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Notation

Notation

p is a prime number.

G is a finite group.

°
°
e G,, is the symmetric group acting on the set {1,...,n}.
e K is a field, preferably of infinite order.

°

All modules are ‘left’ and have finite dimensional over the
defining field K.
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L™ (V) and Lie(n)

The Lie power L"(V)
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L™ (V) and Lie(n)

The Lie power L"(V)

Let V be a finite-dimensional vector space over K. The Lie power
L(V) is the free Lie subalgebra of the Lie algebra
T(V) =@, 5, V" generated by V.
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L™ (V) and Lie(n)

The Lie power L"(V)

Let V be a finite-dimensional vector space over K. The Lie power
L(V) is the free Lie subalgebra of the Lie algebra
T(V) =@, 5, V" generated by V. So

LV)=L"(v)

n>0

where L™(V) = L(V) N V®" is the nth Lie power of V.
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L™ (V) and Lie(n)

The Lie power L"(V)

Let V be a finite-dimensional vector space over K. The Lie power
L(V) is the free Lie subalgebra of the Lie algebra
T(V) =@, 5, V" generated by V. So

LV)=L"(v)

n>0
where L™(V) = L(V) N V®" is the nth Lie power of V.

In the case V is a KG-module, V®" is naturally a KG-module via
the diagonal action and L"(V) is a submodule of V®™.
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L™(V) and Lie(n)

Let Mg (m,n) be the full subcategory of GL,,(K)-mod
consisting of polynomial GL,,(K)-modules of degree n.
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L™(V) and Lie(n)

Let Mg (m,n) be the full subcategory of GL,,(K)-mod
consisting of polynomial GL,, (K )-modules of degree n. Given that
m > n, the Schur functor f, is a functor

fn i Mg(m,n) — S,-mod.
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L™(V) and Lie(n)

Let Mg (m,n) be the full subcategory of GL,,(K)-mod
consisting of polynomial GL,, (K )-modules of degree n. Given that
m > n, the Schur functor f, is a functor

fn i Mg(m,n) — S,-mod.

@ The Schur functor is exact.

Kay Jin Lim Lie powers and Lie modules



L™(V) and Lie(n)

Let Mg (m,n) be the full subcategory of GL,,(K)-mod
consisting of polynomial GL,, (K )-modules of degree n. Given that
m > n, the Schur functor f, is a functor

fn i Mg(m,n) — S,-mod.

@ The Schur functor is exact.

@ Suppose that E is the natural GL,,(K)-module and m > n.
Then f,(E®") = K&,
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L™(V) and Lie(n)

Let Mg (m,n) be the full subcategory of GL,,(K)-mod
consisting of polynomial GL,, (K )-modules of degree n. Given that
m > n, the Schur functor f, is a functor

fn i Mg(m,n) — S,-mod.

@ The Schur functor is exact.

@ Suppose that E is the natural GL,,(K)-module and m > n.
Then f,,(E®") = K&,,. Under the assumption, we define the
Lie module

Lie(n) := fn(L"(E)).
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L™(V) and Lie(n)

It is well-known that

1 , "
dimgc L"(V) =~ > p(d)(dimg V)™
dln

where p is the Mobius function, and
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L™(V) and Lie(n)

It is well-known that

1 , "
dimyc L"(V) = ~ > p(d)(dimg V)™
dln

where p is the Mobius function, and

Resg" | Lie(n) 2 K&,_1, dimg Lie(n) = (n — 1)\
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A decomposition of the Lie power

A decomposition of the Lie power

Theorem (Bryant and Schocker 2006)
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A decomposition of the Lie power

A decomposition of the Lie power

Theorem (Bryant and Schocker 2006)

Suppose that V is a KG-module. For each positive integer n,
there is a submodule B,, :== B, (V') of L"(V') such that B,, is a
direct summand of V&™,
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A decomposition of the Lie power

A decomposition of the Lie power

Theorem (Bryant and Schocker 2006)

Suppose that V is a KG-module. For each positive integer n,
there is a submodule B,, :== B, (V') of L"(V') such that B,, is a
direct summand of V™. Let pts and r > 0. Then

7—1

LP5(V) = L (Bs) ® LP" ™ (Bps) ® -+ ® L' (Byprs).
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A decomposition of the Lie power

A decomposition of the Lie power

Theorem (Bryant and Schocker 2006)

Suppose that V is a KG-module. For each positive integer n,
there is a submodule B,, :== B, (V') of L"(V') such that B,, is a
direct summand of V™. Let pts and r > 0. Then

7—1

LP5(V) = L (Bs) ® LP" ™ (Bps) ® -+ ® L' (Byprs).

