Cell 2-representations of fiat 2-categories

Vanessa Miemietz

School of Mathematics University of East Anglia

(joint work with Volodymyr Mazorchuk)

ICRA 2012

2-categories - Definition

Let \Bbbk be an algebraically closed field. All categories are assumed to be (locally) small.

Definition

A 2-category is a category enriched over the monoidal category **Cat** of small categories.

- I.e. a 2-category ${\mathscr C}$ consists of
 - a set *C* of objects
 - ∀i, j ∈ C : a small category C(i, j) (objects are 1-morphisms; morphisms are 2-morphisms)
 - functorial composition $\mathscr{C}(j,k)\times \mathscr{C}(i,j)\to \mathscr{C}(i,k)$
 - $\forall \mathtt{i} \in \mathscr{C}$: identity 1-morphisms $\mathbb{1}_{\mathtt{i}}$
 - natural (strict) axioms.

2-categories - Examples

2-category	objects	1-morphisms	2-morphisms
Cat	small categories	functors	natural
			transformations
	small fully	additive	natural
\mathfrak{A}_{\Bbbk}	additive k-linear	\Bbbk -linear	transformations
	categories	functors	
	$\mathcal{C}\in\mathfrak{A}_{\Bbbk}$ with	additive	natural
\mathfrak{A}^f_{\Bbbk}	finitely many	\Bbbk -linear	transformations
	$indecomposables/\cong$	functors	
	and dim $\mathcal{C}(X,Y) < \infty$		
	$\forall X, Y \in \mathcal{C}$		
	$\mathcal{C}\in\mathfrak{A}_{\Bbbk}$ with	additive	natural
\mathfrak{R}_{\Bbbk}	$\mathcal{C} \sim A\text{-}\mathrm{mod}$ for	\Bbbk -linear	transformations
	f.dim. assoc.	right exact	
	\Bbbk -algebra A	functors	

Fiat 2-categories - Definition

Definition

- A 2-category ${\mathscr C}$ is called fiat, if
 - $|\mathscr{C}| < \infty$
 - $\forall i, j \in \mathscr{C}$: $\mathscr{C}(i, j) \in \mathfrak{A}^f_{\Bbbk}$
 - \bullet composition is biadditive and $\Bbbk\mbox{-linear}$
 - $\forall i \in \mathscr{C}$: $\mathbb{1}_i$ is indecomposable
 - $\bullet \ {\mathscr C}$ has an object-preserving (weak) involution *
 - \mathscr{C} has adjunctions $F \circ F^* \to 1_j$ and $1_i \to F^* \circ F$ (for $F \in \mathscr{C}(i, j)$).

From now on, let \mathscr{C} be a fiat 2-category.

Fiat 2-categories - Example

Let $A = A_1 \oplus A_2 \oplus \cdots \oplus A_k$ for connected, basic, pairwise non-isomorphic, weakly symmetric, finite dimensional associative k-algebras A_i .

Define a 2-category \mathscr{C}_A which has

- objects 1,..., k where i is identified with a small version of A_i-mod;
- 1-morphisms isomorphic to identity functors on i or to tensoring with projective A_j ⊗_k A_i-bimodules;
- 2-morphisms all natural transformations of such functors.

Then \mathscr{C}_A is fiat.

2-representations

Definition

A finitary (resp. abelian) 2-representation M of $\mathscr C$ is a 2-functor from $\mathscr C$ to $\mathfrak A^f_\Bbbk$ (resp. $\mathfrak R_\Bbbk).$ Finitary (resp. abelian) 2-representations together with 2-natural transformations and modifications form again a 2-category, denoted by $\mathscr C\text{-afmod}$ (resp. $\mathscr C\text{-mod}$).

Definition

For $i \in \mathscr{C}$ the principal 2-representation \mathbb{P}_i is given by $\mathbb{P}_i(j) := \mathscr{C}(i, j)$ with the natural left action of \mathscr{C} .

