The moduli of absoltely thick representations

Kazunori NAKAMOTO

University of Yamanashi, Japan

Joint work with Yasuhiro Omoda

§0. Motivation

- (1) To study irreducible representations of discrete subgroups : SL(2, Z), PSL(2, Z), and so on.
- (2) To classify several types of irreducible representations of several groups.
- (3) Thickness and denseness are basic and essential.

§1. Preliminaries

G: a group

k: a field

V: a vector space over k with $\dim_k V = n$ $\rho: G \to \operatorname{GL}(V)$: a representation of G

Definition 1 (thick). $\rho: G \to \operatorname{GL}(V)$ is $\underline{m\text{-thick}}$ if for any subspaces V_1 and V_2 of V with dim $V_1 = m$ and dim $V_2 = n - m$, there exists $g \in G$ such that

 $(\rho(g)V_1) \oplus V_2 = V.$

 $\rho: G \to \operatorname{GL}(V)$ is <u>thick</u> if ρ is *m*-thick for each 0 < m < n.

 $\begin{array}{l} G: \text{ a group} \\ k: \text{ a field} \\ V: \text{ a vector space over } k \text{ with } \dim_k V = n \\ \rho: G \to \operatorname{GL}(V): \text{ a representation of } G \end{array}$

Definition 2 (dense). $\rho: G \to \operatorname{GL}(V)$ is <u>m-dense</u> if the induced representation $(\wedge^m \rho): G \to \operatorname{GL}(\wedge^m V)$ is irreducible.

 $\rho: G \to \operatorname{GL}(V)$ is <u>dense</u> if ρ is m-dense for each 0 < m < n. **Proposition 3.** For 0 < m < n, m-dense \Longrightarrow m-thick \Longrightarrow irreducible and 1-dense \iff 1-thick \iff irreducible.

In particular, $dense \Rightarrow thick \Rightarrow irreducible.$ $\begin{array}{l} G: \text{ a group} \\ k: \text{ a field} \\ V: \text{ a vector space over } k \text{ with } \dim_k V = n \\ \rho: G \to \operatorname{GL}(V): \text{ a representation of } G \end{array}$

6

Definition 4 (absolutely thick and dense). $\rho: G \to \operatorname{GL}(V)$ is *absolutely thick* if $\rho \otimes_k \overline{k} : G \to \operatorname{GL}(V \otimes_k \overline{k})$ is thick for an algebraic closure \overline{k} of k.

 $\rho : G \to \operatorname{GL}(V) \text{ is } \underline{absolutely \ dense} \text{ if } \\ \rho \otimes_k \overline{k} : G \to \operatorname{GL}(V \otimes_k \overline{k}) \text{ is dense.} \end{cases}$

Remark 5. ρ : absolutely thick $\iff \rho \otimes_k \Omega : G \to \operatorname{GL}(V \otimes_k \Omega)$ is thick for any algebraically closed field Ω over k

 $\overline{7}$

§2. Moduli of absolutely irreducible representations

Definition 6.

(Sch) : category of schemes(Sets) : category of sets

 $\Gamma(X, \mathcal{O}_X)$: the ring of global functions on a scheme X.

Let us consider the contravariant functor:

 $\begin{array}{rcl} \operatorname{Rep}_n(G): & (\mathbf{Sch})^{op} & \to & (\mathbf{Sets}) \\ & X & \mapsto & \{\rho: G \to \operatorname{GL}_n(\Gamma(X, \mathcal{O}_X)) \text{ a representation } \} \,, \end{array}$

 $\rho: G \to \operatorname{GL}_n(\Gamma(X, \mathcal{O}_X))$ is called an *n*-dimensional representation of G on X.

$$\operatorname{Rep}_{n}(G): (\operatorname{Sch})^{op} \to (\operatorname{Sets}) \\ X \mapsto \{\rho: G \to \operatorname{GL}_{n}(\Gamma(X, \mathcal{O}_{X})) \text{ a representation } \}$$

Proposition 7. The functor $\operatorname{Rep}_n(G)$ is representable by an affine scheme.

Definition 8. The group scheme PGL_n over \mathbb{Z} acts on $\operatorname{Rep}_n(G)$ by $\rho \mapsto P^{-1}\rho P$ for $\rho \in \operatorname{Rep}_n(G)$ and $P \in \operatorname{PGL}_n$. **Definition 9.** For an *n*-dimensional representation $\rho : G \to \operatorname{GL}_n(\Gamma(X, \mathcal{O}_X))$ on a scheme X, ρ is absolutely irreducible if

for each $x \in X$ the induced rerepsentation $\rho \otimes k(x) : G \to \operatorname{GL}_n(k(x))$ is absolutely irreducible, where $k(x) := \mathcal{O}_{X,x}/m_{X,x}$ is the residue field of x.

Remark 10. The scheme

 $\operatorname{Rep}_n(G)_{air} := \{\rho : abs. irreducible\}$ is an open subscheme of $\operatorname{Rep}_n(G)$ which is invariant under PGL_n -action.

Theorem 11. There exists a universal geometric quotient of $\operatorname{Rep}_n(G)_{air}$ by PGL_n .

