Averaging t-structures

Original motivation: G finite group acts on algebra A (variety X) \Rightarrow G-actions on $D^b(A)$ or $D^b(X)$

Can more generally consider abstract G-actions on the categories.

Q: Are such actions abelian in nature?

I.e. induced by action on derived equivalent algebra or variety?

This is too hard, and answer is probably negative. Better question: Q: Is there a G-invariant t-structure?

Reasonable to assume we start with a t-structure (X,Y). Then Q: Can (X,Y) be averaged into an invariant t-structure?

Remark: G-invariant t-structure on triangulated category T induces t-structure on equivariant category T^G (always triangulated).

E.g. G acts on $X \Rightarrow \operatorname{coh}(X)^G = \operatorname{coh}[X/G]$ (quotient stack); special case \mathbb{X} weighted projective line, then often $\mathbb{X} = [C/G]$ for some finite group action on a smooth, projective curve C.

Rephrasing: Given t-structures $(X_1, Y_1), \ldots, (X_n, Y_n)$ (get back group situation by (gX, gY) with $g \in G$)

Q: Are the following two t-structures? $(\langle X_1, \dots, X_n \rangle, Y_1 \cap \dots \cap Y_n)$ $(X_1 \cap \dots \cap X_n, \langle Y_1, \dots, Y_n \rangle)$

Equivalently:

- Is the extension closure of aisles an aisle?
- Is the intersection of aisles an aisle?

Easy answer: big categories

T big triangulated category (i.e. has arbitrary coproducts), e.g. D(ModA) or D(Qcoh(X))

t-structure (X,Y) on T compactly generated (c.g.) if there is a subset $C \subset T^c$ with

X = Susp(C) (suspensions, extensions, all coproducts, summands) $Y = \{t \in T \mid Hom^{\leq 0}(C,t) = 0\}$

Proposition: T big, (X_i, Y_i) compactly generated $\Rightarrow \langle X_i \rangle_i$ and $\bigcap_i X_i$ are aisles $\langle Y_i \rangle_i$ and $\bigcap_i Y_i$ are co-aisles

So averaging is always possible in the big world!

Given $t \in T$.

Want sequences $NX(t)_k \to t \to NY(t)_k$ with $NX(t)_k \in \langle X_i \rangle_i \ \forall k$.

Start (k = 1): truncation of t w.r.t. (X_1, Y_1) .

Recursion: Being with triangle for k-1

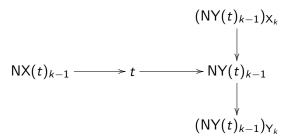
$$NX(t)_{k-1} \longrightarrow t \longrightarrow NY(t)_{k-1}$$

Given $t \in T$.

Want sequences $NX(t)_k \to t \to NY(t)_k$ with $NX(t)_k \in \langle X_i \rangle_i \ \forall k$.

Start (k = 1): truncation of t w.r.t. (X_1, Y_1) .

Recursion: Then truncate $NY(t)_{k-1}$ w.r.t. (X_k, Y_k)

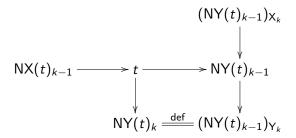


Given $t \in T$.

Want sequences $\mathsf{NX}(t)_k \to t \to \mathsf{NY}(t)_k$ with $\mathsf{NX}(t)_k \in \langle \mathsf{X}_i \rangle_i \ \forall k$.

Start (k = 1): truncation of t w.r.t. (X_1, Y_1) .

Recursion: Define $NY(t)_k := (NY(t)_{k-1})_{Y_k}$

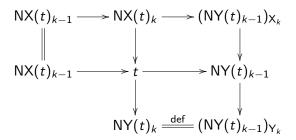


Given $t \in T$.

Want sequences $NX(t)_k \to t \to NY(t)_k$ with $NX(t)_k \in \langle X_i \rangle_i \ \forall k$.