Applying to the case of G = GL,,,(K) and V = E, we have
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A decomposition of the Lie power

A decomposition of the Lie power

Theorem (Bryant and Schocker 2006)

Suppose that V is a KG-module. For each positive integer n,
there is a submodule B,, :== B, (V') of L"(V') such that B,, is a
direct summand of V™. Let pts and r > 0. Then

T T r—1
LPe(V) =17 (Bs) @ LP  (Bps) -+ ® Ll(BpTS)-

Applying to the case of G = GL,,,(K) and V = E, we have

@ a decomposition of the Lie module Lie(p"s) (given that
m > p"s), and
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A decomposition of the Lie power

e f,B, is a direct summand of K&,, (given that m > n) and
hence projective.
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A decomposition of the Lie power

e f,B, is a direct summand of K&,, (given that m > n) and
hence projective.

One would naturally ask for the effect of the Schur functor f,.s on
the Lie power L*(V') for a general object V' in Mg (m,r), given
that m > rs.
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A decomposition of the Lie power

e f,B, is a direct summand of K&,, (given that m > n) and
hence projective.

One would naturally ask for the effect of the Schur functor f,.s on
the Lie power L*(V') for a general object V' in Mg (m,r), given
that m > rs.

Theorem (L. and Tan 2012)
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A decomposition of the Lie power

e f,B, is a direct summand of K&,, (given that m > n) and
hence projective.

One would naturally ask for the effect of the Schur functor f,.s on
the Lie power L*(V') for a general object V' in Mg (m,r), given
that m > rs.

Theorem (L. and Tan 2012)

Let r,s > 1 be arbitrary positive integers and V' be an object of
Mg (m,r) such that m > rs. Then

frsL*(V) 2 Indgse (V) @k Lie(s))

where &, 1 & acts on (f,.V)®* in the obvious way and (&,)% acts
trivially on Lie(s).
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Block components of the Lie module

Block components of the Lie module
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Block components of the Lie module

Block components of the Lie module

Let A be a finite-dimensional K-algebra and by,...,b,, be the
mutually orthogonal primitive central idempotents of A such that
> i, b; = 1 associated to the indecomposable two-sided ideals

decomposition
A=A @ - D Aby,.
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Block components of the Lie module

Block components of the Lie module

Let A be a finite-dimensional K-algebra and by,...,b,, be the
mutually orthogonal primitive central idempotents of A such that
> i, b; = 1 associated to the indecomposable two-sided ideals

decomposition
A=A @ - D Aby,.

Each b; is called a block of A. In particular, every indecomposable
A-module M satisfies b;M = M for some block b; and b;M =0

for any j # 4.
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Block components of the Lie module

Block components of the Lie module

Let A be a finite-dimensional K-algebra and by,...,b,, be the
mutually orthogonal primitive central idempotents of A such that
> i, b; = 1 associated to the indecomposable two-sided ideals

decomposition
A=A @ - D Aby,.

Each b; is called a block of A. In particular, every indecomposable
A-module M satisfies b;M = M for some block b; and b;M =0
for any j # i. In this case, we say that M lies in the block b;.
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Block components of the Lie module

For any A-module M,
M=bM®&- - ®b,M

is the decomposition of M into block components where, for each
1 <4 < m, every indecomposable summand of b; M lies in b;.
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Block components of the Lie module

For any A-module M,
M=bM®&- - ®b,M

is the decomposition of M into block components where, for each
1 <4 < m, every indecomposable summand of b; M lies in b;.

