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Quiver algebras defined by two cycles and a quantum-like

relation

k : field.

We consider the quiver algebra Aq = kQ/Iq.

Q : quiver with s + t − 1 vertices and s + t arrows as follows:
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for integers s, t ≥ 1.

Iq = ⟨Xsa, XsY t − qY tXs, Y tb⟩ for X:= α1 + α2 + · · · + αs,

Y := β1 + β2 + · · · + βt, integers a, b ≥ 2 and q( ̸= 0) ∈ k.
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Quantum complete intersection

In the case s = t = 1, Aq = k⟨x, y⟩/⟨xa, xy − qyx, yb⟩ is a quantum

complete intersection. This algebra is self-injective algebra. And in the

case a = b = 2, this algebra is Koszul algebra.

In the case a = b = 2, HH∗(Aq) was determined by [BGMS(2005)]

for any element q in k.

In the case a, b ≥ 2 and q is not a root of unity, HH∗(Aq) was

determined by [BE(2008)].

In the case a, b ≥ 2, Bergh and Oppermann showed that Aq holds the

finiteness conditions if and only if q is a root of unity in [BO(2008)].

.
Finiteness conditions [EHSST(2004)]
..

......

(Fg1) There is a graded subalgebra H of HH∗(A) such that H is a

commutative Noetherian ring and H0 = HH0(A).

(Fg2) Ext∗A(A/radA,A/radA) is a finitely generated H-module.
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Hochschild cohomology ring of Aq

q = 1 q = −1 q: an r-th root q: not a root

of unity (r ≥ 3) of unity

s = t = 1,

[BGMS(2005)] [BGMS(2005)] [BGMS(2005)] [BGMS(2005)]

a = b = 2

s = t = 1,

[BO(2008)] [BE(2008)]

a, b ≥ 2

s ≥ 2 or

t ≥ 2, [D.Obara(2012)] [D.Obara(preprint)]

a, b ≥ 2
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Hochschild cohomology ring of Aq

Step 1: We determine the minimal projective bimodule resolution P of Aq

using the same method as [BE(2008)].

Step 2: Using the resolution P, we determine a basis of HHn(Aq) for

n ≥ 0.

Step 3: We give liftings of basis elements of HHn(Aq) for n ≥ 0.

Step 4: As a main result, we determine the ring structure of HH∗(Aq) by

means of generators and Yoneda product in all characteristics.
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Main result

Let N be the ideal of HH∗(Aq) generated by all homogeneous nilpotent

elements.
.
Theorem 1
..

......

In the case where q is a root of unity, HH∗(Aq)/N is isomorphic to the

polynomial ring of two variables.

.
Theorem 2
..
......In the case where q is not a root of unity, HH∗(Aq)/N ∼= k.

.
Theorem 3
..
......Aq satisfies the finiteness conditions if and only if q is a root of unity.
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Support variety
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The support variety of M

.
Definition 1 [[SnSo(2004)], Definision 3.3]
..

......

The support variety of A-module M is given by

V (M) = {m ∈ MaxSpec HH∗(A)/N|AnnExt∗A(M,M) ⊆ m′}

where AnnExt∗A(M,M) is the annihilator of Ext∗A(M,M) and m′ is the

preimage in HH∗(A) of the ideal m in HH∗(A)/N .
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.
Question[Sn(2008)]
..

......

Whether we can give necessary and sufficient conditions on a finite

dimensional algebra for the Hochschild cohomology ring modulo nilpotence

to be finitely generated as an algebra?

With respect to sufficient conditions, it is shown that HH∗(A)/N is

finitely generated as an algebra for various classes of algebras by many

authors as follows:

Any block of a group ring of a finite group (See [Ev(1961)], [V(1959)])

Any block of a finite dimensional cocommutative Hopf algebra (See

[FSu(1997)])

Finite dimensional algebras of finite global dimension (See [Ha(1989)])

Finite dimensional self-injective algebras of finite representation type

over an algebraically closed field (See [GSnSo(2003)])

Finite dimensional monomial algebras (See [GSnSo(2006)])

A class of special biserial algebras (See [SnT(2010)])

A Hecke algebra (See [ScSn(2011)])
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Koenig and Nagase produce many examples of finite dimensional

algebras A with a stratifying ideal for which HH∗(A)/N is finitely

generated as an algebra. (See [KN(2009)])

There is a finite dimensional algebra A for which HH∗(A)/N is not a

finitely generated algebra.(See [Sn(2009)], [Xu(2008)]) Let

A = kQ/I where Q is the quiver

1

a

��

b

EE
c // 2

and I = ⟨a2, b2, ab− ba, ac⟩. Snashall showed the following Theorem.
.
[Sn(2009), Theorem 4.5]
..