Definition 12. We call

 $\operatorname{Ch}_n(G)_{air} := \operatorname{Rep}_n(G)_{air}/\operatorname{PGL}_n$ the moduli of *n*-dimensional absolutely irreducible representations of *G*.

$$F_m := \langle \alpha_1, \alpha_2, \dots, \alpha_m \rangle$$
: free group of rank m

Proposition 13. For m > 1, the moduli $Ch_n(F_m)_{air}$ is a smooth irreducible scheme over \mathbb{Z} of relative dimension $(m-1)n^2 + 1$. §3. Moduli of absolutely thick representations

Definition 14. For an *n*-dimensional representation $\rho : G \to \operatorname{GL}_n(\Gamma(X, \mathcal{O}_X))$ on a scheme X, ρ is *absolutely thick* if

for each $x \in X$ the induced rerepsentation $\rho \otimes k(x) : G \to \operatorname{GL}_n(k(x))$ is absolutely thick, where $k(x) := \mathcal{O}_{X,x}/m_{X,x}$ is the residue field of x. 14

Definition 15. For an *n*-dimensional representation $\rho : G \to \operatorname{GL}_n(\Gamma(X, \mathcal{O}_X))$ on a scheme X, ρ is <u>absolutely dense</u> if

for each $x \in X$ the induced rerepsentation $\rho \otimes k(x) : G \to \operatorname{GL}_n(k(x))$ is absolutely dense, where $k(x) := \mathcal{O}_{X,x}/m_{X,x}$ is the residue field of x.

Theorem 16.

 $\operatorname{Rep}_n(G)_{thick} := \{\rho : abs. thick rep.\}$ is an open subscheme of $\operatorname{Rep}_n(G)_{air}$ which is invariant under PGL_n -action.

Moreover, the universal geometric quotient

 $\operatorname{Ch}_n(G)_{thick} := \operatorname{Rep}_n(G)_{thick}/\operatorname{PGL}_n.$ exists.

We call $\operatorname{Ch}_n(G)_{thick}$ the moduli of *n*-dimensional absolutely thick representations of G. Key Point. "Thickness is open".

To show openness of absolutely thickness, we prove that

 $\operatorname{Rep}_n(G)_{air} \setminus \operatorname{Rep}_n(G)_{thick}$ is closed.

Lemma 17. For an n-dimensional representation $\rho: G \to \operatorname{GL}(V)$ of G over a field k, ρ is <u>not m-thick</u> if and only if

there exist G-invariant "realizable" subspaces $W_1 \subseteq \wedge^m V$ and $W_2 \subseteq \wedge^{n-m} V$ such that $W_1 \wedge W_2 = 0$.

Here we say $W \subseteq \wedge^m V$ is realizable if there exist $v_1, \ldots, v_m \in V$ such that $0 \neq v_1 \wedge \cdots \wedge v_m \in W$.

Claim 1.

$$\begin{aligned} \operatorname{Rep}_n(G) &\times \operatorname{Gr}(d, \wedge^m \mathbb{A}^n) \times \operatorname{Gr}(d', \wedge^{n-m} \mathbb{A}^n) \\ &\supseteq Y(d, \wedge^m(n), \wedge^{n-m}(n))_{real}^{\perp} \\ &:= \left\{ \left. \left(\rho, W_1, W_2 \right) \right| \begin{array}{l} W_1 \subseteq \mathcal{O}^m : \operatorname{rank} d \text{ realizable } G \text{-inv} \\ W_2 \subseteq \mathcal{O}^m : \operatorname{rank} d' \text{ realizable } G \text{-inv} \\ W_1 \wedge W_2 = 0 \end{aligned} \right. \end{aligned}$$
is closed. Here $d' := \binom{n}{m} - d.$

Claim 2. Since $q_1 : \operatorname{Rep}_n(G) \times \operatorname{Gr}(d, \wedge^m \mathbb{A}^n) \times \operatorname{Gr}(d', \wedge^{n-m} \mathbb{A}^n)$ $\to \operatorname{Rep}_n(G)$

is proper, $q_1(Y(d, \wedge^m(n), \wedge^{n-m}(n))_{real}^{\perp})$ is closed.

Remark 18. Similary, we can also construct the moduli of absolutely dense representations.

§4. Free groups case $F_m := \langle \alpha_1, \alpha_2, \dots, \alpha_m \rangle$: free group of rank m

Lemma 19. The symmetric group S_n is generated by (12) and $(123 \cdots n)$.

Lemma 20. S_n has a dense representation of dimension n-1 over \mathbb{C} . **Theorem 21.** $Ch_n(F_2)_{dense} \neq \emptyset$. Moreover,

$$\operatorname{Ch}_n(F_m)_{dense} \neq \emptyset$$

and

$$\operatorname{Ch}_n(F_m)_{thick} \neq \emptyset$$

for $m \geq 2$.

Theorem 22. The moduli schemes $\operatorname{Ch}_n(F_m)_{dense}$ and $\operatorname{Ch}_n(F_m)_{thick}$ are irreducible smooth scheme over \mathbb{Z} of relative dimension $(m-1)n^2 + 1$ for $m \geq 2$.

22

Theorem 23. Let G be an arbitrary group. For $n \ge 4$ and 1 < m < n - 1, we have a morphism

$$\phi: \operatorname{Ch}_{n}(G)_{dense} \to \operatorname{Ch}_{\binom{n}{m}}(G)_{air}$$
$$[\rho] \mapsto [\wedge^{m}(\rho)].$$
Then $\operatorname{Im}\phi \subseteq \operatorname{Ch}_{n}(G)_{non-thick}.$

"Exterior produces No thick representations!"