Lie powers and Lie modules

Kay Jin Lim

National University of Singapore ICRA 2012

August 13, 2012

< 17 ▶

- ∢ ≣ ▶

Notation

 $L^n(V)$ and $\operatorname{Lie}(n)$ A decomposition of the Lie power Block components of the Lie module The complexity of Lie modules

Notation

- \bullet *p* is a prime number.
- G is a finite group.
- \mathfrak{S}_n is the symmetric group acting on the set $\{1, \ldots, n\}$.
- K is a field, preferably of infinite order.
- All modules are 'left' and have finite dimensional over the defining field *K*.

< ∃ >

The Lie power $L^n(V)$

æ

<ロト <部ト < 注ト < 注ト

The Lie power $L^n(V)$

Let V be a finite-dimensional vector space over K. The Lie power L(V) is the free Lie subalgebra of the Lie algebra $T(V) = \bigoplus_{n \ge 0} V^{\otimes n}$ generated by V.

→ Ξ →

< A >

The Lie power $L^n(V)$

Let V be a finite-dimensional vector space over K. The Lie power L(V) is the free Lie subalgebra of the Lie algebra $T(V) = \bigoplus_{n \geq 0} V^{\otimes n}$ generated by V. So

$$L(V) = \bigoplus_{n \ge 0} L^n(V)$$

where $L^n(V) = L(V) \cap V^{\otimes n}$ is the *n*th Lie power of V.

- 4 同 6 4 日 6 4 日 6

The Lie power $L^n(V)$

Let V be a finite-dimensional vector space over K. The Lie power L(V) is the free Lie subalgebra of the Lie algebra $T(V) = \bigoplus_{n \ge 0} V^{\otimes n}$ generated by V. So

$$L(V) = \bigoplus_{n \ge 0} L^n(V)$$

where $L^n(V) = L(V) \cap V^{\otimes n}$ is the *n*th Lie power of V.

In the case V is a KG-module, $V^{\otimes n}$ is naturally a KG-module via the diagonal action and $L^n(V)$ is a submodule of $V^{\otimes n}$.

・ロト ・得ト ・ヨト ・ヨト

Let $M_K(m, n)$ be the full subcategory of $GL_m(K)$ -mod consisting of polynomial $GL_m(K)$ -modules of degree n.

< ∃ >

< 一型

э

Let $M_K(m,n)$ be the full subcategory of $\operatorname{GL}_m(K)$ -mod consisting of polynomial $\operatorname{GL}_m(K)$ -modules of degree n. Given that $m \ge n$, the Schur functor f_n is a functor

 $f_n: M_K(m, n) \to \mathfrak{S}_n$ -mod.

A B > A B >

< 67 ▶

Let $M_K(m,n)$ be the full subcategory of $\operatorname{GL}_m(K)$ -mod consisting of polynomial $\operatorname{GL}_m(K)$ -modules of degree n. Given that $m \ge n$, the Schur functor f_n is a functor

 $f_n: M_K(m, n) \to \mathfrak{S}_n$ -mod.

• The Schur functor is exact.

Let $M_K(m,n)$ be the full subcategory of $\operatorname{GL}_m(K)$ -mod consisting of polynomial $\operatorname{GL}_m(K)$ -modules of degree n. Given that $m \ge n$, the Schur functor f_n is a functor

 $f_n: M_K(m, n) \to \mathfrak{S}_n$ -mod.

- The Schur functor is exact.
- Suppose that E is the natural $GL_m(K)$ -module and $m \ge n$. Then $f_n(E^{\otimes n}) = K\mathfrak{S}_n$.

- 同 ト - ヨ ト - - ヨ ト

Let $M_K(m,n)$ be the full subcategory of $\operatorname{GL}_m(K)$ -mod consisting of polynomial $\operatorname{GL}_m(K)$ -modules of degree n. Given that $m \geq n$, the Schur functor f_n is a functor

 $f_n: M_K(m, n) \to \mathfrak{S}_n$ -mod.

