. Külshammer

In positive characteristic:

$$k
ightarrow U_{\zeta}(G_0)
ightarrow U_{\zeta}(G_r) \stackrel{\mathsf{Fr}_{\zeta}}{
ightarrow} \mathsf{Dist}(G_r)
ightarrow k$$

Properties of $U_{\zeta}(G_r)$:

- finite dimensional
- Hopf algebra, neither commutative nor cocommutative

In positive characteristic:

$$k
ightarrow U_{\zeta}(G_0)
ightarrow U_{\zeta}(G_r) \stackrel{\mathsf{Fr}_{\zeta}}{
ightarrow} \mathsf{Dist}(G_r)
ightarrow k$$

Properties of $U_{\zeta}(G_r)$:

- finite dimensional
- Hopf algebra, neither commutative nor cocommutative
- symmetric

Theorem

 $k \rightarrow B \rightarrow A \rightarrow C \rightarrow k$. Assume simple B-modules lift to A.

J. Külshammer

University of Kiel, Germany

Theorem

 $k \rightarrow B \rightarrow A \rightarrow C \rightarrow k$. Assume simple B-modules lift to A. Then:

► All simple A-modules are of the form M ⊗ L, where M is a simple C-module and L is a simple B-module

Representation type and Auslander-Reiten theory of Frobenius-Lusztig kernels

Theorem

 $k \rightarrow B \rightarrow A \rightarrow C \rightarrow k$. Assume simple B-modules lift to A. Then:

- ► All simple A-modules are of the form M ⊗ L, where M is a simple C-module and L is a simple B-module
- Assume simple B-modules have no self-extensions. Then:

$$\mathsf{Ext}^{1}(M_{1} \otimes L_{1}, M_{2} \otimes L_{2}) \cong \begin{cases} \mathsf{Ext}^{1}(M_{1}, M_{2}) & L_{1} \cong L_{2} \\ \mathsf{Hom}(M_{1}, M_{2} \otimes \mathsf{Ext}^{1}(L_{1}, L_{2})) & L_{1} \ncong L_{2} \end{cases}$$

Theorem

 $k \rightarrow B \rightarrow A \rightarrow C \rightarrow k$. Assume simple B-modules lift to A. Then:

- ► All simple A-modules are of the form M ⊗ L, where M is a simple C-module and L is a simple B-module
- Assume simple B-modules have no self-extensions. Then:

$$\operatorname{Ext}^{1}(M_{1} \otimes L_{1}, M_{2} \otimes L_{2}) \cong \begin{cases} \operatorname{Ext}^{1}(M_{1}, M_{2}) & L_{1} \cong L_{2} \\ \operatorname{Hom}(M_{1}, M_{2} \otimes \operatorname{Ext}^{1}(L_{1}, L_{2})) & L_{1} \ncong L_{2} \end{cases}$$

▶ Assume B has a simple projective module St. Then: There is a block embedding mod $C \rightarrow \text{mod } A, M \mapsto M \otimes \text{St.}$

If certain finiteness assumptions on cohomology hold, we can define a theory of support varieties for Hopf algebras, i.e. to each module M one can associate a variety $\mathcal{V}(M)$ reflecting certain properties of M.

Conjecture (fg)

The Hopf algebras $U_{\zeta}(G_r)$ satisfy these finiteness assumptions.

J. Külshammer

If certain finiteness assumptions on cohomology hold, we can define a theory of support varieties for Hopf algebras, i.e. to each module M one can associate a variety $\mathcal{V}(M)$ reflecting certain properties of M.

Conjecture (fg)

The Hopf algebras $U_{\zeta}(G_r)$ satisfy these finiteness assumptions.

Proven for r = 0 and r = 1 (in special cases). From now on assumed in general.

J. Külshammer

Representation type of Frobenius-Lusztig kernels

Theorem

Assume (fg). Then the blocks of $U_{\zeta}(G_r)$ are:

representation-finite only if simple, only St.