In the case of A = K@, the block containing the trivial
K G-module K is called the principal block.
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Block components of the Lie module

For any A-module M,
M=bM®&- - ®b,M

is the decomposition of M into block components where, for each
1 <4 < m, every indecomposable summand of b; M lies in b;.

In the case of A = K@, the block containing the trivial
K G-module K is called the principal block.

From now on, we suppose that K has characteristic p > 0 and
denote it by k.
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Block components of the Lie module

ann and Tan 2011)
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Block components of the Lie module

Theorem (Erdmann and Tan 2011)

Any non-projective indecomposable summand of Lie(n) lies in the
principal block of kG,,.

Theorem (Bryant and Erdmann 2012)
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Block components of the Lie module

Theorem (Erdmann and Tan 2011)

Any non-projective indecomposable summand of Lie(n) lies in the
principal block of kG,,.

Theorem (Bryant and Erdmann 2012)
Let b be a non-principal block of kG,,.
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Block components of the Lie module

Theorem (Erdmann and Tan 2011)

Any non-projective indecomposable summand of Lie(n) lies in the
principal block of kG,,.

Theorem (Bryant and Erdmann 2012)
Let b be a non-principal block of k&,,. Then

bLie(n) = @ P(D)*™>
where the sum is over all non-isomorphic simple k&,,-modules D

lying in the block b, P(D) is the projective cover of D and mp is
some explicit positive integer.
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Block components of the Lie module

Let Lie™**(n) be the projective part of Lie(n); namely
Lie(n) = Lie™*(n) @ @ where @ has no projective summand.
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Block components of the Lie module

Let Lie™**(n) be the projective part of Lie(n); namely
Lie(n) = Lie™®(n) @ @ where @ has no projective summand.

Theorem (Bryant, L. and Tan 2010)

Let A be the set of non-p-power positive integers.
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Block components of the Lie module

Let Lie™**(n) be the projective part of Lie(n); namely
Lie(n) = Lie™®(n) @ @ where @ has no projective summand.

Theorem (Bryant, L. and Tan 2010)

Let A be the set of non-p-power positive integers. Then

i dimy Bo(E)

W) q
n—roo dimy, L"(E) ’

Kay Jin Lim Lie powers and Lie modules



Block components of the Lie module

Let Lie™**(n) be the projective part of Lie(n); namely
Lie(n) = Lie™®(n) @ @ where @ has no projective summand.

Theorem (Bryant, L. and Tan 2010)
Let A be the set of non-p-power positive integers. Then
imy, B, (E
lim 3k Bn(E) Z( )1,
n—roo dimy, L"(E)
dimy, Lie™*(n)

im
n—roo dimy Lie(n)
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Block components of the Lie module

Let Lie™**(n) be the projective part of Lie(n); namely
Lie(n) = Lie™®(n) @ @ where @ has no projective summand.

Theorem (Bryant, L. and Tan 2010)

Let A be the set of non-p-power positive integers. Then

i dimy Bo(E)

W) q
n—roo dimy, L"(E) ’

dimy, Lie™**(n)

im
n—roo dimy Lie(n)

We would expect the same hold for the p-power case.
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The complexity of Lie modules

The complexity of Lie modules
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The complexity of Lie modules

The complexity of Lie modules

Let M be a kG-module and -+ — P; — Py — M be a minimal
projective resolution of M.
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The complexity of Lie modules

The complexity of Lie modules

Let M be a kG-module and -+ — P; — Py — M be a minimal
projective resolution of M. The complexity ¢(M) of M is the
smallest non-negative integer ¢ such that

lim ——— =

n—o0 nc

0.
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The complexity of Lie modules

The complexity of Lie modules

Let M be a kG-module and -+ — P; — Py — M be a minimal
projective resolution of M. The complexity ¢(M) of M is the
smallest non-negative integer ¢ such that

lim ——— =

n—00 nc

0.

