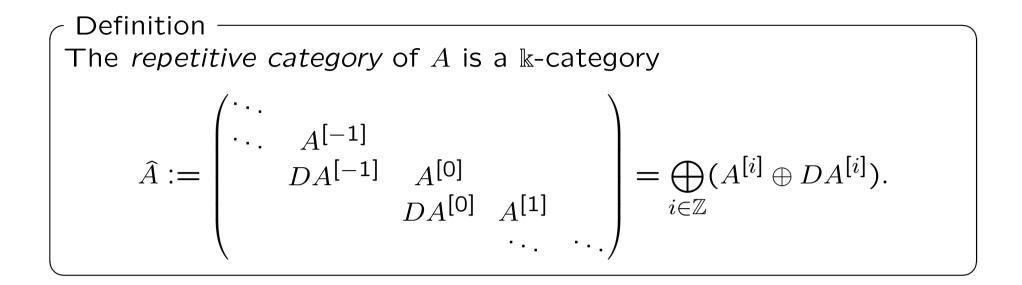
Derived equivalence classification of generalized multifold extensions of piecewise hereditary algebras of tree type

> Mayumi Kimura (joint with H. Asashiba) Shizuoka University

2012-08-17/ ICRA in Bielefeld

- $\bullet~\Bbbk$: algebraically closed field
- A : basic finite-dimensional k-algebra
- $D = \operatorname{Hom}_{\Bbbk}(-, \Bbbk)$



Constraint f Definition f Let $\phi \in \text{Aut}(\hat{A})$ and $n \in \mathbb{Z}$. If there exists $i \in \mathbb{Z}$ such that $\phi(A^{[i]}) = A^{[i+n]}$, then ϕ is said to have a *jump* n.

 $\begin{pmatrix} \ddots & A^{[i]} & & \\ & DA^{[i]} & & \\ & & DA^{[i]} & & \\ & & & & A^{[i+n]} \\ & & & & DA^{[i+n]} \\ & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ \end{array} \right)$

 \sim Definition Let $n \in \mathbb{Z}$. A *generalized* n-fold extension of A is a category (or an algebra) of the form $\hat{A}/\langle \phi \rangle$, where $\phi \in \operatorname{Aut}(\hat{A})$ having a jump n.

- Definition A is called *piecewise hereditary* if A is derived equivalent to a hereditary algebra H. Moreover if the ordinary quiver Q of H is an oriented tree, then A is said to be of tree type. Definition Let $n \in \mathbb{Z}$. A twisted *n*-fold extension of A is a category (or an algebra) of the form $T_{\psi}^{n}(A) := \hat{A}/\langle \hat{\psi} \nu_{A}^{n} \rangle$, where $\hat{\psi}$ is an automorphism of \hat{A} induced by $\psi \in \operatorname{Aut}(A)$ and ν_{A} is the Nakayama automorphism of \hat{A} .

Theorem[Asashiba]
Let Λ, Λ' be twisted multifold extensions of piecewise hereditary algebras of tree type. Then the following are equivalent:
(i) Λ and Λ' are derived equivalent.
(ii) Λ and Λ' are stably equivalent.
(iii) type(Λ) = type(Λ').

<u>Remark</u> For each $\psi \in \text{Aut}(A)$, the automorphism $\hat{\psi}$ of \hat{A} has a jump 0 and ν_A has a jump 1, therefore $\hat{\psi}\nu_A^n$ has a jump n. Hence $\hat{A}/\langle \hat{\psi}\nu_A^n \rangle$ is a generalized *n*-fold extension of A.

 \sim Proposition Let A be a piecewise hereditary algebra of tree type and $\phi \in \operatorname{Aut}(\widehat{A})$ having a jump n ($\in \mathbb{Z}$). Then there is some $\phi_Q \in \operatorname{Aut}(\widehat{\Bbbk Q})$ having a jump n such that $\widehat{A}/\langle \phi \rangle$ and $\widehat{\Bbbk Q}/\langle \phi_Q \rangle$ are derived equivalent.

Proposition

Let Q be an oriented tree, $\phi, \psi \in \operatorname{Aut}(\widehat{\Bbbk Q})$. If the actions of ϕ and ψ coincide on the objects, then $\widehat{\Bbbk Q}/\langle \phi \rangle$ is isomorphic to $\widehat{\Bbbk Q}/\langle \psi \rangle$.

Theorem Let A be a piecewise hereditary algebra of tree type and $\phi \in \operatorname{Aut}(\hat{A})$ having a jump $n \ (\in \mathbb{Z})$. Then $\hat{A}/\langle \phi \rangle$ is derived equivalent to $T^n_{\phi_0}(A) = \hat{A}/\langle \hat{\phi_0} \nu^n_A \rangle$ where $\phi_0 := (\mathbb{1}^{[0]})^{-1} \nu^{-n}_A \phi \mathbb{1}^{[0]} \in \operatorname{Aut}(A)$.

<u>proof</u> By Proposition, there is $\psi \in \operatorname{Aut}(\widehat{\BbbkQ})$ such that $\widehat{\BbbkQ}/\langle\psi\rangle$ and $\widehat{A}/\langle\phi\rangle$ are derived equivalent for $\widehat{A}/\langle\phi\rangle$. On the other hand for $\widehat{A}/\langle\phi_0\nu_A^n\rangle$, there is $\psi_0 \in \operatorname{Aut}(\widehat{\BbbkQ})$ such that $\widehat{\BbbkQ}/\langle\psi_0\rangle$ and $\widehat{A}/\langle\phi_0\nu_A^n\rangle$ are derived equivalent. Note that an automorphism of repetitive category has the same action on the objects in each $i \in \mathbb{Z}$. Hence ϕ and $\widehat{\phi}_0\nu_A^n$ coinside on the objects, $\widehat{\BbbkQ}/\langle\psi\rangle$ is isomorphic to $\widehat{\BbbkQ}/\langle\psi_0\rangle$ because ψ and ψ_0 coinside on the objects.

Theorem
Let A, A' be generalized multifold extensions of piecewise hereditary algebras of tree type. Then the following are equivalent:
(i) A and A' are derived equivalent.
(ii) A and A' are stably equivalent.
(iii) type(A) = type(A').

The type type(Λ) of $\Lambda = \hat{A}/\langle \phi \rangle$ is a triple $(\bar{Q}, n, \bar{\pi}(\phi_0))$ where

- Q is the type of A,
- n is a jump of ϕ ,
- $\bar{\pi}(\phi_0)$ is the third ingredient of the type of the twisted multifold extension $T^n_{\phi_0}(A)$ of A.