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• Let p be a prime and G be a finite group
with p divides the order of group |G| and F

be a ring with characteristic p > 0.

• For h ∈ G, the conjugation class generated
by h is:

Ch = {g ∈ G|∃x ∈ G : xhx−1 = g}

• The centre of the group algebra FG, de-
noted by Z(FG) has basis

{C+
h =

∑
g∈Ch

g|h ∈ G}.

• The p-regular subspace of Z(FG)

Zp′(FG) = span{C+
h : p - o(h)}

is the subspace of Z(FG) spanned by class
sum of p′-element. We see that this defini-
tion depends only on the order of elements
in G.
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• While Z(FG) is always a ring, this is not the
case for Zp′(FG) (see [Meyer], [Meyer2],
[FanKulshammer], [EnsslenKulshammer]).

• For any algebra A we define [A,A] as the
commutator subspace of A.

• Given a symmetric K-algebra A with sym-
metrising form 〈 , 〉, then for any K-basis
B of Z(A) we get a K-basis B∗ of A/[A,A]
by the condition

〈b, c∗〉 =

{
1 if b = c
0 otherwise

• Hence we get an identification

Z(A)
δ→ A/[A,A](1) ∑

b∈B
λbb 7→

∑
b′∈B′

λbb
′

This map depends on the choice of B and
the choice of the symmetrizing form 〈 , 〉.
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• In particular Z(FG) can be identified with

FG/[FG,FG]. This isomorphism will give a

way to identify Zp′FG without depending

on the order of elements in G.

• Define the p-power map

µp : FG/[FG,FG]→ FG/[FG,FG]

with µp(a) = ap for every a ∈ FG/[FG,FG].

This map is well-defined as shown by Kul-

shammer [Kulshammer].
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Lemma 1 (SantikaZimmermann). Let F be a
field of characteristic p > 0, let G be a finite
group and let h ∈ G. Then

h+[FG,FG] ∈
⋂
t∈N

im(µtp) if and only if p - o(h).

• The above lemma says that an element C+
h

is in the basis of Zp′FG if and only if h +
[FG,FG] ∈

⋂
t∈N im(µtp).

• This condition on the above lemma does
not depend on the order of elements of G,
so we apply this condition to define Zp′A
for any symmetric algebra A.

Definition 1. Let A be an algebra and let

µp : A/[A,A]→ A/[A,A]

with µp(a) = ap for every a ∈ A/[A,A].
The p-regular subspace Zp′A of ZA is de-
fined as the pre-image of

⋂
t∈N im(µtp) via the

identification δ (1).
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Let A be the symmetric Nakayama algebra Nn
m,

where m divides n. The algebra A is the path

algebra of the quiver

2
α2→ 3

α1
↗

α3
↘

1 4
αm
↖

α4
↙

m
αm−1← · · ·

modulo the relations : (αiαi+1 · · ·αi−2αi−1)(n/m)αi =

0 for all 1 ≤ i ≤ m.
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• A basis of ZA is given by union of B1∪B2∪
B3, where B1 = {e1 + · · ·+ em},

B2 = {
m∑
i=1

(αiαi+1 · · ·αi−2αi−1)k,1 ≤ k ≤ n/m−1},

B3 = {(αiαi+1 · · ·αi−2αi−1)n/m,1 ≤ i ≤ m}.

• A basis of A/[A,A] is given by

{e1, · · · , em, (α1α2 · · ·αm)k,1 ≤ k ≤ n/m}.

• The first step to find Zp′A is to compute pt-

power of every basis elements of A/[A,A].

Since ei are idempotents, then e
pt

i = ei for

all 1 ≤ i ≤ m, for all t ∈ N.
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• For other basis elements, we get that

((α1α2 · · ·αm)k)(n/m)+1 = 0

for all 1 ≤ k ≤ n/m. Therefore only e1, · · · , em
that are in the image of the pt-power map

µtp for every t ∈ N.

• In Z these elements correspond to B3. There-

fore the p-regular subspace of A = Nn
m is

Zp′A = spanB3.
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• An algebra A (over an algebraically closed

field) is of dihedral type if it is a symmet-

ric and indecomposable algebra, its Cartan

matrix is non-singular, and the stable AR-

quiver consists of 1-tubes, at most two 3-

tubes, and a non-periodic components of

tree class A∞∞ or A1,2. [Erdman]

• Any algebra of dihedral type with two sim-

ple modules is derived equivalent to the

basic algebra A
k,s
c = D(2B)k,s(c), where

k, s ≥ 1 are integers and c ∈ {0,1} (see

[Holm]).

8



• These algebras are defined by path algebra

of quiver

subject to relations

βη = 0, ηγ = 0, γβ = 0, α2 =

c(αβγ)k, (αβγ)k = (βγα)k, ηs = (γαβ)k.

• Let us assume that the characteristic of F

is 2. Every block with a dihedral defect

group of order 2n and two simple modules

is Morita equivalent to A1,s
c (see [Erdman]).

9



• In [HolmZimmermann], it is shown that a

basis of Z(Ak,sc ) is given by

Z = {1, (αβγ)i + (βγα)i + (γαβ)i,

(βγα)k−1βγ, (αβγ)k, ηj|1 ≤ i ≤ k−1,1 ≤ j ≤ s},

and a basis of Ak,sc /[Ak,sc , A
k,s
c ] is given by

B = {e1, e2, α, αβγ, . . . , (αβγ)k−1, η, . . . , ηs}.