J. Külshammer

University of Kiel, Germany

Representation type of Frobenius-Lusztig kernels

Theorem

Assume (fg). Then the blocks of $U_{\zeta}(G_r)$ are:

- representation-finite only if simple, only St.
- tame for A₁ and
 - r = 0: all but one block
 - r = 1: all but one of the block in the image of $\otimes St$.

Representation type of Frobenius-Lusztig kernels

Theorem

Assume (fg). Then the blocks of $U_{\zeta}(G_r)$ are:

- representation-finite only if simple, only St.
- ▶ tame for A₁ and
 - *r* = 0: all but one block
 - r = 1: all but one of the block in the image of $\otimes St$.
- wild in all other cases.

Only SL_2 with r = 0, 1 has tame blocks

Proof.

If B is a block of an (fg)-Hopf algebra A and there is M with dim V(M) ≥ 3, then B is wild. [Farnsteiner 2007, Feldvoss-Witherspoon 2009]
 This allows to restrict to A₁

Only SL_2 with r = 0, 1 has tame blocks

Proof.

- If B is a block of an (fg)-Hopf algebra A and there is M with dim V(M) ≥ 3, then B is wild. [Farnsteiner 2007, Feldvoss-Witherspoon 2009]
 This allows to restrict to A₁
- Por A₁, one can compute the quiver of U_ζ(G_r) by considering the quiver of U_ζ(G₀) and the quiver of Dist(G_r), i.e. using the Ext-group result from before.

Then one can identify a wild subquiver $\circ \implies \circ \longleftarrow \circ$

Theorem (Kerner-Zacharia 2009)

Let A be an (fg)-Hopf algebra. Then the components of the stable Auslander-Reiten quiver $\Gamma_s(A)$ are of the form:

periodic: finite or $\mathbb{Z}[A_{\infty}]/\tau^m$ (tubes)

Representation type and Auslander-Reiten theory of Frobenius-Lusztig kernels

Theorem (Kerner-Zacharia 2009)

Let A be an (fg)-Hopf algebra. Then the components of the stable Auslander-Reiten quiver $\Gamma_s(A)$ are of the form: periodic: finite or $\mathbb{Z}[A_{\infty}]/\tau^m$ (tubes) non-periodic: $\mathbb{Z}[\Delta]$, where Δ is Euclidean or infinite Dynkin

Theorem (Kerner-Zacharia 2009)

Let A be an (fg)-Hopf algebra. Then the components of the stable Auslander-Reiten quiver $\Gamma_s(A)$ are of the form: periodic: finite or $\mathbb{Z}[A_{\infty}]/\tau^m$ (tubes) non-periodic: $\mathbb{Z}[\Delta]$, where Δ is Euclidean or infinite Dynkin

Theorem

The following hold for $\Gamma_s(U_{\zeta}(G_r))$ not associated to \mathbb{A}_1 :

> There are no Euclidean components.

J. Külshammer

Theorem (Kerner-Zacharia 2009)

Let A be an (fg)-Hopf algebra. Then the components of the stable Auslander-Reiten quiver $\Gamma_s(A)$ are of the form: periodic: finite or $\mathbb{Z}[A_{\infty}]/\tau^m$ (tubes) non-periodic: $\mathbb{Z}[\Delta]$, where Δ is Euclidean or infinite Dynkin

Theorem

The following hold for $\Gamma_s(U_{\zeta}(G_r))$ not associated to \mathbb{A}_1 :

- There are no Euclidean components.
- For r = 0 the periodic components are of the form $\mathbb{Z}[A_{\infty}]/\tau$.

