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Notation

p is a prime number.

G is a finite group.

Sn is the symmetric group acting on the set {1, . . . , n}.
K is a field, preferably of infinite order.

All modules are ‘left’ and have finite dimensional over the
defining field K.
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The Lie power Ln(V )

Let V be a finite-dimensional vector space over K. The Lie power
L(V ) is the free Lie subalgebra of the Lie algebra
T (V ) =

⊕
n≥0 V

⊗n generated by V . So

L(V ) =
⊕
n≥0

Ln(V )

where Ln(V ) = L(V ) ∩ V ⊗n is the nth Lie power of V .

In the case V is a KG-module, V ⊗n is naturally a KG-module via
the diagonal action and Ln(V ) is a submodule of V ⊗n.
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Let MK(m,n) be the full subcategory of GLm(K)-mod
consisting of polynomial GLm(K)-modules of degree n.

Given that
m ≥ n, the Schur functor fn is a functor

fn : MK(m,n)→ Sn-mod.

The Schur functor is exact.

Suppose that E is the natural GLm(K)-module and m ≥ n.
Then fn(E⊗n) = KSn. Under the assumption, we define the
Lie module

Lie(n) := fn(Ln(E)).
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It is well-known that

dimK Ln(V ) =
1

n

∑
d|n

µ(d)(dimK V )n/d

where µ is the Möbius function, and

ResSn
Sn−1

Lie(n) ∼= KSn−1, dimK Lie(n) = (n− 1)!.
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A decomposition of the Lie power

Theorem (Bryant and Schocker 2006)

Suppose that V is a KG-module. For each positive integer n,
there is a submodule Bn := Bn(V ) of Ln(V ) such that Bn is a
direct summand of V ⊗n. Let p - s and r ≥ 0. Then

Lprs(V ) = Lpr(Bs)⊕ Lpr−1
(Bps)⊕ · · · ⊕ L1(Bprs).

Applying to the case of G = GLm(K) and V = E, we have

a decomposition of the Lie module Lie(prs) (given that
m ≥ prs), and
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fnBn is a direct summand of KSn (given that m ≥ n) and
hence projective.

One would naturally ask for the effect of the Schur functor frs on
the Lie power Ls(V ) for a general object V in MK(m, r), given
that m ≥ rs.

Theorem (L. and Tan 2012)

Let r, s ≥ 1 be arbitrary positive integers and V be an object of
MK(m, r) such that m ≥ rs. Then

frsL
s(V ) ∼= IndSrs

SroSs
((frV )⊗s ⊗K Lie(s))

where Sr oSs acts on (frV )⊗s in the obvious way and (Sr)
s acts

trivially on Lie(s).
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Block components of the Lie module

Let A be a finite-dimensional K-algebra and b1, . . . , bm be the
mutually orthogonal primitive central idempotents of A such that∑m

i=1 bi = 1 associated to the indecomposable two-sided ideals
decomposition

A = Ab1 ⊕ · · · ⊕Abm.

Each bi is called a block of A. In particular, every indecomposable
A-module M satisfies biM = M for some block bi and bjM = 0
for any j 6= i. In this case, we say that M lies in the block bi.
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For any A-module M ,

M = b1M ⊕ · · · ⊕ bmM

is the decomposition of M into block components where, for each
1 ≤ i ≤ m, every indecomposable summand of biM lies in bi.

In the case of A = KG, the block containing the trivial
KG-module K is called the principal block.

From now on, we suppose that K has characteristic p > 0 and
denote it by k.
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Theorem (Erdmann and Tan 2011)

Any non-projective indecomposable summand of Lie(n) lies in the
principal block of kSn.

Theorem (Bryant and Erdmann 2012)

Let b be a non-principal block of kSn. Then

bLie(n) =
⊕

P (D)⊕mD

where the sum is over all non-isomorphic simple kSn-modules D
lying in the block b, P (D) is the projective cover of D and mD is
some explicit positive integer.
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Let Liemax(n) be the projective part of Lie(n); namely
Lie(n) ∼= Liemax(n)⊕Q where Q has no projective summand.

Theorem (Bryant, L. and Tan 2010)

Let A be the set of non-p-power positive integers. Then

lim
n−→

A
∞

dimk Bn(E)

dimk Ln(E)
= 1,

lim
n−→

A
∞

dimk Liemax(n)

dimk Lie(n)
= 1.

We would expect the same hold for the p-power case.
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The complexity of Lie modules

Let M be a kG-module and · · · → P1 → P0 →M be a minimal
projective resolution of M . The complexity c(M) of M is the
smallest non-negative integer c such that

lim
n→∞

dimk Pn

nc
= 0.

M is projective if and only if its complexity is zero.

M is periodic; namely ΩrM ∼= ΩsM 6= 0 for some r 6= s, if
and only if its complexity is one.

The complexity of M is bounded above by the p-rank of G.
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Conjecture (Erdmann)

Suppose that p - s. The complexity of Lie(prs) is r.

Theorem (Erdmann, L. and Tan 2012)

Suppose that p - s.
The complexity of Lie(prs) is bounded above by r.

If s > 1 then

c(Lie(prs)) = max{c(Lie(pi)) | 1 ≤ i ≤ r}.
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The complexity of Lie modules

In the case of r = 0, the Lie power Ls(E), where p - s, is a direct
summand of E⊗s.

Applying the Schur functor fs, we see that
Lie(s) is a projective kSs-module or equivalently its complexity is
zero.

In the case of r = 1. Erdmann and Schocker (2006) showed that
Lie(p) has a unique non-projective indecomposable summand
which is isomorphic to the Specht module S(p−1,1).

It is well-known that S(p−1,1) is not projective (for instance,
dimk S

(p−1,1) = p− 1) and hence necessarily its complexity is one
(the p-rank of Sp is one). Thus we easily obtain

Corollary

If p - s then the complexity of Lie(ps) is one.
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