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I report some results from the doctoral thesis [2] of my student Richard
Harland. A preprint is in preparation.

Suppose that A is a tubular algebra and let r be a positive irrational. It
has been known for a long time that the A-modules of slope r form a nonzero
definable category, Dr, of A-Mod; in particular there are indecomposable pure-
injective modules of slope r. Until [2] however, nothing seems to have been
known about the complexity of Dr. Harland proved that the width, in the sense
of Ziegler [10], of the lattice of pp formulas for Dr is undefined.

Theorem 0.1. ([2, Thm. 34]) Let A be a tubular algebra and let r be a positive
irrational. Then the width of the lattice of pp formulas for the definable cate-
gory Dr, of modules of slope r, is undefined. If A is countable then there is a
superdecomposable pure-injective module of slope r.

The lattice of pp formulas is naturally isomorphic to that of pointed finitely
presented modules, that is pairs (M,m) with M finite-dimensional and m ∈M
under the (pre)order (M,m) ≥ (N,n) iff there is f : M → N with f(m) = n.

Over a finite-dimensional algebra a module is pure-injective if it is a di-
rect summand of a direct product of finite-dimensional modules and a module
is superdecomposable if it is nonzero and has no indecomposable direct sum-
mands.

For some time it had seemed that width being undefined (and the consequent
existence, if the algebra is countable, of a superdecomposable pure-injective)
might be an indication of wildness of the category of finite-dimensional modules
but this turned out to be false: Puninski showed ([6], also see [7]) that the
modules over any non-domestic string (so tame) algebra do have this degree of
complexity. Harland’s result shows this for another class of tame algebras.

The relation between the dimension and existence of superdecomposable
pure-injectives is a result of Ziegler.

Theorem 0.2. [10, 7.1] If D is a definable subcategory of A-Mod and if there
is a superdecomposable pure-injective in D then the width of the lattice of pp
formulas for D is undefined. The converse holds if A (or just the lattice of pp
formulas for D) is countable. [The converse in the case where A is uncountable
is open.]

Here width is a dimension defined in [10]; it takes values which are ordinals
or∞ - that is, undefined. We can give a quick definition of a dimension, breadth,
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which is essentially equivalent in the sense that, though the two dimensions may
have somewhat different values on a particular lattice L, the one is undefined on
L iff the other is (see [4, §10.2] or [5, §7.3.1]). The breadth of a modular lattice
is defined by (transfinitely) inductively collapsing all intervals which are totally
ordered. The value is the number of times this is done before we reach the trivial
lattice, or is ∞ if at some stage we reach a nontrivial quotient lattice without
any totally ordered intervals. It follows that if width is undefined then so is the
Krull-Gabriel dimension - the dimension which is obtained by (transfinitely)
inductively collapsing intervals which are of finite length, see [1], [3, p. 197ff.],
[5, §13.2.1]) and, again in the countable case and by a result [10, 8.3] of Ziegler, it
follows from Harland’s theorem that there are 2ℵ0 indecomposable pure-injective
modules of slope r (we recall that Reiten and Ringel, [8, 13.1], showed that every
indecomposable module over a tubular algebra has a slope).

The proof in [2] takes place mostly in the category of finitely presented
modules, even though all nonzero modules in Dr are infinite-dimensional. This
is in part because the dimension being measured can be expressed completely in
terms of the category of (pointed) finite-dimensional modules but, also, a theme
that runs right through the proof is the way that finite-dimensional modules
approximate the modules with irrational slope r: what happens at r is strongly
determined by what happens near r. For example, there is the following result.

Theorem 0.3. [2, Thm. 30] Let φ/ψ be a pp-pair and let r be a positive irra-
tional. Then the following are equivalent:
(i) φ/ψ is closed near the left of r;
(ii) φ/ψ is closed near the right of r;
(iii) φ/ψ is closed at r.

By “closed at r” we mean closed on every module of slope r; by “(-) closed
near the left of r” we mean that for every ε > 0 there is a finite-dimensional
module with slope in (r − ε, r) on which (-) is closed. Pp-pairs, which may be
thought of as referring to intervals in the lattice of pp formulas, come from the
model theory of modules, which provides techniques used throughout the proof,
but direct reformulations can be made, as follows.

Theorem 0.4. [2, Thm. 30] Let F be a functor from A-mod to Ab which
is finitely presented and let r be a positive irrational. Then the following are
equivalent:
(i) F is closed near the left of r;
(ii) F is closed near the right of r;

(iii)
−→
F is closed at r where

−→
F denotes that extension of F to arbitrary modules

which commutes with direct limits.

To reformulate purely in terms of finite-dimensional modules, we introduce
some brief terminology. Suppose that f : M → N is a morphism of finite-
dimensional modules, let m ∈M and set n = f(m). For any module X say that
the pair (M,m)/(N,n) of pointed modules is closed on X if for every morphism
g : M → X there is a morphism g′ : N → X such that g(m) = g′(n).

Theorem 0.5. [2, Thm. 30] Let f : (M,m)→ (N,n) be a morphism of pointed
finite-dimensional modules and let r be a positive irrational. Then the following
are equivalent:
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(i) (M,m)/(N,n) is closed near the left of r;
(ii) (M,m)/(N,n) is closed near the right of r;
(iii) (M,m)/(N,n) is closed at r.

A good deal of work in the proof is involved in strengthening this, from
cofinality to uniformity. The definition of a pp-pair being closed near the left of
r is compatible with that pp-pair also being open on some modules with slope
arbitrarily close to, and less than, r; it is shown that this does not happen.
This, and the width being undefined, are shown first for some particular tubular
algebras (the algebras C(4, λ), C(6), C(7), C(8) which are used by Ringel in [9,
§5.6]), then certain tilting (“shrinking”) functors are used to transfer results to
the general tubular case.
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