......

...1 HH∗(A)/N ∼=

k ⊕ k[a, b]b if chark = 2,

k ⊕ k[a2, b2]b2 if chark ̸= 2.

...2 HH∗(A)/N is not finitely generated as an algebra.
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Main result

.
Theorem 1
..

......

In the case where q is a root of unity, HH∗(Aq)/N is isomorphic to the

polynomial ring of two variables.

.
Theorem 2
..
......In the case where q is not a root of unity, HH∗(Aq)/N ∼= k.

.
Theorem 3
..
......Aq satisfies the finiteness conditions if and only if q is a root of unity.

By Theorem 1 and 2, HH∗(Aq)/N is finitely generated as an algebra.

This algebras Aq is new example of a class of algebra for which the

Hochschild cohomology ring modulo nilpotence is finitely generated as an

algebra.
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Example

In the case s = 2, t = 1 and a = b = 2, Q is the quiver:

a(2)
α2

// 1
α1oo

β1ee

and Iq is the ideal of kQ generated by

X4, X2Y − qY X2, Y 2

for X = α1 + α2, Y = β1. Then indecomposable projective and injective

modules are given by the following.
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Example

P (1) = Aqe1 = K4(
0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0

)// K4
1oo

(
0 0 0 0
0 0 0 0
1 0 0 0
0 q−1 0 0

)
,kk

P (2) = Aqea(2) = K4(
1 0 0 0
0 1 0 0
0 0 0 0
0 0 q 0

)// K4

(
0 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1

)
oo

(
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

)
,kk

I(1) = D(e1Aq) = K4

1
// K4

(
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

)
oo

(
0 0 1 0
0 0 0 q
0 0 0 0
0 0 0 0

)
,kk

Then I(1) ≇ P (i) for i = 1, 2. Therefore Aq is not self-injective.
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Example

.
Stratifying ideal
..

......

Let e be an idempotent of A. If the two sided ideal AeA satisfies the

following conditions, this ideal is called a stratifying ideal.

The multiplication map Ae ⊗eAe eA → AeA is an isomorphism.

For all n ≥ 1, ToreAe
n (Ae, eA) = 0.

In the case s = 2, t = 1 and a = b = 2, we consider the multiiplicasion

maps

M1 : Aqe1 ⊗e1Ae1 e1Aq → Aqe1Aq,

Ma(2) : Aqea(2) ⊗ea(2)Aea(2)
ea(2)Aq → Aqea(2)Aq.

Then, we have M1(α2α1α2 ⊗ α1) = 0, Ma(2)(α1α2α1 ⊗ α2) = 0. So

multiplication maps M1 and Ma(2) are not isomorphisms and Aq have no

stratifying ideal.
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Example

In the case s = 2, t = 1 and a = b = 2, the following sequence P is a

minimal projective resolution of the Aq-module Aq/radAq:

P : · · · → Pn
dn−→ · · · → P1

d1−→ Aq
π−→ Aq/radAq → 0.

where Pn = e1Aq ⊕ e1Aq ⊕ ea(2)Aq, π: Aq → Aq/radAq is the natural

epimorphism, and we define right Aq-homomorphisms dn by

d1 :


e1,1 7→ α2,

e1,2 7→ β1,

ea(2) 7→ α1,

d2m+2 :


e1,1 7→ ea(2)α2α1α2,

e1,2 7→ e1,2β1,

ea(2) 7→ e1,1α1α2α1,

d2m+3 :


e1,1 7→ ea(2)α2,

e1,2 7→ e1,2β1,

ea(2) 7→ e1,1α1,

for m ≥ 0. By d2m+2, Pn is not generated in degree n for n ≥ 2. So Aq

is not Koszul algebra.
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Let A be a graded k-algebra.

.
Graded module is generated in degree i
..

......

A graded A-module M is generated in degree i if Mj = (0) for j < i and

Mi+j = AjMi for all j ≥ 0.

f : M → N is an A-homomorphism of degree i if f(Mj) = Mi+j for all j.

.
Koszul algebra
..

......

A is a Koszul algebra if the minimal projective resolution of A-module

A/radA

· · · → Pn
dn−→ · · · → P1

d1−→ P0 → A/radA → 0

is linear, that is, Pi is generated in degree i and di is A-homomorphism of

degree 0 for i ≥ 0.
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