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Preliminaries

A – artin algebra (over a fixed commutative artin ring R)

mod A – category of finite generated right A-modules

mod A ⊇ ind A – full subcategory of indecomposable modules

radA – Jacobson radical of mod A (generated by irreducible
homomorphisms between modules in ind A)

rad∞A – intersection of all powers radi
A, i ≥ 1, of radA

ΓA – Auslander-Reiten quiver of A

C – family of connected components of ΓA

C is sincere if every simple module in mod A occurs as a composition
factor of a module in C

C is generalized standard if rad∞A (X ,Y ) = 0 for all modules X and
Y in C
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Preliminaries

A family C = (Ci )i∈I of components in ΓA is said to be separating (in
mod A) if the components in ΓA split into three disjoint classes PA,
C A = C and QA such that:

1 C A is sincere and generalized standard;

2 HomA(QA,PA) = 0, HomA(QA,C A) = 0, HomA(C A,PA) = 0;

3 any morphism from PA to QA in mod A factors through add(C A).

Then PA and QA are uniquely determined by C A.
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Preliminaries
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(We allow PA or QA to be empty)

If C A is generalized standard then components in C A are pairwise
orthogonal and almost periodic.
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Preliminaries

A family H = (Hi )i∈I of components in ΓA is said to be a heart of mod A
if the following conditions are satisfied:

1 H is sincere and generalized standard;

2 H has no external short paths in ind A.

A short path X → Y → Z in ind A is external for H if X ,Z ∈ H but
Y 6∈ H.

Note that if C = (Ci )i∈I is a separating family of components in ΓA then
C is a heart of mod A.

PROBLEM

Describe module categories mod A having a heart H.
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Tilted algebras

H – hereditary (connected) algebra, QH – valued quiver of H

ΓH : P(H) . . . R(H) . . . Q(H)

P(H) and Q(H) are separating components and hearts of mod H

QH Euclidean quiver =⇒ R(H) is an infinite family of pairwise
orthogonal stable tubes and is a separating family in mod H

QH Euclidean quiver =⇒ any stable tube in R(H) is a heart of mod H
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Tilted algebras

T ∈ mod H – tilting module: Ext1
H(T ,T ) = 0,

T = T1 ⊕ . . .⊕ Tn, T1, . . . ,Tn ∈ ind H,
Ti � Tj for i 6= j , n = rank K0(H)

B – tilted algebra: B = EndH(T )

ΓB :
∆T

YΓB Y(T ) ∩ CT CT ∩ X (T ) XΓB

CT
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Tilted algebras
∆T

YΓB Y(T ) ∩ CT CT ∩ X (T ) XΓB

CT

CT – connecting component of ΓB with the section ∆T given by
the images HomH(T , I ) of injectives modules I in ind H via the
functor HomH(T ,−) : mod H → mod B

(X (T ),Y(T )) – torsion pair in mod B

X (T ) =
{

M ∈ mod B
∣∣M ⊗B T = 0

}
– torsion part

Y(T ) =
{

M ∈ mod B
∣∣ TorB1 (M,T ) = 0

}
– torsion-free part

CT is a separating component (hence a heart) in mod H with a section
∆T (Happel–Ringel)
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Generalized double tilted algebras

C – component of ΓA

C – almost acyclic if all but finitely many modules in C do not lie on
oriented cycles in C

C is an almost acyclic ⇐⇒ C admits a multisection (Reiten–Skowroński)

Theorem (Reiten-Skowroński)

Let A be an algebra. TFAE

1 ΓA admits an almost acyclic separating component.

2 A is a generalized double tilted algebra.
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Generalized double tilted algebras

CA – connecting component
B(l) = EndH(l)(T (l)), B(r) = EndH(r)(T (r)) – tilted algebras

Note that generalized double tilted algebras contain:

all algebras of finite representation type

tilted algebras

double tilted algebras
(gl dim = 3 and for any X ∈ ind A pdAX ≤ 1 or idAX ≤ 1)
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Concealed canonical algebras

Λ – canonical algebra (Ringel)

ΓΛ :

PΛ QΛ

T Λ

T Λ – separating family of stable tubes

T – tilting Λ-module from the additive category add(PΛ) of PΛ

C – concealed canonical algebra (of type Λ) : C = EndΛ(T )
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Concealed canonical algebras

ΓC :

PC QC

T C

T C = HomΛ(T , T Λ) – separating family of stable tubes

Theorem (Lenzing–de la Peña)

Let A be an algebra. TFAE

1 ΓA admits a separating family of stable tubes.

