REALIZING CLUSTER CATEGORIES OF DYNKIN TYPE A_n AS STABLE CATEGORIES OF LATTICES

XUEYU LUO

ABSTRACT. Cluster tilting objects of the cluster category \mathcal{C} of Dynkin type A_{n-3} are known to be indexed by triangulations of a regular polygon P with n vertices. Given a triangulation of P, we associate a quiver with potential with frozen vertices such that the associated Jacobian algebra has the structure of a K[x]-order denoted as Λ_n , where K[x] is a formal power series ring over a field K. Then we show that \mathcal{C} is equivalent to the stable category of the category of Λ_n -lattices.

Let $n \geq 3$, K be a field and C be a cluster category of type A_{n-3} .

1. Order

Definition 1.1. Let R = K[x] and Λ be an *R*-algebra. Then Λ is called an *R*-order if it is a finitely generated free *R*-module.

For an *R*-order Λ , a left Λ -module *L* is called a Λ -*lattice* if it is finitely generated as an *R*-module. We denote by CM(Λ) the category of Λ -lattices.

The order we use to study cluster categories of type A_{n-3} is Λ_n :

$$\Lambda_n = \begin{bmatrix} R & R & R & \cdots & R & x^{-1} \\ x & R & R & \cdots & R & R \\ x^2 & x & R & \cdots & R & R \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x^2 & x^2 & x^2 & \cdots & R & R \\ x^2 & x^2 & x^2 & \cdots & x & R \end{bmatrix}_{n \times n}$$

As $CM(\Lambda_n)$ has Auslander-Reiten sequences, we can draw the Auslander-Reiten quiver of Λ_n .

When n is an even number, the Auslander-Reiten quiver of Λ_n is the following:

where

$$\begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} = \begin{bmatrix} R \\ \vdots \\ R \\ \vdots \\ \vdots \\ x^2 \\ \vdots \\ x^2 \end{bmatrix},$$

R appearing m_1 times, x appearing m_2 times, x^2 appearing m_3 times.

This is a Mobius strip, both the first and last row of which consist of $\frac{n}{2}$ projective-injective Λ_n -lattices, with $n-3 \tau$ -orbits between them.

When n is an odd number, the Auslander-Reiten quiver of Λ_n is similar.

2. Jacobian Algebra

Let us fix a non-negative integer $n \geq 3$ and a triangulation \triangle of a regular polygon with n vertices (*n*-gon for short).

Quivers of triangulations are defined in [2] before. And QPs arising from triangulations are defined in [3] and [4]. Extending their definition, we have the following definition which is slightly different.

 $\mathbf{2}$

Definition 2.1. The (colored) quiver Q_{\triangle} of the triangulation \triangle is a quiver the vertices of which are indexed by all (internal and external) edges of the triangulation. And whenever two edges a and b share a joint vertex, then Q_{\triangle} contains a red arrow $a \rightarrow b$ if a is a predecessor of b with respect to clockwise orientation inside a triangle at the joint vertex of a and b. Moreover, for every vertex of the polygon with at least one internal incident edge in the triangulation, there is a blue arrow $a \rightarrow b$ where a and b are its two incident external edges, a being a predecessor of b with respect to clockwise orientation.

In the following we shall denote $Q = Q_{\triangle}$. We also symbolize a path from *i* to *j* of length $l \ge 0$ by $i \longrightarrow j$. A red path is a path containing only red arrows. A cycle in *Q* is called a *cyclic triangle* if it contains only three red arrows, and a minimal cycle in *Q* is called a *big cycle* if it contains red arrows and exactly one blue arrow.

Definition 2.2. We define the set of frozen vertices F of Q as the subset of Q_0 consisting of the n external edges of the n-gon, and the potential

$$W = \sum cyclic \ triangles - \sum big \ cycles.$$

According to [1], the associated Jacobian algebra is defined by

$$\mathcal{P}(Q, W, F) = \widehat{K}\widehat{Q}/\mathcal{J}(W, F),$$

where $\mathcal{J}(W, F)$ is the closure

$$\mathcal{J}(W,F) = \overline{\langle \partial_a W \mid a \in Q_1, \ s(a) \notin F \ \text{or} \ e(a) \notin F \rangle}$$

with respect to the $\mathcal{J}_{\widehat{KQ}}$ -adic topology. Notice that cyclic derivatives associated with arrows between frozen vertices are excluded.

Example 2.3. We illustrate the construction of Q_{Δ} and W when Δ is a triangulation of a square:

In this case W = abc + def - beg - dch, $F = \{1, 2, 3, 4\}$ and $\mathcal{J}(W, F) = \overline{\langle ca - eg, ab - hd, fd - gb, ef - ch \rangle}.$

Remark 2.4. All relations in $\mathcal{P}(Q, W, F)$ are commutative relations.

Now we are ready to study the basis of the Jacobian algebra.

3. C-free path

Let $i \in Q_0$. We consider all minimal cycles C_i^1, \ldots, C_i^k passing through *i*. It is easy to check that in general there are only three possibilities:

1. If i is one of the diagonals of the triangulation, the only possibility is the following:

 $C_i := C_i^1 = C_i^2 = C_i^3 = C_i^4 \text{ holds in } \mathcal{P}(Q, W, F).$

2. If i is an external edge with four adjacent edges,

 $C_i := C_i^1 = C_i^2 = C_i^3$ holds in $\mathcal{P}(Q, W, F)$. 3. If *i* is an external edge with three adjacent edges,

It is already known that \widehat{KQ} has a basis P_Q which is the set of all paths on Q (each time we speak about a basis in this text, we refer to a basis which generate a dense subspace, sometimes called countable

4

basis). We say that two paths w_1 and w_2 are equivalent $(w_1 \sim w_2)$ if $w_1 = w_2$ in $\mathcal{P}(Q, W, F)$. This gives an equivalence relation on P_Q .