Start (k = 1): truncation of t w.r.t. (X_1, Y_1) .

Recursion: Finally, complete octahedron diagram

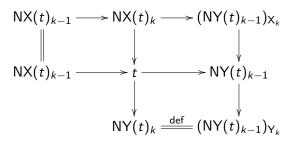


Given $t \in T$.

Want sequences $NX(t)_k \to t \to NY(t)_k$ with $NX(t)_k \in \langle X_i \rangle_i \ \forall k$.

Start (k = 1): truncation of t w.r.t. (X_1, Y_1) .

Recursion: Finally, complete octahedron diagram

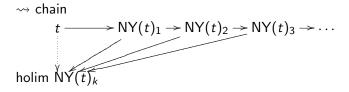


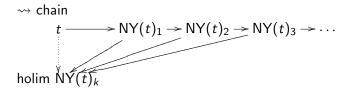
 $NX(t)_k \in \langle X_i \rangle_i$ from the top row.

$$t \longrightarrow NY(t)_1 \rightarrow NY(t)_2 \rightarrow NY(t)_3 \rightarrow \cdots$$

holim $NY(t)_k$

 $t \xrightarrow{\qquad \qquad } \mathsf{NY}(t)_1 \to \mathsf{NY}(t)_2 \to \mathsf{NY}(t)_3 \to \cdots$ holim $\mathsf{NY}(t)_k$





$$t \longrightarrow \mathsf{NY}(t)_1 \to \mathsf{NY}(t)_2 \to \mathsf{NY}(t)_3 \to \cdots$$

$$\mathsf{holim} \ \mathsf{NY}(t)_k$$

$$y := \mathsf{holim} \ \mathsf{NY}(t)_k \in \bigcap_i \mathsf{Y}_i \ (\mathsf{homotopy limit properties})$$

$$t \longrightarrow \mathsf{NY}(t)_1 \to \mathsf{NY}(t)_2 \to \mathsf{NY}(t)_3 \to \cdots$$

$$\mathsf{holim} \ \mathsf{NY}(t)_k$$

$$y := \mathsf{holim} \ \mathsf{NY}(t)_k \in \bigcap_i \mathsf{Y}_i \ (\mathsf{homotopy limit properties})$$

$$x \to t \to y \ \mathsf{with} \ x \in \langle \mathsf{X}_i \rangle_i \ (\mathsf{general nonsense})$$

Subtleties: small categories

Example: Three stable t-structures on $D^b(\mathbb{C}A_2)$ s.t.

- naïve algorithm does not terminate
- $\langle X_1, X_2, X_3 \rangle$ is an aisle.

Auslander-Reiten quiver of the abelian category $mod(\mathbb{C}A_2)$:

Auslander-Reiten quiver of the abelian category $mod(\mathbb{C}A_2)$:

Auslander-Reiten quiver of the derived category $D^b(\mathbb{C}A_2)$:

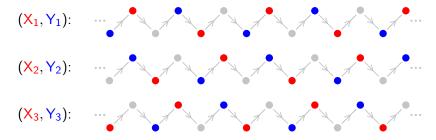
A stable t-structure (X, Y) on $T := D^b(\mathbb{C}A_2)$:

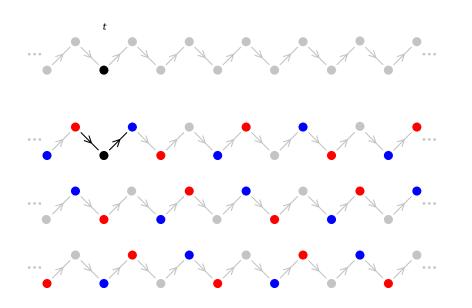
X aisle

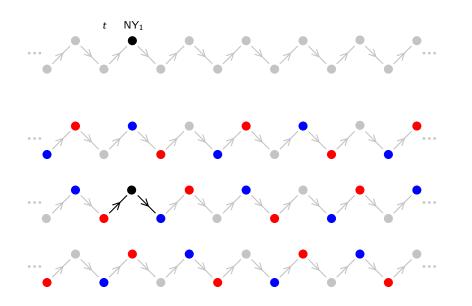
Y co-aisle

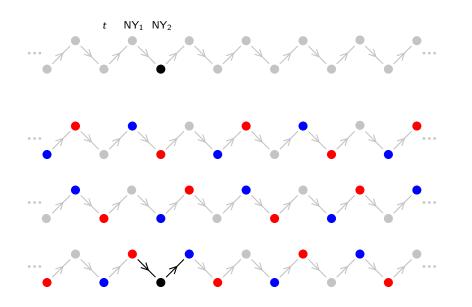
$$\begin{split} & \Sigma X \subseteq X, \ \Sigma^{-1}Y \subseteq Y \\ & \text{Hom}(X,Y) = 0 \\ & \forall t \in T \ \exists \ \text{triangle} \ t_X \to t \to t_Y \to \Sigma t_X \ \text{with} \ t_X \in X, t_Y \in Y \end{split}$$

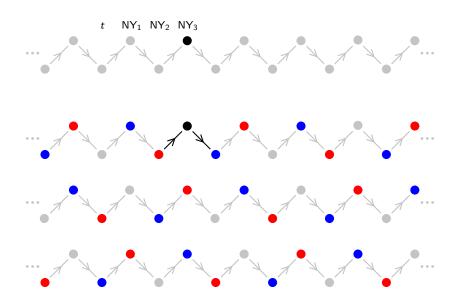
Three stable t-structures on $D^b(\mathbb{C}A_2)$:

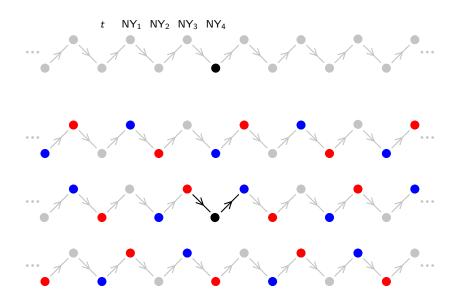


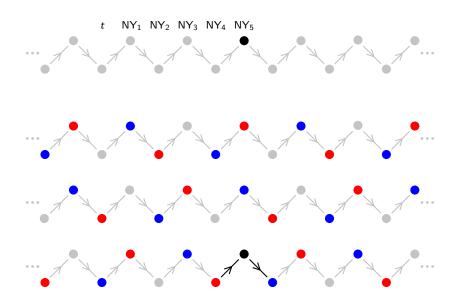


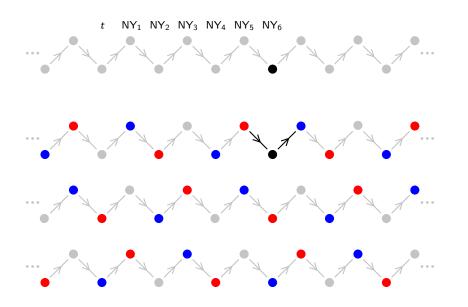


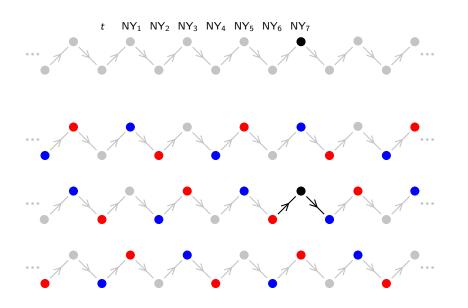


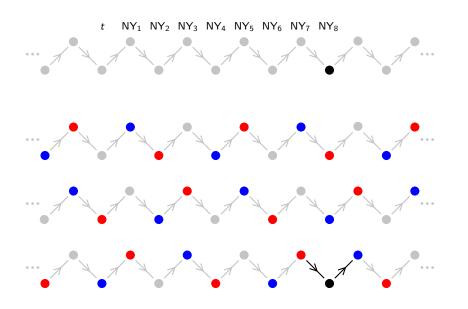


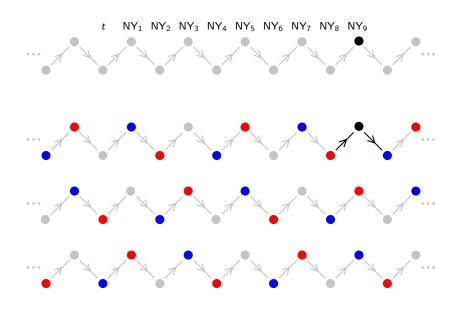


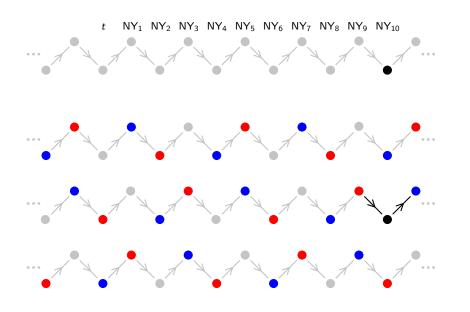


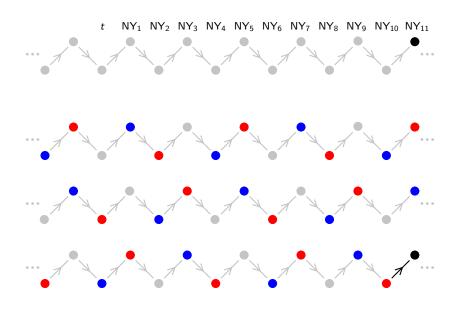












What went wrong:
$$NY(t)_k \to NY(t)_{k+2}$$
 zero map $\forall k$. (holim $NY(t)_k = 0$ in big category.)

Improvement: **Refined algorithm**. (Assume T Krull-Schmidt.) Strip off superfluous summands of $NY(t)_k$: want sequences $RX(t)_k \longrightarrow t \longrightarrow RY(t)_k$ with

- $\mathsf{RX}(t)_k \in \langle \mathsf{X}_i \rangle_i$
- ullet $t
 ightarrow \mathsf{RY}(t)_k$ non-zero on all summands

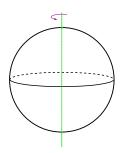
Theorem: refined algorithm terminates for all $t \in T$ $\langle X_i \rangle_i$ is an aisle.

Proposition: Refined algorithm terminates for piecewise hereditary T of finite representation type.

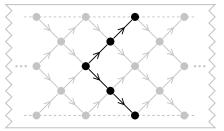
More subtleties

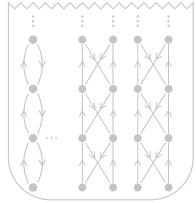
$$T := D^b(\mathbb{C}\tilde{A}_{2,2}) \cong D^b(\mathbb{X}(2,2))$$
$$= D^b([\mathbb{P}^1/G]) = D^b(\mathbb{P}^1)^G$$

$$G \ = \mathbb{Z}/2$$
 rotation by π on $S^2 = \mathbb{P}^1_\mathbb{C}$

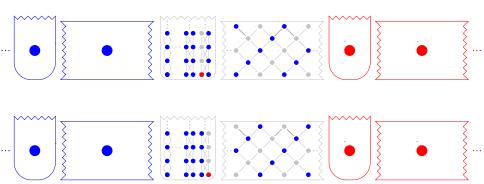


The Auslander-Reiten quiver of the abelian category coh(X(2,2)):