- The Schur functor is exact.
- Suppose that E is the natural $\operatorname{GL}_m(K)$ -module and $m \ge n$. Then $f_n(E^{\otimes n}) = K\mathfrak{S}_n$. Under the assumption, we define the Lie module

$$\operatorname{Lie}(n) := f_n(L^n(E)).$$

- 4 同 6 4 日 6 4 日 6

It is well-known that

$$\dim_K L^n(V) = \frac{1}{n} \sum_{d|n} \mu(d) (\dim_K V)^{n/d}$$

where μ is the Möbius function, and

(日) (同) (三) (三)

э

It is well-known that

$$\dim_K L^n(V) = \frac{1}{n} \sum_{d|n} \mu(d) (\dim_K V)^{n/d}$$

where μ is the Möbius function, and

$$\operatorname{Res}_{\mathfrak{S}_{n-1}}^{\mathfrak{S}_n} \operatorname{Lie}(n) \cong K\mathfrak{S}_{n-1}, \ \dim_K \operatorname{Lie}(n) = (n-1)!.$$

(日) (同) (三) (三)

э

 $\begin{array}{c} \operatorname{Notation} \\ L^n(V) \text{ and } \operatorname{Lie}(n) \\ \textbf{A} \text{ decomposition of the Lie power} \\ \operatorname{Block} \text{ components of the Lie module} \\ \operatorname{The complexity of Lie modules} \end{array}$

A decomposition of the Lie power

Theorem (Bryant and Schocker 2006)

(日)

∃ >

 $\begin{array}{c} {\rm Notation}\\ L^n(V) \mbox{ and } {\rm Lie}(n) \end{array}$ A decomposition of the Lie power Block components of the Lie module The complexity of Lie modules

A decomposition of the Lie power

Theorem (Bryant and Schocker 2006)

Suppose that V is a KG-module. For each positive integer n, there is a submodule $B_n := B_n(V)$ of $L^n(V)$ such that B_n is a direct summand of $V^{\otimes n}$.

• □ ▶ • • □ ▶ • • □ ▶

 $\begin{array}{c} {\rm Notation}\\ L^n(V) \mbox{ and } {\rm Lie}(n) \end{array}$ A decomposition of the Lie power Block components of the Lie module The complexity of Lie modules

A decomposition of the Lie power

Theorem (Bryant and Schocker 2006)

Suppose that V is a KG-module. For each positive integer n, there is a submodule $B_n := B_n(V)$ of $L^n(V)$ such that B_n is a direct summand of $V^{\otimes n}$. Let $p \nmid s$ and $r \ge 0$. Then

$$L^{p^rs}(V) = L^{p^r}(B_s) \oplus L^{p^{r-1}}(B_{ps}) \oplus \dots \oplus L^1(B_{p^rs}).$$

A decomposition of the Lie power

Theorem (Bryant and Schocker 2006)

Suppose that V is a KG-module. For each positive integer n, there is a submodule $B_n := B_n(V)$ of $L^n(V)$ such that B_n is a direct summand of $V^{\otimes n}$. Let $p \nmid s$ and $r \ge 0$. Then

$$L^{p^rs}(V) = L^{p^r}(B_s) \oplus L^{p^{r-1}}(B_{ps}) \oplus \dots \oplus L^1(B_{p^rs}).$$

Applying to the case of $G = \operatorname{GL}_m(K)$ and V = E, we have

A decomposition of the Lie power

Theorem (Bryant and Schocker 2006)

Suppose that V is a KG-module. For each positive integer n, there is a submodule $B_n := B_n(V)$ of $L^n(V)$ such that B_n is a direct summand of $V^{\otimes n}$. Let $p \nmid s$ and $r \ge 0$. Then

$$L^{p^rs}(V) = L^{p^r}(B_s) \oplus L^{p^{r-1}}(B_{ps}) \oplus \dots \oplus L^1(B_{p^rs}).$$

