

A finite set of equations for Bongartz resolutions

Magdalini Lada Bielefeld August 13, 2012

Setting

- **Q** finite quiver
- kQ path algebra, k field
- *I* admissible ideal, ($J^t \subseteq I \subseteq J^2$, J = < arrows >)
- $\Lambda = kQ/I$ finite dimensional
- $M \in \mathsf{mod}\,\Lambda$
 - $0
 ightarrow P_1
 ightarrow P_0
 ightarrow M
 ightarrow 0$ projective presentation over kQ

$0 \longrightarrow P_0 I \longrightarrow P_1 \longrightarrow \Omega_{\Lambda}(M) \longrightarrow 0$

The filtration

There exists a filtration of P_0

 $\ldots \subseteq P_0 I^{\kappa+1} \subseteq P_1 I^{\kappa} \subseteq P_0 I^{\kappa} \subseteq \cdots \subseteq P_1 I^2 \subseteq P_0 I^2 \subseteq P_1 I \subseteq P_0 I \subseteq P_1 \subseteq P_0$

such that

$$\Omega^{2\kappa}_{\Lambda}(M) = P_0 I^{\kappa} / P_1 I^{\kappa},$$

and

$$\Omega_{\Lambda}^{2\kappa-1}(\boldsymbol{M}) = \boldsymbol{P}_1 \boldsymbol{I}^{\kappa-1} / \boldsymbol{P}_0 \boldsymbol{I}^{\kappa}.$$

The Bongartz resolution

There exists a projective resolution over Λ

 $\cdots \rightarrow \textit{P}_0\textit{I}^2/\textit{P}_0\textit{I}^3 \rightarrow \textit{P}_1\textit{I}/\textit{P}_1\textit{I}^2 \rightarrow \textit{P}_0\textit{I}/\textit{P}_0\textit{I}^2 \rightarrow \textit{P}_1/\textit{P}_1\textit{I} \rightarrow \textit{P}_0/\textit{P}_0\textit{I} \rightarrow \textit{M} \rightarrow 0$

NTNU Norwegian University of Science and Technology

Gröbner bases

- $\mathcal{B} = \{ paths \}, k-basis of kQ$

— Length lexicographic order on ${\cal B}$

•
$$\mathbf{v}_1 < \cdots < \mathbf{v}_r < \alpha_1 < \cdots < \alpha_s$$

• $\boldsymbol{p} = \beta_1 \cdots \beta_n < \gamma_1 \cdots \gamma_m = \boldsymbol{q},$ if $\boldsymbol{n} < \boldsymbol{m}$ or $\beta_{n_0} < \gamma_{n_0}$ and $\beta_i = \gamma_i$, for $\boldsymbol{i} < \boldsymbol{n}_0.$

$$- x = \sum_{i=1}^{n} \lambda_i \mathbf{b}_i \in \mathbf{kQ} \\ \mathbf{Tip}(\mathbf{x}) = \mathbf{b}_{i_0} \text{ the biggest of the } \mathbf{b}_i \text{'s.}$$

- $X \subseteq kQ, \operatorname{Tip}(X) = {\operatorname{Tip}(x), x \in X}$
- $\operatorname{NonTip}(X) = \mathcal{B} \operatorname{Tip}(X)$
- $\begin{array}{l} I \subseteq kQ \\ \mathcal{G} \subseteq I \text{ right Gröbner basis, if } \langle \mathsf{Tip}(\mathcal{G}) \rangle = \langle \mathsf{Tip}(I) \rangle \text{ as right ideals.} \end{array}$
- \mathcal{G} uniform and reduced, $I = \prod_{g \in \mathcal{G}} g k Q$.

NTNU Norwegian University of Science and Technology Right uniform and reduced Gröbner bases exist for

- any ideal $I \subseteq kQ$,
- any submodule $P' \subseteq P$ of a sum of vertex projectives modules P.
- They are finite.

The equations

For all γ in NonTip(*I*) and *g* in \mathcal{G} , consider the expression

$$\gamma \boldsymbol{g} = \sum_{\boldsymbol{g}' \in \mathcal{G}} \boldsymbol{g}' \boldsymbol{r}_{\boldsymbol{g}'}^{(\gamma, \boldsymbol{g})}$$

with
$$r_{g'}^{(\gamma,g)}$$
 in kQ .