2 A is a concealed canonical algebra.

A is a concealed canonical algebra ⇐⇒ mod A admits a heart formed by
a stable tube
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Quasitilted algebras

A – quasitilted: gl dimA ≤ 2 and for any X ∈ ind A we have pdAX ≤ 1
or idAX ≤ 1

Theorem (Happel–Reiten)

Let A be a quasitilted algebra. Then A is either a tilted algebra or a
quasitilted algebra of canonical type.

Theorem (Lenzing–Skowroński)

Let A be an algebra. TFAE

1 A is a quasitilted algebra of canonical type.

2 A is a semiregular branch enlargement of a concealed canonical
algebra.

3 ΓA admits a separating family of ray and coray tubes.
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Quasitilted algebras

T A – separating family (hence a heart) of ray and coray tubes in mod A
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Generalized multicoil algebras

C – component of ΓA

C is almost cyclic if all but finitely many modules in C lie on
oriented cycles contained entirely in C

C is coherent if the following two conditions are satisfied:

1 For each projective module P in C there is an infinite sectional path
P = X1 → X2 → · · · → Xi → Xi+1 → · · · in C ,

2 For each injective module I in C there is an infinite sectional path
· · · → Yj+1 → Yj → · · · → Y2 → Y1 = I in C .

C is almost cyclic and coherent ⇐⇒ C is a generalized multicoil
(obtained from a finite family of stable tubes by an iterated application of
admissible operations (ad 1)-(ad 5) and their duals (ad 1∗)-(ad 5∗))
(Malicki–Skowroński)
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Generalized multicoil algebras

Theorem (Malicki–Skowroński)

Let A be an algebra. TFAE

1 ΓA admits a separating family of almost cyclic coherent components.

2 A is a generalized multicoil algebra.

A – generalized multicoil algebra: obtained from a finite family of
concealed canonical algebras C1, . . . ,Cm by an iterated application of
admissible operations (ad 1)-(ad 5) and their duals, using the separating
families T C1 , . . . , T Cm of stable tubes of ΓC1 , . . . , ΓCm
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Generalized multicoil algebras
ΓA :

PA C A QA

C A – separating family (hence a heart) of generalized multicoils in mod A

gl dimA ≤ 3

pdAX ≤ 1 for any module X in PA

idAX ≤ 1 for any module X in QA

pdAX ≤ 2 and idAX ≤ 2 for any module X in C A

PA = PA(l)
and QA = QA(r)

A(l) /resp. A(r)/ – quasitilted quotient algebra of A having
a separating family of coray /resp. ray/ tubes in ΓA(l) /resp. ΓA(l)/
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Main results

Theorem (Jaworska–M–Skowroński)

Let A be an algebra. TFAE

1 mod A admits a heart.

2 ΓA admits a separating family of components.

mod A admits a heart H =⇒
mod A admits a heart consisting of a finite number of components
of H
H can be completed to a separating family C of components in ΓA

by a family (possibly empty) of stable tubes
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Main results

Theorem (Jaworska–M–Skowroński)

Let A be an algebra with a separating family C A of components in ΓA,
and ΓA=PA ∪ C A ∪QA the associated decomposition of ΓA. Then there
exist quotient algebras B1, . . . ,Bm,Bm+1, . . . ,Bm+p of A such that the
following statements hold.

B1, . . . ,Bm are generalized double tilted algebras such that all but
finitely many acyclic modules in C A belong to the connecting
components CB1 , . . . ,CBm of ΓB1 , . . . , ΓBm .

Bm+1, . . . ,Bm+p are generalized multicoil algebras such that all but
finitely many cyclic modules in C A belong to the cyclic parts

cC Bm+1 , . . . ,c C Bm+p of the separating families C Bm+1 , . . . ,C Bm+p of
generalized multicoils of ΓBm+1 , . . . , ΓBm+p .

PA = (
m⋃
i=1

YΓ
B

(l)
i

) ∪ (

m+p⋃
i=m+1

PB
(l)
i ).
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Main results

Theorem (continued ...)

QA = (
n⋃

j=1

XΓ
B

(r)
j

) ∪ (

n+p⋃
j=n+1

QB
(r)
j ).

ind A =

m+p⋃
i=1

ind Bi .

A(l) = B
(l)
1 × · · · × B

(l)
m × B

(l)
m+1 × · · · × B

(l)
m+p – left quasitilted algebra

of A
A(r) = B

(r)
1 × · · · ×B

(r)
m ×B

(r)
m+1 × · · · ×B

(r)
m+p – right quasitilted algebra

of A
PA = PA(l)

and QA = QA(r)

We note that in general A(l) or A(r) are products of many tilted algebras
and quasitilted algebras of canonical type.
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