Applying to the case of $G = \operatorname{GL}_m(K)$ and V = E, we have

• a decomposition of the Lie module $\operatorname{Lie}(p^r s)$ (given that $m \ge p^r s$), and

・ロト ・同ト ・ヨト ・ヨト

 $\begin{array}{c} \operatorname{Notation} \\ L^n(V) \text{ and } \operatorname{Lie}(n) \\ \textbf{A} \text{ decomposition of the Lie power} \\ \operatorname{Block} \text{ components of the Lie module} \\ \operatorname{The complexity of Lie modules} \end{array}$

• $f_n B_n$ is a direct summand of $K\mathfrak{S}_n$ (given that $m \ge n$) and hence projective.

< ∃ →

э

• $f_n B_n$ is a direct summand of $K\mathfrak{S}_n$ (given that $m \ge n$) and hence projective.

One would naturally ask for the effect of the Schur functor f_{rs} on the Lie power $L^s(V)$ for a general object V in $M_K(m,r)$, given that $m \ge rs$.

• $f_n B_n$ is a direct summand of $K\mathfrak{S}_n$ (given that $m \ge n$) and hence projective.

One would naturally ask for the effect of the Schur functor f_{rs} on the Lie power $L^s(V)$ for a general object V in $M_K(m,r)$, given that $m \ge rs$.

Theorem (L. and Tan 2012)

(日) (同) (三) (三)

• $f_n B_n$ is a direct summand of $K\mathfrak{S}_n$ (given that $m \ge n$) and hence projective.

One would naturally ask for the effect of the Schur functor f_{rs} on the Lie power $L^s(V)$ for a general object V in $M_K(m,r)$, given that $m \ge rs$.

Theorem (L. and Tan 2012)

Let $r, s \ge 1$ be arbitrary positive integers and V be an object of $M_K(m,r)$ such that $m \ge rs$. Then

$$f_{rs}L^{s}(V) \cong \operatorname{Ind}_{\mathfrak{S}_{r}\wr\mathfrak{S}_{s}}^{\mathfrak{S}_{rs}}((f_{r}V)^{\otimes s} \otimes_{K} \operatorname{Lie}(s))$$

where $\mathfrak{S}_r \wr \mathfrak{S}_s$ acts on $(f_r V)^{\otimes s}$ in the obvious way and $(\mathfrak{S}_r)^s$ acts trivially on $\operatorname{Lie}(s)$.

< ロ > < 同 > < 回 > < 回 >

 $\begin{array}{c} \text{Notation} \\ L^n(V) \text{ and } \text{Lie}(n) \\ \text{A decomposition of the Lie power} \\ \textbf{Block components of the Lie module} \\ \text{The complexity of Lie modules} \end{array}$

Block components of the Lie module

Image: Image:

I ≡ →

 $\begin{array}{c} \text{Notation}\\ L^n(V) \text{ and } \operatorname{Lie}(n)\\ \text{A decomposition of the Lie power}\\ \textbf{Block components of the Lie module}\\ \text{The complexity of Lie modules} \end{array}$

Block components of the Lie module

Let A be a finite-dimensional K-algebra and b_1, \ldots, b_m be the mutually orthogonal primitive central idempotents of A such that $\sum_{i=1}^{m} b_i = 1$ associated to the indecomposable two-sided ideals decomposition

 $A = Ab_1 \oplus \cdots \oplus Ab_m.$

 $\begin{array}{c} \text{Notation} \\ L^n(V) \text{ and } \text{Lie}(n) \\ \text{A decomposition of the Lie power} \\ \textbf{Block components of the Lie module} \\ \text{The complexity of Lie modules} \end{array}$

Block components of the Lie module

Let A be a finite-dimensional K-algebra and b_1, \ldots, b_m be the mutually orthogonal primitive central idempotents of A such that $\sum_{i=1}^{m} b_i = 1$ associated to the indecomposable two-sided ideals decomposition

$$A = Ab_1 \oplus \cdots \oplus Ab_m.$$

Each b_i is called a block of A. In particular, every indecomposable A-module M satisfies $b_i M = M$ for some block b_i and $b_j M = 0$ for any $j \neq i$.