@ M is projective if and only if its complexity is zero.
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The complexity of Lie modules

The complexity of Lie modules

Let M be a kG-module and -+ — P; — Py — M be a minimal
projective resolution of M. The complexity ¢(M) of M is the
smallest non-negative integer ¢ such that

lim ——— =

n—o0 nc

0.

@ M is projective if and only if its complexity is zero.
@ M is periodic; namely Q"M = Q°M # 0 for some r # s, if
and only if its complexity is one.
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The complexity of Lie modules

The complexity of Lie modules

Let M be a kG-module and -+ — P; — Py — M be a minimal
projective resolution of M. The complexity ¢(M) of M is the
smallest non-negative integer ¢ such that

lim ——— =

n—o0 nc

0.

@ M is projective if and only if its complexity is zero.
@ M is periodic; namely Q"M = Q°M # 0 for some r # s, if
and only if its complexity is one.

@ The complexity of M is bounded above by the p-rank of G.
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The complexity of Lie modules

Conjecture (Erdmann)

Suppose that pts. The complexity of Lie(p”s) is r.
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The complexity of Lie modules

Conjecture (Erdmann)

Suppose that pts. The complexity of Lie(p”s) is r.

Theorem (Erdmann, L. and Tan 2012)
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The complexity of Lie modules

Conjecture (Erdmann)

Suppose that pts. The complexity of Lie(p”s) is r.

Theorem (Erdmann, L. and Tan 2012)

Suppose that pt s.

@ The complexity of Lie(p"s) is bounded above by r.
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The complexity of Lie modules

Conjecture (Erdmann)

Suppose that pts. The complexity of Lie(p”s) is r.

Theorem (Erdmann, L. and Tan 2012)

Suppose that pt s.

@ The complexity of Lie(p"s) is bounded above by r.
@ Ifs>1 then

c(Lie(p"s)) = max{c(Lie(p®)) |1 < i < r}.
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The complexity of Lie modules

In the case of r = 0, the Lie power L*(E), where pt s, is a direct
summand of E®%,
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The complexity of Lie modules

In the case of r = 0, the Lie power L*(E), where pt s, is a direct
summand of E®%. Applying the Schur functor f,, we see that
Lie(s) is a projective kS¢-module or equivalently its complexity is
zero.
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The complexity of Lie modules

In the case of r = 0, the Lie power L*(E), where pt s, is a direct
summand of E®%. Applying the Schur functor f,, we see that
Lie(s) is a projective kS¢-module or equivalently its complexity is

Zero.

In the case of r = 1.
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The complexity of Lie modules

In the case of r = 0, the Lie power L*(E), where pt s, is a direct
summand of E®%. Applying the Schur functor f,, we see that
Lie(s) is a projective kS¢-module or equivalently its complexity is
zero.

In the case of r = 1. Erdmann and Schocker (2006) showed that
Lie(p) has a unique non-projective indecomposable summand
which is isomorphic to the Specht module S®—11).
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The complexity of Lie modules

In the case of r = 0, the Lie power L*(E), where pt s, is a direct
summand of E®%. Applying the Schur functor f,, we see that
Lie(s) is a projective kS¢-module or equivalently its complexity is
zero.

In the case of r = 1. Erdmann and Schocker (2006) showed that
Lie(p) has a unique non-projective indecomposable summand
which is isomorphic to the Specht module S®—11).

It is well-known that S®~11) is not projective (for instance,
dimy, S?®=11) = p — 1) and hence necessarily its complexity is one
(the p-rank of &, is one).
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The complexity of Lie modules

In the case of r = 0, the Lie power L*(E), where pt s, is a direct
summand of E®%. Applying the Schur functor f,, we see that
Lie(s) is a projective kS¢-module or equivalently its complexity is
zero.

In the case of r = 1. Erdmann and Schocker (2006) showed that
Lie(p) has a unique non-projective indecomposable summand
which is isomorphic to the Specht module S®—11).

It is well-known that S®~11) is not projective (for instance,
dimy, S?®=11) = p — 1) and hence necessarily its complexity is one
(the p-rank of &, is one). Thus we easily obtain

Corollary

If pt s then the complexity of Lie(ps) is one.
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