Consider the element $C := \sum_{i \in Q_0} C_i$ in the associated Jacobian algebra $\mathcal{P}(Q, W, F)$, then C is in the center of $\mathcal{P}(Q, W, F)$. It turns out that the associated Jacobian algebra $\mathcal{P}(Q, W, F)$ is an R-algebra through $x \mapsto C$. In fact it is an R-order whose set of generators consists of C-free paths we define as follows.

Definition 3.1. For any vertices $i, j \in Q_0$, a path $w : i \longrightarrow j$ is called *C*-free if it is not left divisible (or equivalently right divisible) by *C*.

Considering all the C-free paths, we have the following proposition.

Proposition 3.2. For any vertices $i, j \in Q_0$,

- (1) there exists a unique C-free path w_0 from i to j up to \sim .
- (2) $\{w_0, w_0C, w_0C^2, w_0C^3, \cdots\}$ is a (countable) basis of $e_i \mathcal{P}(Q, W, F)e_j$.

Definition 3.3. We define the modified length of a red arrow from i to j as t $(1 \le t \le n-2)$ if the angle between the two edges i and j of the triangle in the triangulation of the regular polygon is $t\frac{1}{n}\pi$. The modified length of a blue arrow is always 2.

We denote the modified length of a path w as $l^m(w)$. This modified length induces a degree on \widehat{kQ} which will also be denoted by l^m .

Remark 3.4. We get the following easy facts from the definition of l^m :

- (1) the potential W is homogeneous of degree n for l^m . Thus, l^m induces the structure of a complete graded algebra on $\mathcal{P}(Q, W, F)$;
- (2) $l^m(C) = n;$
- (3) let i, j be any two vertices in Q_0 . The unique C-free element of $\mathcal{P}(Q, W, F)$ has minimal modified length.

4. Main Result

Theorem 4.1. The cluster category $C_{A_{n-3}}$ is equivalent to the stable category of the category of Λ_n -lattices.

Theorem 4.2. The Jacobian algebra $\mathcal{P}(Q, W, F)$ arising from a triangulation of the n-gon is an R-order which can be explicitly calculated by using the modified length. Moreover $e_F \mathcal{P}(Q, W, F) e_F \cong \Lambda_n$ where e_F is the sum of the idempotents at frozen vertices.

Example 4.3. The Jacobian algebra associated with the following triangulation of the pentagon:

X. LUO

is isomorphic to the following R-order:

$$\mathcal{P}(Q, W, F) \cong \begin{bmatrix} R & R & R & R & x^{-1} & R & R \\ x & R & R & R & R & R & R \\ x^2 & x & R & R & R & x & x \\ x^2 & x^2 & x & R & R & x & x \\ x^2 & x^2 & x^2 & x & R & R & x & x \\ x & x & R & R & R & R & R & R \\ x & x & x & R & R & R & x & R \end{bmatrix}$$

It is clear that $e_F \mathcal{P}(Q, W, F) e_F = \Lambda_5$ holds in this case. The Auslander-Reiten quiver of Λ_5 is the following:

As a Λ_5 -module, $\mathcal{P}(Q, W, F)$ is isomorphic to

$\begin{bmatrix} R \\ x \\ x^2 \\ x^2 \\ x^2 \end{bmatrix} \oplus \begin{bmatrix} R \\ R \\ x \\ x^2 \\ x^2 \end{bmatrix}$	$ \bigoplus \begin{bmatrix} R \\ R \\ R \\ x \\ x^2 \end{bmatrix} \in $	$ \begin{array}{c} $	$\begin{bmatrix} R \\ x \\ x \\ x \\ x \end{bmatrix} \oplus$	$\begin{bmatrix} R \\ x \\ x \\ x \\ x \\ x \end{bmatrix} \oplus$	$\begin{bmatrix} R \\ x \\ x \\ x \\ x^2 \end{bmatrix}$
--	---	--	--	---	---

which is cluster tilting. As expected, its summands correspond bijectively to the (internal and external) edges of the triangulation, or equivalently to the vertices of the corresponding quiver.

Then $\underline{CM}(\Lambda_5) \cong \mathcal{C}_{A_2}$ with a cluster tilting object

$$\begin{bmatrix} R \\ x \\ x \\ x \\ x \end{bmatrix} \oplus \begin{bmatrix} R \\ x \\ x \\ x \\ x^2 \end{bmatrix}.$$

References

- A. B. Buan, O. Iyama, I. Reiten, and D. Smith. Mutation of cluster-tilting objects and potentials. *Amer. J. Math.*, 133(4):835–887, 2011.
- [2] P. Caldero, F. Chapoton, and R. Schiffler. Quivers with relations arising from clusters (A_n case). Trans. Amer. Math. Soc., 358(3):1347–1364, 2006.
- [3] Sergey Fomin, Michael Shapiro, and Dylan Thurston. Cluster algebras and triangulated surfaces. I. Cluster complexes. Acta Math., 201(1):83–146, 2008.
- [4] Daniel Labardini-Fragoso. Quivers with potentials associated to triangulated surfaces. Proc. Lond. Math. Soc. (3), 98(3):797-839, 2009.