 $\begin{array}{c} \operatorname{Notation} \\ L^n(V) \text{ and } \operatorname{Lie}(n) \\ \operatorname{A} \operatorname{decomposition} \operatorname{of} \operatorname{the} \operatorname{Lie} \operatorname{power} \\ \operatorname{Block} \operatorname{components} \operatorname{of} \operatorname{the} \operatorname{Lie} \operatorname{module} \\ \operatorname{The complexity} \operatorname{of} \operatorname{Lie} \operatorname{modules} \end{array}$

Block components of the Lie module

Let A be a finite-dimensional K-algebra and b_1, \ldots, b_m be the mutually orthogonal primitive central idempotents of A such that $\sum_{i=1}^{m} b_i = 1$ associated to the indecomposable two-sided ideals decomposition

$$A = Ab_1 \oplus \cdots \oplus Ab_m.$$

Each b_i is called a block of A. In particular, every indecomposable A-module M satisfies $b_i M = M$ for some block b_i and $b_j M = 0$ for any $j \neq i$. In this case, we say that M lies in the block b_i .

For any A-module M,

$$M = b_1 M \oplus \dots \oplus b_m M$$

is the decomposition of M into block components where, for each $1 \le i \le m$, every indecomposable summand of $b_i M$ lies in b_i .

For any A-module M,

$$M = b_1 M \oplus \dots \oplus b_m M$$

is the decomposition of M into block components where, for each $1 \le i \le m$, every indecomposable summand of $b_i M$ lies in b_i .

In the case of A = KG, the block containing the trivial KG-module K is called the principal block.

For any A-module M,

$$M = b_1 M \oplus \dots \oplus b_m M$$

is the decomposition of M into block components where, for each $1 \le i \le m$, every indecomposable summand of $b_i M$ lies in b_i .

In the case of A = KG, the block containing the trivial KG-module K is called the principal block.

From now on, we suppose that K has characteristic p>0 and denote it by $k. \label{eq:k}$

 $\begin{array}{c} \text{Notation} \\ L^n(V) \text{ and } \operatorname{Lie}(n) \\ \text{A decomposition of the Lie power} \\ \textbf{Block components of the Lie module} \\ \text{The complexity of Lie modules} \end{array}$

Theorem (Erdmann and Tan 2011)

Kay Jin Lim Lie powers and Lie modules

э

(日)

 $\begin{array}{c} \text{Notation} \\ L^n(V) \text{ and } \text{Lie}(n) \\ \text{A decomposition of the Lie power} \\ \textbf{Block components of the Lie module} \\ \text{The complexity of Lie modules} \end{array}$

Theorem (Erdmann and Tan 2011)

Any non-projective indecomposable summand of Lie(n) lies in the principal block of $k\mathfrak{S}_n$.

Theorem (Bryant and Erdmann 2012)

 $\begin{array}{c} \text{Notation}\\ L^n(V) \text{ and } \operatorname{Lie}(n)\\ \text{A decomposition of the Lie power}\\ \textbf{Block components of the Lie module}\\ \text{The complexity of Lie modules} \end{array}$

Theorem (Erdmann and Tan 2011)

Any non-projective indecomposable summand of Lie(n) lies in the principal block of $k\mathfrak{S}_n$.

Theorem (Bryant and Erdmann 2012)

Let b be a non-principal block of $k\mathfrak{S}_n$.

- ∢ ≣ ▶

< 17 ▶

 $L^n(V) \text{ and } \mathrm{Lie}(n)$ A decomposition of the Lie power Block components of the Lie module The complexity of Lie modules

Theorem (Erdmann and Tan 2011)

Any non-projective indecomposable summand of Lie(n) lies in the principal block of $k\mathfrak{S}_n$.

