Homological Theory of Recollements of Abelian Categories

Chrysostomos Psaroudakis University of Ioannina

ICRA XV, Bielefeld, Germany August 14, 2012

Table of contents

- 1 Preliminaries on Recollements of Abelian Categories
 - Definitions and Basic Properties
 - Examples
- 2 Homological Algebra in $R_{ab}(\mathcal{A}, \mathcal{B}, \mathcal{C})$
 - Extensions, Global and Finitistic Dimension
 - Representation Dimension
- 3 Recollements of Triangulated Categories
 - Rouquier Dimension
 - Triangular Matrix Rings

Definition

A recollement situation between abelian categories \mathscr{A},\mathscr{B} and \mathscr{C} is a diagram

satisfying the following conditions:

- 1. (l, e, r) is an adjoint triple.
- 2. (q, i, p) is an adjoint triple.
- 3. The functors i, I, and r are fully faithful.
- **4.** Im i = Ker e.

Properties of $R_{ab}(\mathscr{A}, \mathscr{B}, \mathscr{C})$

- **1** The functors $e: \mathscr{B} \longrightarrow \mathscr{C}$ and $i: \mathscr{A} \longrightarrow \mathscr{B}$ are exact.
- 2 The composition of functors ql = pr = 0.
- **1** The functor i induces an equivalence between \mathscr{A} and the Serre subcategory Ker $e = \operatorname{Im} i$ of \mathscr{B} .
- **5** \mathscr{A} is a localizing and colocalizing subcategory of \mathscr{B} and there is an equivalence $\mathscr{B}/\mathscr{A} \simeq \mathscr{C}$.
- **6** For every $B \in \mathcal{B}$ we have exact sequences:

$$0 \longrightarrow \operatorname{Ker} \mu_B \longrightarrow \operatorname{le}(B) \stackrel{\mu_B}{\longrightarrow} B \stackrel{\lambda_B}{\longrightarrow} \operatorname{iq}(B) \longrightarrow 0$$

$$0 \longrightarrow \operatorname{ip}(B) \xrightarrow{\kappa_B} B \xrightarrow{\nu_B} \operatorname{re}(B) \longrightarrow \operatorname{Coker} \nu_B \longrightarrow 0$$

Example: (One idempotent)

Let R be a ring and $e^2 = e \in R$ an idempotent. Then we have the recollement:

Example: (Generalized Matrix Rings)

Let R, S be rings, M a S-R-bimodule and N a R-S-bimodule. Let $\phi\colon M\otimes_R N\longrightarrow S$ be a S-S-bimodule homomorphism and let $\psi\colon N\otimes_S M\longrightarrow R$ be a R-R-bimodule homomorphism. Then the above data allow us to define the **generalized matrix ring**:

$$\Lambda_{(\phi,\psi)} = \begin{pmatrix} R & {}_R N_S \\ {}_S M_R & S \end{pmatrix}$$

where the multiplication is given by

$$\begin{pmatrix} r & n \\ m & s \end{pmatrix} \cdot \begin{pmatrix} r' & n' \\ m' & s' \end{pmatrix} = \begin{pmatrix} rr' + \psi(n \otimes m') & rn' + ns' \\ mr' + sm' & ss' + \phi(m \otimes n') \end{pmatrix}$$

 $e_1=\left(egin{smallmatrix} 1_R & 0 \\ 0 & 0 \end{smallmatrix}\right)$, $e_2=\left(egin{smallmatrix} 0 & 0 \\ 0 & 1_S \end{smallmatrix}\right)$ idempotents elements of $\Lambda_{(\phi,\psi)}$. Then:

Example: (Generalized Matrix Rings)

- $\operatorname{\mathsf{Mod-}}\Lambda/\Lambda e_1\Lambda \simeq \operatorname{\mathsf{Mod-}}S/\operatorname{\mathsf{Im}}\phi$, $\operatorname{\mathsf{Mod-}}e_1\Lambda e_1 \simeq \operatorname{\mathsf{Mod-}}R$
- Mod- $\Lambda/\Lambda e_2\Lambda \simeq \text{Mod-}R/\text{Im }\psi$, Mod- $S \simeq \text{Mod-}e_2\Lambda e_2$

Example: (Symmetric Recollement)

