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Basic definitions

Let R be a ring with an identity. By a module we always mean a
left module.

I A module M ∈ Mod(R) is called super-decomposable if it
has no indecomposable direct summand. Thus, it cannot be
finitely-generated.

I A monomorphism f : X →Y is called pure if the map
idM ⊗ f : M ⊗ X →M ⊗ Y is a monomorphism for every
M ∈ Mod(R).

I A module M ∈ Mod(R) is called pure-injective if it is
injective with respect to the pure monomorphisms.

I A module M ∈ Mod(R) is called super-decomposable
pure-injective if it is both super-decomposable and
pure-injectective.
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Motivation

K -an algebraically closed field

Problem (Prest, 1988)
What is the connection between representation type of a
finite-dimensional algebra A and existence of super-decomposable
pure-injective A-module?

Question
May complexity of the category mod(A) be measured by existence
of super-decomposable pure-injective A-module?
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Known results

Theorem (Prest, 1988)
Every strictly wild algebra over a countable field possesses a
super-decomposable pure-injective module.

Theorem (Puninski, 2003)
Every string algebra of non-polynomial growth over a
countable field possesses a super-decomposable pure-injective
module.

Theorem (Harland, 2011)
Every tubular algebra over a countable field possesses a
super-decomposable pure-injective module.
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Aim of my talk
To sketch the proof of the fact that there exist SPI modules over
strongly simply connected algebras of non-polynomial
growth, if the base field K is countable and char(K ) 6= 2.

Definition (Skowronski, 1993)
Assume that A is a finite dimensional algebra without oriented
cycles in its Gabriel quiver. Then A is called strongly simply
connected if the first Hochschild cohomology group HH1(C ,C )
vanishes for any convex subcategory C of A.
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Plan of my talk

1. The role of countability of the base field K in our result.

2. The existence of SPI module over the incidence algebra of a
garland of length 3 and over the diamond algebra.

3. Some consequences of 2. and an idea of the proof of the main
result.
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1. Why we assume that the field is countable?

There is only one general criterion for existence of SPI modules:

Theorem (Ziegler, 1984)
If the ”width of the lattice of all pp-formulae in one free variable”
over a countable ring R (in particular a countable K -algebra) is
infinite, then there exists a super-decomposable pure-injective
R-module.

Remark
If the field K is countable, then every bound-quiver K -algebra is
countable. Thus in this case we may use the above theorem.



1. Why we assume that the field is countable?

There is only one general criterion for existence of SPI modules:

Theorem (Ziegler, 1984)
If the ”width of the lattice of all pp-formulae in one free variable”
over a countable ring R (in particular a countable K -algebra) is
infinite, then there exists a super-decomposable pure-injective
R-module.

Remark
If the field K is countable, then every bound-quiver K -algebra is
countable. Thus in this case we may use the above theorem.



The notions

I A pp-formula ϕ(v) in one free variable v is a formula of the
following form:

∃x1,...,xm

a11 . . . a1m
...

. . .
...

at1 . . . atm

 ·
x1...
xm

 =

b1...
bt

 · v
for some n,m ∈ N and aij , bk ∈ R. Thus it expresses an
existence of a solution of some system of R-linear equations.

I The set of all pp-formulae forms a modular lattice L in which:
I the meet (the infimum) of ϕ and ψ is given by the conjunction
ϕ ∧ ψ,

I the join (the supremum) of ϕ and ψ is given by
(ϕ+ ψ)(x) := ∃y (ϕ(y) ∧ ψ(x − y)).

I The width of the lattice L expresses the “level of its
complexity”.
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pp-formulae and pointed modules

Question
How to apply the Ziegler criterion in a practical way?

Answer

I Every pp-formula ϕ(v) induces a pointed module (Mϕ,mϕ),
where Mϕ is a finitely-presented R-module and mϕ ∈ Mϕ.

I Pointed modules provide us with a practical method of
applying the theorem of Ziegler - the existence of some
special family of pointed modules implies that the width of
the lattice of all pp-formulae is infinite.
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Two concepts of Puninski

Definition 1 (a dense chain of pointed R-modules)
A dense chain of pointed R-modules is an indexed family
(Mq,mq)q∈Q of pointed R-modules such that:

1. modules Mq are indecomposable and mq 6= 0 for all q ∈ Q,

2. there exist pointed homomorphisms
µq,q′ : (Mq,mq)→(Mq′ ,mq′) for all q < q′,

3. pointed modules (Mq,mq) and (Mq′ ,mq′) are not isomorphic.



Two concepts of Puninski

Definition 2 (an independent pair of dense chains of pointed
R-modules)
An independent pair of dense chains of pointed R-modules is
a pair ((Mq,mq)q∈Q+ , (Nt , nt)t∈Q−) of dense chains of pointed
R-modules such that:

1. there is no pointed homomorhism from (Mq,mq) to (Nt , nt)
nor from (Nt , nt) to (Mq,mq) for all t < 0 < q,

2. the pointed pushout (Mq,mq) ∗ (Nt , nt) of (Mq,mq) and
(Nt , nt) is indecomposable for all t < 0 < q,

3. (Mq,mq) ∗ (Nt , nt) � (Mq′ ,mq′) ∗ (Nt , nt) and
(Mq,mq) ∗ (Nt , nt) � (Mq,mq) ∗ (Nt′ , nt′) for all
t < t ′ < 0 < q < q′.