Theorem (Bryant and Erdmann 2012)

Let b be a non-principal block of $k\mathfrak{S}_n$. Then

$$b\operatorname{Lie}(n) = \bigoplus P(D)^{\oplus m_D}$$

where the sum is over all non-isomorphic simple $k\mathfrak{S}_n$ -modules Dlying in the block b, P(D) is the projective cover of D and m_D is some explicit positive integer.

 $\begin{array}{c} \text{Notation}\\ L^n(V) \text{ and } \operatorname{Lie}(n)\\ \text{A decomposition of the Lie power}\\ \textbf{Block components of the Lie module}\\ \text{The complexity of Lie modules} \end{array}$

Let $\operatorname{Lie}^{\max}(n)$ be the projective part of $\operatorname{Lie}(n)$; namely $\operatorname{Lie}(n) \cong \operatorname{Lie}^{\max}(n) \oplus Q$ where Q has no projective summand.

(日) (同) (三) (三)

 $\begin{array}{c} \text{Notation} \\ L^n(V) \text{ and } \operatorname{Lie}(n) \\ \text{A decomposition of the Lie power} \\ \textbf{Block components of the Lie module} \\ \text{The complexity of Lie modules} \end{array}$

Let $\operatorname{Lie}^{\max}(n)$ be the projective part of $\operatorname{Lie}(n)$; namely $\operatorname{Lie}(n) \cong \operatorname{Lie}^{\max}(n) \oplus Q$ where Q has no projective summand.

Theorem (Bryant, L. and Tan 2010)

Let A be the set of non-p-power positive integers.

• □ ▶ • □ ▶ • □ ▶ • □

 $\begin{array}{c} \text{Notation} \\ L^n(V) \text{ and } \text{Lie}(n) \\ \text{A decomposition of the Lie power} \\ \textbf{Block components of the Lie module} \\ \text{The complexity of Lie modules} \end{array}$

Let $\operatorname{Lie}^{\max}(n)$ be the projective part of $\operatorname{Lie}(n)$; namely $\operatorname{Lie}(n) \cong \operatorname{Lie}^{\max}(n) \oplus Q$ where Q has no projective summand.

Theorem (Bryant, L. and Tan 2010)

Let A be the set of non-p-power positive integers. Then

$$\lim_{n \to \infty} \frac{\dim_k B_n(E)}{\dim_k L^n(E)} = 1,$$

• □ ▶ • □ ▶ • □ ▶ • □

 $\begin{array}{c} \text{Notation}\\ L^n(V) \text{ and } \operatorname{Lie}(n)\\ \text{A decomposition of the Lie power}\\ \textbf{Block components of the Lie module}\\ \text{The complexity of Lie modules} \end{array}$

Let $\operatorname{Lie}^{\max}(n)$ be the projective part of $\operatorname{Lie}(n)$; namely $\operatorname{Lie}(n) \cong \operatorname{Lie}^{\max}(n) \oplus Q$ where Q has no projective summand.

Theorem (Bryant, L. and Tan 2010)

Let A be the set of non-p-power positive integers. Then

$$\lim_{n \to \infty} \frac{\dim_k B_n(E)}{\dim_k L^n(E)} = 1,$$

$$\lim_{n \to \infty} \frac{\dim_k \operatorname{Lie}^{\max}(n)}{\dim_k \operatorname{Lie}(n)} = 1.$$

• □ ▶ • □ ▶ • □ ▶ • □

Let $\operatorname{Lie}^{\max}(n)$ be the projective part of $\operatorname{Lie}(n)$; namely $\operatorname{Lie}(n) \cong \operatorname{Lie}^{\max}(n) \oplus Q$ where Q has no projective summand.