• The first step to find Z2′A
k,s
c is to com-

pute 2n-power of every basis elements of

A
k,s
c /[Ak,sc , A

k,s
c ].

• Since e1 and e2 are idempotents, then e2n
1 =

e1 and e2n
2 = e2.
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• For other basis elements, we get that

((αβγ)i)2k = αβγ . . . αβγ︸ ︷︷ ︸
k+1

(αβγ)i2
k−(k+1)

= α(βγα . . . βγα︸ ︷︷ ︸
k

)βγ(αβγ)i2
k−(k+1)

= α(βγα)kβγ(αβγ)i2
k−(k+1)

= α(αβγ)kβγ(αβγ)i2
k−(k+1)

= α(αβγ)k−1αβ γβ︸︷︷︸
=0

γ(αβγ)i2
k−(k+1)

= 0

for every i = 1, . . . , k.



• For c = 0, then α2 = 0.

• If c = 1, then

α4 = (αβγ)2k = (αβγ)k+1(αβγ)k−1

= αβγ . . . αβγ︸ ︷︷ ︸
k+1

(αβγ)k−1

= α(βγα . . . βγα︸ ︷︷ ︸
k

)βγ(αβγ)k−1

= α(βγα)kβγ(αβγ)k−1

= α(αβγ)kβγ(αβγ)k−1 = 0

by using the relation γβ = 0.
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• Also, for every i = 1,2, . . . , s,

(ηi)2s+1
= η2sηi2

s+1−2s = (γαβ)2kηi2
s+1−2s

= γ(αβγ)k(γαβ)k−1ηi2
s+1−2s

which also equals to 0 by the same relation.

• These show that only e1 and e2 that are

in the image of the 2n-power map µn2 for

every n ∈ N.

• These elements correspond to {(αβγ)k, ηs} ⊆
Z. Therefore, Z2′A

k,s
c = span{(αβγ)k, ηs}.
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• An algebra A (over an algebraically closed

field) is said to be of semidihedral type if

A is symmetric and indecomposable, the

Cartan matrix of A is non-singular, and

the stable Auslander-Reiten quiver of A has

tube of rank at most 3, at most one 3-tube,

and non-periodic components isomorphic

to ZA∞∞ and ZD∞. [Erdman]

• Any algebra of semidihedral type with two

simple modules is derived equivalent to one

of the two following classes.
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• The first class is algebra Ak,tc := SD(2B)k,t1 (c),

where integers k ≥ 1, t ≥ 2 and c ∈ {0,1}.

• These algebras are defined by path algebra

of quiver

subject to relations

βη = 0, ηγ = 0, γβ = 0, α2 = (βγα)k−1βγ +

c(αβγ)k, (αβγ)k = (βγα)k, ηt = (γαβ)k.

• The only difference between A
k,t
c and A

k,s
c

in algebra of dihedral type is the relation

α2 = (βγα)k−1βγ + c(αβγ)k.
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• Because our main concern is in Ak,tc /[Ak,tc , A
k,t
c ]

and

(βγα)k−1βγ = [(βγα)k−1β, γ] (from the

relation γβ = 0)

then we can apply our result in dihedral

case to A
k,t
c .

• The 2-regular subspace of Ak,tc is

Z2′A
k,t
c = span{(αβγ)k, ηt}.
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• The second class is algebra Bk,tc := SD(2B)k,t2 (c),

with k ≥ 1, t ≥ 2 such that k + t ≥ 4 and

c ∈ {0,1}.

• This algebra defined by the same quiver as

above, but subject to the relations

βη = (αβγ)k−1αβ, γβ = ηt−1, ηγ =

(γαβ)k−1γα, βη2 = 0, η2γ = 0, α2 =

c(αβγ)k.

• The basis for Bk,tc /[Bk,tc , B
k,t
c ] (as shown in

[HolmZimmermann]) is

B = {e1, e2, α, αβγ, . . . , (αβγ)k−1, η, . . . , ηt}.

• Idempotents e1 and e2 again are in the im-

age of µn2 for every natural number n.
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• For other basis elements, we get

(ηi)2t = ηt−1ηi2
t−(t−1) = γβηi2

t−(t−1) = 0

for every i = 1, . . . , t.

((αβγ)i)2k+1
= (αβγ)k(αβγ)k(αβγ)i2

k+1−2k

= (αβγ)k−1αβγ(αβγ)k(αβγ)i2
k+1−2k

= (αβγ)k−1αβ(γ(αβγ)k−2αβ)γαβγ(αβγ)i2
k+1−2k

= ((αβγ)k−1αβ)((γαβ)k−1γα)βγ(αβγ)i2
k+1−2k

= (βη)(ηγ)βγ(αβγ)i2
k+1−2k = 0

for every i = 1, . . . , k.



• By the same method, we see that

α8 = (αβγ)4k = (αβγ)k(αβγ)k(αβγ)2k = 0.

• Hence only e1 and e2 are in the image of

the 2n-power map µn2 for every n ∈ N.

• These elements correspond to {(αβγ)k, ηt}
in the centre of Bk,tc . Therefore, Z2′B

k,t
c =

span{(αβγ)k, ηt}.
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