Theorem (Yoneda Lemma)

For $M \in \mathscr{C}$ -afmod, we have $\operatorname{Hom}_{\mathscr{C}\text{-afmod}}(\mathbb{P}_i, M) \cong M(i)$.

2-ideals

Definition

A left (right, two-sided) ideal \mathscr{I} of \mathscr{C} consists of

- the same objects and 1-morphisms as *C*;
- for each pair i, j, an ideal $\mathscr{I}(i, j) \subset \mathscr{C}(i, j)$ such that horizontal composition preserves \mathscr{I} , i.e. $\mathscr{I}(j,k) \times \mathscr{I}(i,j) \to \mathscr{I}(i,k) \subset \mathscr{C}(i,k).$

For example, \mathbb{P}_k can be viewed as a left 2-ideal \mathscr{I}_k by setting

$$\mathscr{I}_{k}(i,j) := egin{cases} \mathscr{C}(k,j), & i = k; \\ 0, & \text{else.} \end{cases}$$

Cells

Definition

Define preorders on 1-morphisms in \mathscr{C} , saying that

- $\bullet\ F \leq_{\textit{L}} G$ if G appears as a summand in $H \circ F$ for some H
- $F \leq_R G$ if G appears as a summand in $F \circ H$ for some H
- $F\leq_{\textit{LR}} G$ if G appears as a summand in $H\circ F\circ K$ for some H,K.

Equivalence classes under the preorders $\leq_L (\leq_R, \leq_{LR})$ are called left (right, two-sided) cells respectively.

Cell 2-representations

Theorem

Let \mathcal{J} be a two-sided cell in \mathscr{C} and \mathcal{L} a left cell in \mathcal{J} . Then there is a unique $i \in \mathscr{C}$ and a unique maximal left ideal $\mathscr{J}_{\mathcal{L}}$ contained in \mathscr{I}_i such that it does not contain the identity 2-morphism id_F for any $F \in \mathcal{L}$.

The (additive) cell 2-representation $C_{\mathcal{L}}$ of \mathscr{C} associated to \mathcal{L} is defined as the additive closure of 1-morphisms in \mathcal{L} inside $\mathbb{P}_i/\mathscr{J}_{\mathcal{L}}$.

Theorem

Any non-trivial two-sided 2-ideal in $\mathscr{C}/\mathrm{Ker}\mathbf{C}_{\mathcal{L}}$ contains id_F for all $F \in \mathcal{L}$.

Strong simplicity

Definition

An abelian 2-representation **M** is generated by $M \in \mathbf{M}(i)$ if, for any $j \in \mathcal{C}$, we can obtain any indecomposable projective in $\mathbf{M}(j)$ by applying 1-morphisms from \mathcal{C} to M, and if 2-morphisms in \mathcal{C} surject onto morphisms between projectives.

An abelian 2-representation M is called strongly simple if it is generated by any simple object in any M(j).

Let $\overline{\mathbf{C}}_{\mathcal{L}}$ be the abelianisation of $\mathbf{C}_{\mathcal{L}}$.

Cell 2-representations

Theorem

Let \mathcal{J} be a two-sided cell in \mathscr{C} and \mathcal{L} a left cell in \mathcal{J} . Assume \mathcal{J} has the following properties:

- different left cells inside $\mathcal J$ are not comparable w.r.t. the left order;
- for any left cell \mathcal{L} and right cell \mathcal{R} in \mathcal{J} we have $|\mathcal{L} \cap \mathcal{R}| = 1$;
- the function $F \mapsto m_F$, where $F^* \circ F = m_F H$ is constant on right cells of \mathcal{J} .

Then we have

- **1** The abelian 2-representation $\overline{C}_{\mathcal{L}}$ is strongly simple.
- 2 We have $\operatorname{End}_{\mathscr{C}\operatorname{-mod}}(\overline{\mathsf{C}}_{\mathcal{L}}) \sim \Bbbk\operatorname{-mod}.$