The algorithm

 $- M \in \text{mod } \Lambda$

- 0 \rightarrow $P_1 \rightarrow$ $P_0 \rightarrow$ $M \rightarrow$ 0 projective presentation over kQ such that

•
$$P_0 = \prod_{j=1}^{n} v_j kQ$$

• $P_1 = \prod_{j=1}^{m} w_j kQ \subseteq P_0$, with $\{w_j\}_j$ right uniform and reduced Gröbner basis of P_1

Recall the filtration:

 $\ldots \subset P_0 I^{\kappa+1} \subset P_1 I^{\kappa} \subset P_0 I^{\kappa} \subset \cdots \subset P_1 I^2 \subset P_0 I^2 \subset P_1 I \subset P_0 I \subset P_1 \subset P_0$ $I = \prod_{g \in G} g k Q$

- $P_0 I = \coprod_{i,g} (v_i g) kQ$ $P_1 I = \coprod_{j,g} (w_j g) kQ$

Proposition 1

Let *M* be in mod Λ and $0 \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0$ a projective presentation of *M* as a right *kQ*-module. Suppose that

- $-P_0 = \prod_{i=1}^n v_i R$, where v_i is in Q_0 for all $i = 1, \ldots, n$, and
- $P_1 = \coprod_{j=1}^m w_j kQ \subseteq P_0$, where the elements $w_j = (w_j^1, \cdots, w_j^n)^T$ of P_0 form a uniform, right reduced, right Gröbner basis for P_1 .

Then w_j^i is in Span{NonTip(I) $\cup G$ }, for all i = 1, ..., n and j = 1, ..., m.

Proposition 2

Let γ be in NonTip(*I*) and *g* be in \mathcal{G} . Then in the equation

$$\gamma \boldsymbol{g} = \sum_{\boldsymbol{g}' \in \mathcal{G}} \boldsymbol{g}' \boldsymbol{r}_{\boldsymbol{g}'}^{(\gamma, \boldsymbol{g})},$$

 $r_{g'}^{(\gamma,g)}$ is in Span{NonTip(I) $\cup \mathcal{G}$ }, for all g' in \mathcal{G} .

The matrices

For each γ in NonTip(*I*) consider the matrix $[\gamma \mathcal{G}]$, where the columns are the vectors $\mathbf{r}_{\mathbf{a}'}^{(\gamma,\mathbf{g})}$, for all \mathbf{g} 's.

Each entry of $[\gamma \mathcal{G}]$ is in **Span**{**NonTip**(I) $\cup \mathcal{G}$ }.

— Similarly define the matrices [gG], for each g in G.

 $\ldots \subseteq P_0 l^{\kappa+1} \subseteq P_1 l^{\kappa} \subseteq P_0 l^{\kappa} \subseteq \cdots \subseteq P_1 l^2 \subseteq P_0 l^2 \subseteq P_1 l \subseteq P_0 l \subseteq P_1 \subseteq P_0$

— WI^{κ} the matrix of $P_1I^{\kappa} \subseteq P_0I^{\kappa}$

— For $\kappa = 0$, the entries of *W* are in Span{NonTip(I) $\cup G$ }.

The algorithm

 $WI^{\kappa+1}$ is obtained from WI^{κ} , by replacing each entry, by a linear combination of the matrices $[\gamma G]$ and [gG].

Monomial algebras

- $\Lambda = kQ/I$, *I* generated by monomials. Equations: $\gamma g = g' r_{g'}^{(\gamma,g)}$
- - Columns of $[\gamma \mathcal{G}]$ and $[g\mathcal{G}]$: $\begin{pmatrix} c \\ \vdots \\ p \\ \vdots \end{pmatrix}$, p path.
- The second syzygy of any module over a monomial algebra is a direct sum of cyclic modules, generated by paths [Z]
 - Columns of WI : $\begin{vmatrix} \vdots \\ p \\ \vdots \end{vmatrix}$, *p* path.

Norwegian University of Science and Technology

$$- \operatorname{fd}(\Lambda) = \sup \{ \operatorname{pd}_{\Lambda}(M) | M \text{ in } \operatorname{mod} \Lambda, \operatorname{pd}_{\Lambda}(M) < \infty \}$$

- - fd(\Lambda) < \propto ([GKK]).

Finitistic dimension

Let Λ be a finite dimensional monomial algebra. Then $fd(\Lambda) \leq 2(dim_k\,\Lambda+1).$

— Key: repetition of the non-zero entries of the rows of the matrices WI^{κ} for $\kappa > \dim_k \Lambda$.

7

Global dimension of finite dimensional algebras

 $|\mathcal{G}| = n$ *v* vertex, $\{\gamma_s^v\} = \{\text{arrows starting at } v\}.$

Elementary Equations degree m

 $EE^{m}(\gamma_{s}^{v}, g_{t}^{m}): \gamma_{s}^{v}g_{t}^{m} = \sum_{j=1}^{n^{m}} g_{j}^{m}r_{j}^{(s,t,m)}$

Minimal Equations of degree m

 $ME^{m}(\gamma_{s}^{v}, g_{t}^{m})$: $\{\cdots\} = \sum_{j=1}^{n^{m}} g_{j}^{m} r_{j}$

 $\{\cdots\} = kQ$ -combination of right hand sides of EE's r_i 's: **coefficients**

Theorem

gldim $\Lambda \leq 2m$ if and only if for any vertex v the coefficients of $ME^m(\gamma_s^v, g_t^m)$ of any pair (γ_s^v, g_t^m) that they are defined on, are in *I*.

THANK YOU !