Theorem (Bryant, L. and Tan 2010)

Let A be the set of non-p-power positive integers. Then

$$\lim_{n \to \infty} \frac{\dim_k B_n(E)}{\dim_k L^n(E)} = 1,$$

$$\lim_{n \to \infty} \frac{\dim_k \operatorname{Lie}^{\max}(n)}{\dim_k \operatorname{Lie}(n)} = 1.$$

We would expect the same hold for the p-power case.

< D > < A > < B >

The complexity of Lie modules

Kay Jin Lim Lie powers and Lie modules

Image: Image:

→ Ξ →

э

 $\begin{array}{c} \operatorname{Notation} & \\ L^n(V) \text{ and } \operatorname{Lie}(n) \\ \text{A decomposition of the Lie power} \\ \operatorname{Block} \operatorname{components of the Lie module} \\ & \\ \end{array}$

The complexity of Lie modules

Let M be a kG-module and $\cdots \rightarrow P_1 \rightarrow P_0 \rightarrow M$ be a minimal projective resolution of M.

< ∃ >

< 台

 $\begin{array}{c} \mbox{Notation}\\ L^n(V) \mbox{ and } \mathrm{Lie}(n)\\ \mbox{A decomposition of the Lie power}\\ \mbox{Block components of the Lie module}\\ \mbox{The complexity of Lie modules} \end{array}$

The complexity of Lie modules

Let M be a kG-module and $\cdots \rightarrow P_1 \rightarrow P_0 \rightarrow M$ be a minimal projective resolution of M. The complexity c(M) of M is the smallest non-negative integer c such that

$$\lim_{n \to \infty} \frac{\dim_k P_n}{n^c} = 0.$$

 $\begin{array}{c} {\rm Notation}\\ L^n(V) \mbox{ and } {\rm Lie}(n)\\ {\rm A \ decomposition \ of \ the \ Lie \ power}\\ {\rm Block \ components \ of \ the \ Lie \ module}\\ {\rm The \ complexity \ of \ Lie \ modules} \end{array}$

The complexity of Lie modules

Let M be a kG-module and $\cdots \rightarrow P_1 \rightarrow P_0 \rightarrow M$ be a minimal projective resolution of M. The complexity c(M) of M is the smallest non-negative integer c such that

$$\lim_{n \to \infty} \frac{\dim_k P_n}{n^c} = 0.$$

 $\bullet~M$ is projective if and only if its complexity is zero.

 $\begin{array}{c} {\rm Notation}\\ L^n(V) \mbox{ and } {\rm Lie}(n)\\ {\rm A \ decomposition \ of \ the \ Lie \ power}\\ {\rm Block \ components \ of \ the \ Lie \ module}\\ {\rm The \ complexity \ of \ Lie \ modules} \end{array}$

The complexity of Lie modules

Let M be a kG-module and $\cdots \rightarrow P_1 \rightarrow P_0 \rightarrow M$ be a minimal projective resolution of M. The complexity c(M) of M is the smallest non-negative integer c such that

$$\lim_{n \to \infty} \frac{\dim_k P_n}{n^c} = 0.$$

- $\bullet~M$ is projective if and only if its complexity is zero.
- M is periodic; namely $\Omega^r M \cong \Omega^s M \neq 0$ for some $r \neq s$, if and only if its complexity is one.

 $\begin{array}{c} \operatorname{Notation} \\ L^n(V) \text{ and } \operatorname{Lie}(n) \\ \operatorname{A} \operatorname{decomposition} \operatorname{of} \operatorname{the} \operatorname{Lie} \operatorname{power} \\ \operatorname{Block} \operatorname{components} \operatorname{of} \operatorname{the} \operatorname{Lie} \operatorname{module} \\ \\ \operatorname{The} \operatorname{complexity} \operatorname{of} \operatorname{Lie} \operatorname{modules} \end{array}$

The complexity of Lie modules

Let M be a kG-module and $\cdots \rightarrow P_1 \rightarrow P_0 \rightarrow M$ be a minimal projective resolution of M. The complexity c(M) of M is the smallest non-negative integer c such that

$$\lim_{n \to \infty} \frac{\dim_k P_n}{n^c} = 0.$$

- $\bullet~M$ is projective if and only if its complexity is zero.
- M is periodic; namely $\Omega^r M \cong \Omega^s M \neq 0$ for some $r \neq s$, if and only if its complexity is one.
- The complexity of M is bounded above by the p-rank of G.