The criterion

Theorem (Puninski, 2008)
If there exists an independent pair of dense chains of pointed
modules over the ring R, then the width of the lattice of all
pp-formulae over R is infinite.

Corollary (Puninski, Ziegler)
Assume that R be a countable ring. If there exists an independent
pair of dense chains of pointed modules over the ring R, then there
is a super-decomposable pure-injective R-module.
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The criterion

In our considerations, we will also use the following:

Theorem (Prest-Puninski, 1999)
Assume that R, S are rings, A is a full subcategory of mod(R) and
F : A→mod(S) is full, faithful and exact functor. If there exists
an independent pair of dense chains of pointed R-modules in A,
then there is a super-decomposable pure-injective S-module.

Remark
The above theorem is not at all an obvious corollary. Its proof uses
rather advanced techniques of model theory of modules.
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2. The garland and the diamond

A garland G3 of length 3 is a bound-quiver K -algebra of the form
KQ/I , where

Q :=
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  BBBBBBBB 22

δ2
��

γ1

~~||||||||

31 32

and I = 〈γ1α1 − δ2β1, δ1α1 − γ2β1, γ2α2 − δ1β2, δ2α2 − γ1β2〉.



A diamond D is a bound-quiver K -algebra of the form KQ ′/I ′,
where

Q ′ =

1
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and I ′ = 〈υ1ω1 + υ3ω3 + υ4ω4, υ2ω2 + υ3ω3 + υ4ω4〉.



Existence of SPIs over garland and diamond: the idea of
the proof

I Assume char(K ) 6= 2. Then there is a Galois covering
F : Q→Q ′′ of the string algebra S := KQ ′′/I ′′ of
non-polynomial growth by G3, where

Q ′′ :=

x1

β

��
α

��
x2

γ

��
δ
��
x3

and I ′′ = 〈δα, γβ〉.



The idea

I Since S is a string algebra of non-polynomial growth, by
theorem of Puninski it possesses an independent pair of dense
chains of pointed modules.

I It turns out there are many of such independent pairs, so
choose some special independent pair P such that “F•(P)” is
an independent pair of dense chains of pointed modules in
mod(G3), where F• : mod(S)→mod(G3) is the pull-up
functor associated to F (quite hard and technically
complicated).

I Use the independent pair constructed in mod(G3) to build an
independent pair in mod(D) (rather easy).
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Theorem (Kasjan-P., 2011)

1. There is an independent pair of dense chains of pointed
modules in mod(G3). Thus there exists a super-decomposable
pure-injective G3-module.

2. There is an independent pair of dense chains of pointed
modules in mod(D). Thus there exists a super-decomposable
pure-injective D-module.

Technical refinement

1. The independent pair of dense chains of pointed modules in
mod(G3) is entirely contained in prin(G3).

2. The independent pair of dense chains of pointed modules in
mod(D) is entirely contained in prin(D).
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3. Applications to strongly simply connected algebras

Remark
Noerenberg and Skowronski defined a class of so called
polynomial-growth critical algebras (pg-critical) algebras such
that:

I They are certain extensions of representation-infinite tilted
algebras of type D̃n, naturally dived into two classes: B[M]
and B[N, t].

I Every such an algebra is tame of non-polynomial growth.
I Every proper convex subcategory of such an algebra is of

polynomial growth.
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Theorem (Noerenberg-Skowronski, 1997)
Assume that A is a tame strongly simply connected algebra. Then
A is of non-polynomial growth if and only if A contains a
pg-critical convex subcategory.

⇓

Corollary
If every pg-critical algebra possesses a super-decomposable
pure-injective module, then every tame strongly simply connected
algebra possesses such module.
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Theorem (Simson, 1995)

1. There exists fully faithful exact functor
FΓ : prin(G3)→mod(Γ) for any pg-critical algebra Γ of the
form B[N, t].

2. There exists fully faithful exact functor
GΛ : prin(D)→mod(Λ) for any pg-critical algebra Λ of the
form B[M].



Summary

I There are independent dense chains of pointed modules in
prin(G3) and prin(D).

I There are fully faithful exact functors from prin(G3) or
prin(D) to categories of modules over any pg-critical algebra.

I Existence of fully faithful exact functor F : A→mod(S) from
the category A which possesses an independent dense chains
of pointed modules implies the existence of SPI module over
S .

Corollary
There are super-decomposable pure-injective modules over any
pg-critical algebra.
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Theorem
Assume that A is a tame strongly simply connected algebra of
non-polynomial growth. Then there exists a super-decomposable
pure-injective A-module.
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