Theorem (Kerner-Zacharia 2009)

Let A be an (fg)-Hopf algebra. Then the components of the stable Auslander-Reiten quiver $\Gamma_s(A)$ are of the form: periodic: finite or $\mathbb{Z}[A_{\infty}]/\tau^m$ (tubes) non-periodic: $\mathbb{Z}[\Delta]$, where Δ is Euclidean or infinite Dynkin

Theorem

The following hold for $\Gamma_s(U_{\zeta}(G_r))$ not associated to \mathbb{A}_1 :

- There are no Euclidean components.
- For r = 0 the periodic components are of the form $\mathbb{Z}[A_{\infty}]/\tau$.
- For r = 0 the components containing U_ζ(g)-modules, e.g. simples, are of the form ℤ[A_∞].

Application

Corollary

If S is a simple module for $U_{\zeta}(G_r)$ in a $\mathbb{Z}[A_{\infty}]$ -component, then ht $P(S) = \operatorname{rad} P(S) / \operatorname{soc} P(S)$ is indecomposable.

J. Külshammer

Proof.

0 → rad P → ht P ⊕ P → P/soc P → 0 is the standard almost split sequence, i.e. if P/soc P has only one predecessor in Γ_s(U_ζ(G_r)), then ht P is indecomposable.

Proof.

- ► 0 → rad P → ht $P \oplus P$ → $P/\operatorname{soc} P$ → 0 is the standard almost split sequence, i.e. if $P/\operatorname{soc} P$ has only one predecessor in $\Gamma_s(U_\zeta(G_r))$, then ht P is indecomposable.
- Applying Ω to this sequence this is equivalent to Ω(P/ soc P) = S has only one predecessor.

J. Külshammer

Proof.

- ▶ 0 → rad P → ht $P \oplus P$ → $P/\operatorname{soc} P$ → 0 is the standard almost split sequence, i.e. if $P/\operatorname{soc} P$ has only one predecessor in $\Gamma_s(U_\zeta(G_r))$, then ht P is indecomposable.
- Applying Ω to this sequence this is equivalent to $\Omega(P/\operatorname{soc} P) = S$ has only one predecessor.
- ► [Kawata] Symmetric algebras with a non-quasi-simple simple module S in a Z[A_∞]-component have a very special shape of projective modules.

Proof.

- ▶ 0 → rad P → ht $P \oplus P$ → $P/\operatorname{soc} P$ → 0 is the standard almost split sequence, i.e. if $P/\operatorname{soc} P$ has only one predecessor in $\Gamma_s(U_\zeta(G_r))$, then ht P is indecomposable.
- Applying Ω to this sequence this is equivalent to $\Omega(P/\operatorname{soc} P) = S$ has only one predecessor.
- ► [Kawata] Symmetric algebras with a non-quasi-simple simple module S in a Z[A_∞]-component have a very special shape of projective modules.
- This contradicts a certain Ext-symmetry for $U_{\zeta}(G_r)$.

The tame small quantum group

Theorem (...)

►

The tame blocks are as follows:

$$1 \xrightarrow[\stackrel{w \to y}{\xrightarrow{y}}]{\xrightarrow{y}} 2; xy = yx = 0, x^2 = y^2$$

J. Külshammer

University of Kiel, Germany

The tame small quantum group

Theorem (...)

•

The tame blocks are as follows:

$$1 \xrightarrow[\stackrel{x \to x}{\xrightarrow{y \to x}}_{\xrightarrow{y \to x}} 2; xy = yx = 0, x^2 = y^2$$

special biserial

J. Külshammer

Theorem (...)

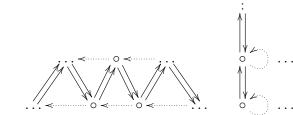
The tame blocks are as follows:

$$1 \xrightarrow[x_y]{y_y}{y_y} 2$$
; $xy = yx = 0, x^2 = y^2$

- special biserial
- ► stable Auslander-Reiten quiver: 2 components of type Z[Ã₁₂] and two P¹-families of homogeneous tubes.

J. Külshammer

Stable Auslander-Reiten quiver of $u_{\zeta}(\mathfrak{sl}_2)$



University of Kiel, Germany