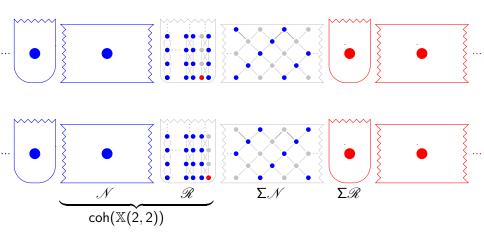




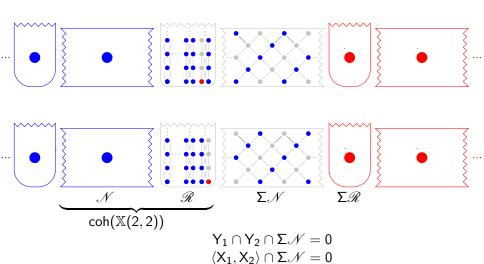
Two t-structures (X_1, Y_1) and (X_2, Y_2) on $D^b(X(2, 2))$:



Two t-structures (X_1, Y_1) and (X_2, Y_2) on $D^b(X(2, 2))$:



Two t-structures (X_1, Y_1) and (X_2, Y_2) on $D^b(\mathbb{X}(2,2))$:



Bad news:

- no truncation triangles for $t \in \Sigma \mathcal{N}$
- extension closure of the two aisles is not an aisle
- averaging is not possible!

Theorem: T piecewise tame hereditary;

$$(X_1,Y_1),\dots,(X_1,Y_1)$$
 t-structures on T. Then

- (i) $\langle X_1, \ldots, X_n \rangle$ is an aisle.
- \iff (ii) Refined algorithm always terminates.
- \iff (iii) For any non-regular component $\mathcal{N}\subset\mathsf{T}$ with monotone sequences in all $\mathsf{Y}_i\cap\mathcal{N}$, there is a monotone sequence in $\mathsf{Y}_1\cap\cdots\cap\mathsf{Y}_n\cap\mathcal{N}$.

Because (iii) is a criterion only in non-regular components, one might expect the same result in the wild case.

Final example: averaging two t-structures in $D^b(\mathbb{C}A_5)$, and the induced t-structure on the equivariant category.

Auslander-Reiten quiver of the abelian category $mod(\mathbb{C}A_5)$:

Auslander-Reiten quiver of the abelian category $mod(\mathbb{C}A_5)$:

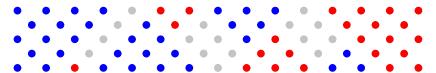
Auslander-Reiten quiver of the derived category $D^b(\mathbb{C}A_5)$:

Auslander-Reiten quiver of the abelian category $mod(\mathbb{C}A_5)$:

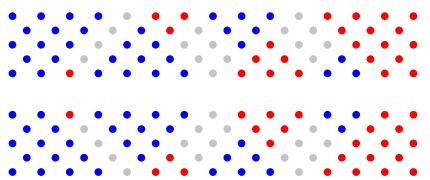
Auslander-Reiten quiver of the derived category $D^b(\mathbb{C}A_5)$:

Involution $\Sigma^{-1}\iota$ of $D^b(\mathbb{C}A_5)$ where ι is the involution of A_5 .

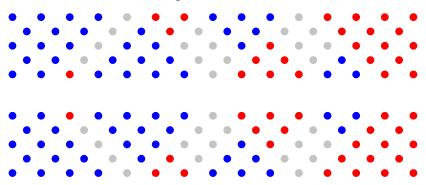
A t-structure (X,Y) on $D^b(\mathbb{C}A_5)$:



The t-structure and its image under the involution:

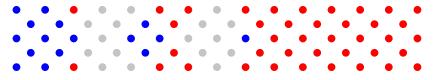


The t-structure and its image under the involution:



And the t-structure averaged by aisle extension:

The *G*-invariant t-structure on $T := D^b(\mathbb{C}A_5)$:



and the induced t-structure on $T^G = D^b(\mathbb{C}D_4)$:

