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Preliminaries on Recollements of Abelian Categories

Definitions and Basic Properties
Examples

Definition

A recollement situation between abelian categories </, % and ¥ is
a diagram

o ! B € € Rab(, B, €)
‘\p/ \T/

satisfying the following conditions:

[y

. (l,e,r) is an adjoint triple.

(9,1, p) is an adjoint triple.

2
3. The functors i, |, and r are fully faithful.
4

. Imi = Kere.
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Preliminaries on Recollements of Abelian Categories

Definitions and Basic Properties
Examples

Properties of Ryp(<, B, %)
The functors e: B — € and i: &/ — A are exact.

0000

©

The composition of functors gl = pr = 0.

qi —> Id,y, Idyy — pi, er — Idy and Idy — el.

The functor i induces an equivalence between o/ and the
Serre subcategory Kere = Imi of A.

o/ is a localizing and colocalizing subcategory of % and there
is an equivalence #/o/ ~ €.
For every B € % we have exact sequences:

0 — Ker up —>|e(B)—> B—>iq(B)—>0

0 —ip(B) ~% B Z& re(B) — Coker vg —= 0
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Preliminaries on Recollements of Abelian Categories

Definitions and Basic Properties
Examples

Example: (One idempotent)

Let R be a ring and e = e € R an idempotent. Then we have the
recollement :

R/ReR®r— Re®ere —
Mod-R/ReR — "~ Mod-R ——) . Mod-eRe
\/ \_/
Homg(R/ReR,—) Homege(eR,—)
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Preliminaries on Recollements of Abelian Categories

Definitions and Basic Properties
Examples

Example: (Generalized Matrix Rings)

Let R, S be rings, M a S-R-bimodule and N a R-S-bimodule. Let
¢: Mg N — S be a 5-S-bimodule homomorphism and let

¥: N®s M — R be a R-R-bimodule homomorphism. Then the
above data allow us to define the generalized matrix ring:

R grNs
Moy =\ cmp s

where the multiplication is given by
r n o (' +Y(nem) rn’ + ns’
m s m s mr’ + sm’ ss' + p(m® n')

e = (lR 8), e = (8 105) idempotents elements of A4 ). Then:
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Preliminaries on Recollements of Abelian Categories

Definitions and Basic Properties
Examples

Example: (Generalized Matrix Rings)

A/NetA@— Ne1®e;ne; —
Mod—/\//\ﬂc\Mod—/\(m&eﬂ\q
M Home, e, (€1A,—)

A/ NexAN@A— Ne2@eyne; =

Mod-A/AexA —" Mod-A(, ) =~ Mod-exAe

Homa (A/Aex2\,—) Home, ne, (€2/A,—)

e Mod-A/AeiA ~ Mod-S/Im ¢, Mod-e;Ae; ~ Mod-R
e Mod-A/Ae;A ~ Mod-R/Im, Mod-S ~ Mod-eAe;
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Preliminaries on Recollements of Abelian Categories

Definitions and Basic Properties
Examples

Example: (Symmetric Recollement)

Let R, S rings and gNs a bimodule. Then we have the triangular
matrix ring A = ("g Rgs) and the following recollements:

q Ts
Mod-R — 2~ Mod-A — 2~ Mod-S
\UR_/ \Z/
Us Zg

/\
Mod-S — 25+ Mod-A R Mod-R




Extensions, Global and Finitistic Dimension
Representation Dimension

Homological Algebra in R, (<7,

Let as before Ryp (27, %, %) be a recollement of abelian categories.
Since the functors i: & — % and e: 98 — € are exact, they
induce natural maps:

i% v Ext (X, Y) — Ext(i(X),i(Y))

and
e%,vvi Ext%(Z, W) — ExtZ(e(Z), e(W))
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Extensions, Global and Finitistic Dimension
Representation Dimension

Homological Algebra in Ry, (<7, B, €)

Let as before Ryp (27, %, %) be a recollement of abelian categories.
Since the functors i: & — % and e: 98 — € are exact, they
induce natural maps:

i% v Ext (X, Y) — Ext(i(X),i(Y))

and
e%,vvi Ext%(Z, W) — ExtZ(e(Z), e(W))

Problem
@ Find necessary and sufficient conditions such that the induced
homomorphisms i% ,, and e7 |, are isomorphisms for
0<n<k ’ ’
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Extensions, Global and Finitistic Dimension
Representation Dimension

Homological Algebra in Ry, (<7, B, €)

Let as before Ryp (27, %, %) be a recollement of abelian categories.
Since the functors i: & — % and e: 98 — € are exact, they
induce natural maps:

i% v Ext (X, Y) — Ext(i(X),i(Y))

and
e%,vvi Ext%(Z, W) — ExtZ(e(Z), e(W))

Problem
@ Find necessary and sufficient conditions such that the induced
homomorphisms i% ,, and e7 |, are isomorphisms for
0<n<k ’ ’
o Relate (if possible) the global/finitistic dimension of the
categories involved in Ryp(7, B, F).

Chrysostomos Psaroudakis Homological Theory of R, (<,



Extensions, Global and Finitistic Dimension
Representation Dimension

Homological Algebra in R,, (27, 8B, €)

For 0 < n < oo we define the following full subcategories of Z:

o X, ={Be#®|3 I(P,) — -+ —I(Ph)) —B—0

exact where P; € Proj%¢, 0 <i < n}

0Y,={Bec#B|3 0—B—r(lh) — - —r(l)

exact where [; € Inj%, 0 <i < n}
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Extensions, Global and Finitistic Dimension

Homological Algebra in Ry, (<7, 8, €) Representation Dimension

For 0 < n < oo we define the following full subcategories of Z:

o X, ={Be#|3I(Py)— - —1(P)) — B—0

exact where P; € Proj%¢, 0 <i < n}

0Y,={Bec#B|3 0—B—r(lh) — - —r(l)

exact where [; € Inj%, 0 <i < n}

Note that I(P;) € Proj % and r(/;) € Inj A.
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Extensions, Global and Finitistic Dimension
Representation Dimension

Homological Algebra in R, (<7,

Let Rap(o, B, €’). Then the following statements are equivalent:
© The map i% 1 Extg, (X, Y) — Ext(i(X),i(Y)) is an
isomorphism, VX,Y € &/ and 0 < n < k.
Q Imup € Xy_1, VP € Proj &, where p: le — ldg.

O Imy, €Yy_1, VI €Inj A, where v: Idg — re.
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Extensions, Global and Finitistic Dimension
Representation Dimension

Homological Algebra in R,, (27, 8B, €)

Let Rap(o, B, €’). Then the following statements are equivalent:
© The map i% 1 Extg, (X, Y) — Ext(i(X),i(Y)) is an
isomorphism, VX,Y € &/ and 0 < n < k.
Q Imup € Xy_1, VP € Proj &, where p: le — ldg.

O Imy, €Yy_1, VI €Inj A, where v: Idg — re.

Let Rap(/, B, €). Then the following statements are equivalent:
O The map e7 i Ext%(Z, W) — Exty(e(Z),e(W)) is an
isomorphism, VW € 2, (resp. VZ € #), and 0 < n < k.
Q Z e Xy (resp. W e Yyyr).
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Extensions, Global and Finitistic Dimension
Representation Dimension

Homological Algebra in R,, (27, 8B, €)

Theorem
Let Rop(, %, F).
@ We have:

gl.dm%Z < gl.dim.« + gl.dim¥

+ sup{pd4i(P) | P € Proja/} +1
Q Ifgl.dm%Z < 1 then:

gldme < 1 and gl.dm% <1

© If sup{pdzi(P) | P € Proj«/} <1, then the following are

equivalent:

1. gl.dm Z < .
2. gl.dim«/ < oo and gl.dim% < oco.
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Extensions, Global and Finitistic Dimension
Representation Dimension

Homological Algebra in R,, (27, 8B, €)

Let F: 2 — G be a right exact functor between abelian
categories where we assume that & has enough projectives.

We say that F has locally bounded homological dimension, if there
exists n > 0 such that whenever L,,F(A) = 0 for m > 0 then
LmF(A) =0 for every m > n+ 1.

The minimum such n (if it exists) is called the locally bounded
homological dimension of F and is denoted by |.b.hom.dimF.
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Extensions, Global and Finitistic Dimension
Representation Dimension

Homological Algebra in R, (27

Theorem
Let Rap(e7, B, 7).

@ If the functor |: € — £ has locally bounded homological
dimension, then:

FPD (%) < FPD (%) + |.b.hom.dim|
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Extensions, Global and Finitistic Dimension
Representation Dimension

Homological Algebra in R,, (27, 8B, €)

Theorem
Let Rap(e7, B, 7).

@ If the functor |: € — £ has locally bounded homological
dimension, then:

FPD (%) < FPD (%) + |.b.hom.dim|

@ |If the functors r: € —> % and p: 8 — o are exact, then:

FPD(«/) < FPD(#) < FPD(&)+ FPD(%) + 1
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Extensions, Global and Finitistic Dimension
Representation Dimension

Let Rap(e7, B, 7).
@ If the functor |: € — £ has locally bounded homological
dimension, then:

Homological Algebra in R,, (27, 8B, €)

FPD (%) < FPD (%) + l.b.hom.dim|

@ |If the functors r: € —> % and p: 8 — o are exact, then:

FPD(«/) < FPD(#) < FPD(&)+ FPD(%) + 1

Let R be a ring and e = e € R. If the functor Re ®cge — has
locally bounded homological dimension then:

Fin.dimeRe < Fin.dim R + l.b.hom.dim Re ®ere —
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Extensions, Global and Finitistic Dimension
Representation Dimension

Homological Algebra in R, (27

Corollary

Let A be an Artin algebra with rep.dim A < 3 and e an idempotent
element of A. Then:

© rep.dimele < 3.
@ If the A-module A/AeA is projective, then:

rep.dimA/AeA < 3
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Extensions, Global and Finitistic Dimension
Representation Dimension

Homological Algebra in R,, (27, 8B, €)

Corollary

Let A be an Artin algebra with rep.dim A < 3 and e an idempotent
element of A. Then:

© rep.dimele < 3.
@ If the A-module A/AeA is projective, then:

rep.dimA/AeA < 3

Corollary
Let A be an Artin algebra. Then:

| \

rep.dimA <3 <= rep.dimEnd,(P) <3

for any finitely generated projective A-module P.
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Extensions, Global and Finitistic Dimension
Representation Dimension

Homological Algebra in R, (-

Let A be an Artin algebra with rep.dim A < 3 and e2=ecA.
Then:

fin. dim e\e < 0o
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Extensions, Global and Finitistic Dimension
Representation Dimension

Homological Algebra in R, (27

Let A be an Artin algebra with rep.dimA < 3 and e = e € A.
Then:
fin.dim eAe < o0

. . I . .
rep.dimA <3 = rep.dimele <3 =52 fin.dim eAe < o0
Todorov

Ol
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Extensions, Global and Finitistic Dimension
Representation Dimension

Homological Algebra in R,, (27, 8B, €)

Corollary
Let A be an Artin algebra and ' = Enda(A @ DA). Then:

rep.dimA < gl.dimA +gl.dimpre, [ +1

and
gl. dimr/re/\rr < gl.diml/Tepl 4+ pd; I'/TeAl

where gl. dimp e, T = sup{pdr X | X € mod-I'/Texl'}.
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Extensions, Global and Finitistic Dimension
Representation Dimension

Homological Algebra in R,, (27, 8B, €)

Corollary
Let A be an Artin algebra and ' = Enda(A @ DA). Then:

rep.dimA < gl.dimA +gl.dimpre, [ +1
and
gl. dimpjre,r T < gl.dimT/Tel + pdr I'/Teal
where gl. dimp e, T = sup{pdr X | X € mod-I'/Texl'}.

O =Endp(AN®DA) ~ (HomAé\D/\,/\) D/\A)

@ en = (% 9) idempotent element of T.

00
L L
©@ mod-I'/Te\l — mod-I — mod-A : recollement.
u \_/
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Rouquier Dimension

Triangular Matrix Rings

Recollements of Triangulated Categories

Definition
A recollement situation between triangulated categories U, T and V
is a diagram

q |
N N
u ‘I V Rtr(u7 77 V)
\F/ \T/

of triangulated functors satisfying the following conditions:

[y

. (l,e,r) is an adjoint triple.
. (9,1, p) is an adjoint triple.

2
3. The functors i, |, and r are fully faithful.
4

. Imi = Kere.
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Rouquier Dimension
Triangular Matrix Rings

Recollements of Triangulated Categories

Let T be a triangulated category and X € J. We write:
(Xy=(X)1 =add{X[i] | i € Z}

(X)pp1=add{Y €T |3 M— Y — N — M[1] triangle
with M € (X) and N € (X),}

Chrysostomos Psaroudakis Homological Theory of R,, (=, 8B, €)



Rouquier Dimension
Triangular Matrix Rings

Recollements of Triangulated Categories

Let T be a triangulated category and X € J. We write:
(Xy=(X)1 =add{X[i] | i € Z}
(X)pp1=add{Y €T |3 M— Y — N — M[1] triangle

with M € (X) and N € (X),}

Then the Rouquier dimension of T is defined as follows:

dimT = min{n > 0| 3 X € T such that (X),11 =T}

Chrysostomos Psaroudakis Homological Theory of R,, (=, 8, €)



Rouquier Dimension

Recollements of Triangulated Categories Riareagilatgtines

Problem

Given a Ry (U, T,V), can we give bounds for the dimension of T in
terms of the dimensions of U and V ?

Chrysostomos Psaroudakis Homological Theory of R, (<«



Rouquier Dimension
Triangular Matrix Rings

Recollements of Triangulated Categories

Problem

Given a Ry (U, T,V), can we give bounds for the dimension of T in
terms of the dimensions of U and V ?

Let (U, T,V) be a recollement of triangulated categories. Then:

max {dimU,dimV} < dimT < dimU+dimV +1
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Rouquier Dimension
Triangular Matrix Rings

Recollements of Triangulated Categories

Let A = (’5 Rgls) be a triangular matrix ring. Then:

max {dim D?(R),dim D?(S)} < dimD*(A)

< dimD®(R) +dimD?(S) + 1
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