Conjecture (Erdmann)

Suppose that $p \nmid s$. The complexity of $\operatorname{Lie}(p^r s)$ is r.

(日) (同) (三) (三)

э

 $\begin{array}{c} \operatorname{Notation} \\ L^n(V) \text{ and } \operatorname{Lie}(n) \\ \operatorname{A} \operatorname{decomposition} \operatorname{of} \operatorname{the} \operatorname{Lie} \operatorname{power} \\ \operatorname{Block} \operatorname{components} \operatorname{of} \operatorname{the} \operatorname{Lie} \operatorname{module} \\ \operatorname{The} \operatorname{complexity} \operatorname{of} \operatorname{Lie} \operatorname{modules} \end{array}$

Conjecture (Erdmann)

Suppose that $p \nmid s$. The complexity of $\operatorname{Lie}(p^r s)$ is r.

Theorem (Erdmann, L. and Tan 2012)

(日)

 $\begin{array}{c} \text{Notation} \\ L^n(V) \text{ and } \text{Lie}(n) \\ \text{A decomposition of the Lie power} \\ \text{Block components of the Lie module} \\ \text{The complexity of Lie modules} \end{array}$

Conjecture (Erdmann)

Suppose that $p \nmid s$. The complexity of $\operatorname{Lie}(p^r s)$ is r.

Theorem (Erdmann, L. and Tan 2012)

Suppose that $p \nmid s$.

• The complexity of $\operatorname{Lie}(p^r s)$ is bounded above by r.

(日)

 $\begin{array}{c} \mbox{Notation}\\ L^n(V) \mbox{ and } \mathrm{Lie}(n)\\ \mbox{A decomposition of the Lie power}\\ \mbox{Block components of the Lie module}\\ \mbox{The complexity of Lie modules} \end{array}$

Conjecture (Erdmann)

Suppose that $p \nmid s$. The complexity of $\operatorname{Lie}(p^r s)$ is r.

Theorem (Erdmann, L. and Tan 2012)

Suppose that $p \nmid s$.

- The complexity of $\operatorname{Lie}(p^r s)$ is bounded above by r.
- If s > 1 then

 $c(\operatorname{Lie}(p^{r}s)) = \max\{c(\operatorname{Lie}(p^{i})) \mid 1 \le i \le r\}.$

(日) (同) (三) (三)

 $\begin{array}{c} \operatorname{Notation} & \\ L^n(V) \text{ and } \operatorname{Lie}(n) \\ \operatorname{A} \operatorname{decomposition} of the Lie power \\ \operatorname{Block} \operatorname{components} of the Lie module \\ \\ \operatorname{The complexity} of Lie modules \end{array}$

In the case of r=0, the Lie power $L^s(E),$ where $p \nmid s,$ is a direct summand of $E^{\otimes s}.$

(日) (同) (三) (三)

э

In the case of r = 0, the Lie power $L^s(E)$, where $p \nmid s$, is a direct summand of $E^{\otimes s}$. Applying the Schur functor f_s , we see that $\operatorname{Lie}(s)$ is a projective $k\mathfrak{S}_s$ -module or equivalently its complexity is zero.

 $\begin{array}{c} \operatorname{Notation} \\ L^n(V) \text{ and } \operatorname{Lie}(n) \\ \operatorname{A} \text{ decomposition of the Lie power} \\ \operatorname{Block} \text{ components of the Lie module} \\ \operatorname{The complexity of Lie modules} \end{array}$

In the case of r = 0, the Lie power $L^s(E)$, where $p \nmid s$, is a direct summand of $E^{\otimes s}$. Applying the Schur functor f_s , we see that $\operatorname{Lie}(s)$ is a projective $k\mathfrak{S}_s$ -module or equivalently its complexity is zero.

In the case of r = 1.

 $\begin{array}{c} \operatorname{Notation} \\ L^n(V) \text{ and } \operatorname{Lie}(n) \\ \operatorname{A} \operatorname{decomposition} \operatorname{of} \operatorname{the} \operatorname{Lie} \operatorname{power} \\ \operatorname{Block} \operatorname{components} \operatorname{of} \operatorname{the} \operatorname{Lie} \operatorname{module} \\ \\ \operatorname{The} \operatorname{complexity} \operatorname{of} \operatorname{Lie} \operatorname{modules} \end{array}$

In the case of r = 0, the Lie power $L^s(E)$, where $p \nmid s$, is a direct summand of $E^{\otimes s}$. Applying the Schur functor f_s , we see that $\operatorname{Lie}(s)$ is a projective $k\mathfrak{S}_s$ -module or equivalently its complexity is zero.

In the case of r = 1. Erdmann and Schocker (2006) showed that $\operatorname{Lie}(p)$ has a unique non-projective indecomposable summand which is isomorphic to the Specht module $S^{(p-1,1)}$.

 $\begin{array}{c} \operatorname{Notation} \\ L^n(V) \text{ and } \operatorname{Lie}(n) \\ \operatorname{A} \operatorname{decomposition} \operatorname{of} \operatorname{the} \operatorname{Lie} \operatorname{power} \\ \operatorname{Block} \operatorname{components} \operatorname{of} \operatorname{the} \operatorname{Lie} \operatorname{module} \\ \\ \operatorname{The} \operatorname{complexity} \operatorname{of} \operatorname{Lie} \operatorname{modules} \end{array}$

In the case of r = 0, the Lie power $L^s(E)$, where $p \nmid s$, is a direct summand of $E^{\otimes s}$. Applying the Schur functor f_s , we see that $\operatorname{Lie}(s)$ is a projective $k\mathfrak{S}_s$ -module or equivalently its complexity is zero.

In the case of r = 1. Erdmann and Schocker (2006) showed that $\operatorname{Lie}(p)$ has a unique non-projective indecomposable summand which is isomorphic to the Specht module $S^{(p-1,1)}$.

It is well-known that $S^{(p-1,1)}$ is not projective (for instance, $\dim_k S^{(p-1,1)} = p-1$) and hence necessarily its complexity is one (the *p*-rank of \mathfrak{S}_p is one).

 $\begin{array}{c} {\rm Notation}\\ L^n(V) \mbox{ and } {\rm Lie}(n)\\ {\rm A \ decomposition \ of \ the \ Lie \ power}\\ {\rm Block \ components \ of \ the \ Lie \ module}\\ {\rm The \ complexity \ of \ Lie \ modules} \end{array}$

In the case of r = 0, the Lie power $L^s(E)$, where $p \nmid s$, is a direct summand of $E^{\otimes s}$. Applying the Schur functor f_s , we see that $\operatorname{Lie}(s)$ is a projective $k\mathfrak{S}_s$ -module or equivalently its complexity is zero.

In the case of r = 1. Erdmann and Schocker (2006) showed that $\operatorname{Lie}(p)$ has a unique non-projective indecomposable summand which is isomorphic to the Specht module $S^{(p-1,1)}$.

It is well-known that $S^{(p-1,1)}$ is not projective (for instance, $\dim_k S^{(p-1,1)} = p-1$) and hence necessarily its complexity is one (the *p*-rank of \mathfrak{S}_p is one). Thus we easily obtain

Corollary

If $p \nmid s$ then the complexity of $\operatorname{Lie}(ps)$ is one.