On the category of modules with Δ -filtration

Dag Oskar Madsen

August 14, 2012

This is work in progress together with Vanessa Miemietz, *University of East Anglia*.

References

- W. L. Burt, *Almost split sequences and BOCSES*, manuscript, August 2005.
- B. Keller, *A-infinity algebras in representation theory*, Representations of algebra. Vol. I, II, 74–86, Beijing Norm. Univ. Press, Beijing, 2002.
- S. Ovsienko, Exact Borel subalgebras, Ringel duality and generalizations of quasi-hereditary algebras, 36irnyk prats' Instytutu matematyky NAN Ukraïny 2005, t.2, No. 3, 108-122.

Standard modules

k field

B finite dimensional k-algebra

Order the simple B-modules S_1, \ldots, S_r

Definition

For each $0 \le i \le r$, define the **standard module** Δ_i to be the largest quotient of the projective module P_i having no simple composition factors S_i with j > i.

$$\Delta = \bigoplus_{i=1}^r \Delta_i$$

The standard modules depend on the chosen ordering of the simple modules.

Example

 $B = \mathbb{k}Q/I$ is given by

$$Q: 1 \stackrel{\alpha}{\underset{\delta}{\longrightarrow}} 2 \stackrel{\beta}{\underset{\gamma}{\longrightarrow}} 3, \qquad I = (\beta \alpha, \beta \gamma, \delta \gamma, \alpha \delta - \gamma \beta)$$

The projective modules are:

The standard modules are:

$$\Delta_1$$
: S_1 Δ_2 : S_2 Δ_3 : S_3 S_1 S_2

Quasi-hereditary algebras

Definition

We say that B is a quasi-hereditary algebra if

(i) B admits a Δ -filtration, i.e., there is a filtration

$$0=M_0\subseteq M_1\subseteq\ldots\subseteq M_t=B$$

where the subfactors M_j/M_{j-1} are standard modules for all and 1 < j < t.

and

(ii) $\operatorname{End}_B(\Delta_i)$ is a division ring for all $1 \leq i \leq r$.

Quasi-hereditary algebras have finite global dimension. If Λ is quasi-hereditary, then

$$\operatorname{\mathsf{Ext}}^1_B(\Delta_i,\Delta_j)=0$$

whenever $i \geq j$.

The algebra in the previous example was quasi-hereditary.

The question whether an algebra is quasi-hereditary or not might depend on the chosen ordering of simple modules.

Hereditary algebras are quasi-hereditary, independent of the ordering of the simple modules. (why?)

The category $\mathcal{F}(\Delta)$

Suppose B is a quasi-hereditary algebra.

Let $\mathcal{F}(\Delta)$ denote the category of B-modules which admit a Δ -filtration.

 $\mathcal{F}(\Delta)$ contains the projective *B*-modules, is closed under direct summands, extensions and kernels of epimorphisms.

 $\mathcal{F}(\Delta)$ has AR-sequences.

 $\mathcal{F}(\Delta)$ is usually not abelian. (In some sense, there are too many morphisms.)

Two natural questions

- 1. What is the representation type of $\mathcal{F}(\Delta)$? If finite, find all the indecomposables.
- 2. How to find the AR-sequences in $\mathcal{F}(\Delta)$?

Burt and Ovsienko

Theorem (Burt, Ovsienko)

There is a finite dimensional algebra A and an exact functor $F \colon \operatorname{mod} A \to \operatorname{mod} B$ sending simple A-modules to standard B-modules in such a way that $F \colon \operatorname{mod} A \to \mathcal{F}(\Delta)$ is dense and faithful. The functor F sends projective modules to projective modules and injective modules to direct sums of tilting modules.

There is an algebra R, Morita equivalent to B, such that $A \hookrightarrow R$.

$$\operatorname{mod} A \xrightarrow{R \otimes_A -} \operatorname{mod} R \xrightarrow{Q \otimes_R -} \operatorname{mod} B$$

So
$$F = Q \otimes_A - : \operatorname{\mathsf{mod}} A o \mathcal{F}(\Delta)$$

How to find A and F? Burt and Ovsienko use bocses. (R stands for right algebra.)

A and F via twisted stalks

Keller: $\mathcal{F}(\Delta)$ is equivalent to the category of *twisted stalks* $\mathcal{E} = \mathcal{E}(\Delta)$.

The arrows of the quiver of A are given by $\operatorname{Ext}_B^1(\Delta, \Delta)$.

The relations are given by the A_{∞} -structure maps

$$m_n \colon \operatorname{\mathsf{Ext}}^1_B(\Delta, \Delta)^{\otimes n} \to \operatorname{\mathsf{Ext}}^2_B(\Delta, \Delta)$$

Twisted stalks are modules over A with some extra morphisms.

There is an inclusion

$$A \cong [\operatorname{End}_A(A)]^{\operatorname{op}} \hookrightarrow [\operatorname{End}_{\mathcal{E}}(A)]^{\operatorname{op}} \cong R$$

We also have $R \cong [\operatorname{End}_B(F(A))]^{\operatorname{op}}$

Example (cont.)

In the example the quiver of A is given by

$$Q' \colon 1 \xrightarrow{\alpha'} 2 \xrightarrow{\beta'} 3$$

The algebra B is Koszul with respect to Δ (see my paper "Quasi-hereditary algebras and generalized Koszul duality"), so the higher multiplications in the Ext algebra vanish. The product of the two arrows are non-zero, so for A we get a zero relation.

$$A = \mathbb{k}Q'/I', \quad I = (\beta'\alpha')$$

Example (cont.)

AR-quiver for mod A:

Example (cont.)

Apply F:

There are 6 indecomposables in $\mathcal{F}(\Delta)$.

 $R \cong [\operatorname{End}_B(P_1 \oplus P_2 \oplus P_3 \oplus P_3)]^{\operatorname{op}}$.

AR-sequences

Theorem (Burt)

Let

$$e: 0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$$

be an AR-sequence in mod A and assume there is an indecomposable summand in F(Z) such that $F(Y) \to F(Z)$ followed by a projection to that summand is not a split epimorphism. Then there is a direct summand of the extension

$$F(e): 0 \to F(X) \to F(Y) \to F(Z) \to 0$$

which is an AR-sequence in $\mathcal{F}(\Delta)$.

Burt also has cleaner statements starting with an AR-sequence in mod B.