Let R, S rings and $_RN_S$ a bimodule. Then we have the triangular matrix ring $\Lambda = \begin{pmatrix} R & RN_S \\ 0 & S \end{pmatrix}$ and the following recollements:

Let as before $\mathsf{R}_\mathsf{ab}(\mathscr{A},\mathscr{B},\mathscr{C})$ be a recollement of abelian categories. Since the functors $\mathsf{i}\colon \mathscr{A} \longrightarrow \mathscr{B}$ and $\mathsf{e}\colon \mathscr{B} \longrightarrow \mathscr{C}$ are exact, they induce natural maps:

$$i_{X,Y}^n$$
: $\operatorname{Ext}_{\mathscr{A}}^n(X,Y) \longrightarrow \operatorname{Ext}_{\mathscr{B}}^n(i(X),i(Y))$

and

$$e_{Z,W}^n$$
: $\operatorname{Ext}_{\mathscr{B}}^n(Z,W) \longrightarrow \operatorname{Ext}_{\mathscr{C}}^n(\operatorname{e}(Z),\operatorname{e}(W))$

Let as before $R_{ab}(\mathscr{A},\mathscr{B},\mathscr{C})$ be a recollement of abelian categories. Since the functors $i\colon \mathscr{A}\longrightarrow \mathscr{B}$ and $e\colon \mathscr{B}\longrightarrow \mathscr{C}$ are exact, they induce natural maps:

$$i_{X,Y}^n : \operatorname{Ext}_{\mathscr{A}}^n(X,Y) \longrightarrow \operatorname{Ext}_{\mathscr{B}}^n(i(X),i(Y))$$

and

$$e_{Z,W}^n$$
: $\operatorname{Ext}_{\mathscr{B}}^n(Z,W) \longrightarrow \operatorname{Ext}_{\mathscr{C}}^n(\operatorname{e}(Z),\operatorname{e}(W))$

Problem

• Find necessary and sufficient conditions such that the induced homomorphisms $i_{X,Y}^n$ and $e_{Z,W}^n$ are isomorphisms for $0 \le n \le k$.

Let as before $R_{ab}(\mathscr{A},\mathscr{B},\mathscr{C})$ be a recollement of abelian categories. Since the functors $i\colon \mathscr{A}\longrightarrow \mathscr{B}$ and $e\colon \mathscr{B}\longrightarrow \mathscr{C}$ are exact, they induce natural maps:

$$i_{X,Y}^n$$
: $\operatorname{Ext}_{\mathscr{A}}^n(X,Y) \longrightarrow \operatorname{Ext}_{\mathscr{B}}^n(i(X),i(Y))$

and

$$e_{Z,W}^n$$
: $\operatorname{Ext}_{\mathscr{B}}^n(Z,W) \longrightarrow \operatorname{Ext}_{\mathscr{C}}^n(\operatorname{e}(Z),\operatorname{e}(W))$

Problem

- Find necessary and sufficient conditions such that the induced homomorphisms $i_{X,Y}^n$ and $e_{Z,W}^n$ are isomorphisms for $0 \le n \le k$.
- Relate (if possible) the global/finitistic dimension of the categories involved in $R_{ab}(\mathscr{A}, \mathscr{B}, \mathscr{E})$.

For $0 \le n \le \infty$ we define the following full subcategories of \mathcal{B} :

- $\mathfrak{X}_n = \{B \in \mathscr{B} \mid \exists \ \mathsf{I}(P_n) \longrightarrow \cdots \longrightarrow \mathsf{I}(P_0) \longrightarrow B \longrightarrow 0$ exact where $P_i \in \mathsf{Proj}\,\mathscr{C}, \ 0 \le i \le n\}$
- $y_n = \{B \in \mathcal{B} \mid \exists \ 0 \longrightarrow B \longrightarrow \mathsf{r}(I_0) \longrightarrow \cdots \longrightarrow \mathsf{r}(I_n)$ exact where $I_i \in \mathsf{Inj}\,\mathscr{C}, \ 0 \le i \le n\}$

For $0 \le n \le \infty$ we define the following full subcategories of \mathcal{B} :

•
$$\mathfrak{X}_n = \{B \in \mathscr{B} \mid \exists \ \mathsf{I}(P_n) \longrightarrow \cdots \longrightarrow \mathsf{I}(P_0) \longrightarrow B \longrightarrow 0$$

exact where $P_i \in \mathsf{Proj}\,\mathscr{C}, \ 0 \le i \le n\}$

•
$$y_n = \{B \in \mathcal{B} \mid \exists \ 0 \longrightarrow B \longrightarrow \mathsf{r}(I_0) \longrightarrow \cdots \longrightarrow \mathsf{r}(I_n)$$

exact where $I_i \in \mathsf{Inj}\,\mathcal{C}, \ 0 \le i \le n\}$

Note that $I(P_i) \in \text{Proj } \mathcal{B} \text{ and } r(I_i) \in \text{Inj } \mathcal{B}$.

Let $R_{ab}(\mathscr{A}, \mathscr{B}, \mathscr{C})$. Then the following statements are equivalent:

- ① The map $i_{X,Y}^n \colon \operatorname{Ext}_{\mathscr{A}}^n(X,Y) \longrightarrow \operatorname{Ext}_{\mathscr{B}}^n(i(X),i(Y))$ is an isomorphism, $\forall X,Y \in \mathscr{A}$ and $0 \le n \le k$.
- ② Im $\mu_P \in \mathcal{X}_{k-1}$, $\forall P \in \text{Proj } \mathcal{B}$, where μ : le $\longrightarrow \text{Id}_{\mathcal{B}}$.
- **3** Im $\nu_I \in \mathcal{Y}_{k-1}$, $\forall I \in \text{Inj } \mathcal{B}$, where $\nu \colon \text{Id}_{\mathcal{B}} \longrightarrow \text{re.}$

Let $R_{ab}(\mathscr{A}, \mathscr{B}, \mathscr{C})$. Then the following statements are equivalent:

- ① The map $i_{X,Y}^n \colon \operatorname{Ext}_{\mathscr{A}}^n(X,Y) \longrightarrow \operatorname{Ext}_{\mathscr{B}}^n(i(X),i(Y))$ is an isomorphism, $\forall X,Y \in \mathscr{A}$ and $0 \le n \le k$.
- ② Im $\mu_P \in \mathcal{X}_{k-1}$, $\forall P \in \text{Proj } \mathcal{B}$, where μ : le $\longrightarrow \text{Id}_{\mathcal{B}}$.
- **3** Im $\nu_I \in \mathcal{Y}_{k-1}$, $\forall I \in \text{Inj } \mathcal{B}$, where $\nu : \text{Id}_{\mathscr{B}} \longrightarrow \text{re.}$

Theorem

Let $R_{ab}(\mathscr{A}, \mathscr{B}, \mathscr{C})$. Then the following statements are equivalent:

- ① The map $e_{Z,W}^n \colon \operatorname{Ext}_{\mathscr{B}}^n(Z,W) \longrightarrow \operatorname{Ext}_{\mathscr{C}}^n(\operatorname{e}(Z),\operatorname{e}(W))$ is an isomorphism, $\forall W \in \mathscr{B}$, (resp. $\forall Z \in \mathscr{B}$), and $0 \le n \le k$.
- $2 \in \mathfrak{X}_{k+1}$ (resp. $W \in \mathcal{Y}_{k+1}$).

Let $R_{ab}(\mathscr{A}, \mathscr{B}, \mathscr{C})$.

We have:

$$\operatorname{\mathsf{gl.}}\operatorname{\mathsf{dim}}\mathscr{B}\leq\operatorname{\mathsf{gl.}}\operatorname{\mathsf{dim}}\mathscr{A}+\operatorname{\mathsf{gl.}}\operatorname{\mathsf{dim}}\mathscr{C}$$

$$+\sup\{\operatorname{pd}_{\mathscr{B}}\operatorname{i}(P)\mid P\in\operatorname{Proj}\mathscr{A}\}+1$$

2 If gl. dim $\mathscr{B} \leq 1$ then:

$$\mathsf{gl.\,dim}\,\mathscr{A} \ \leq \ 1 \quad \mathsf{and} \quad \mathsf{gl.\,dim}\,\mathscr{C} \ \leq \ 1$$

- ③ If $\sup\{\operatorname{pd}_{\mathscr{B}}\operatorname{i}(P)\mid P\in\operatorname{Proj}\mathscr{A}\}\leq 1$, then the following are equivalent:
 - 1. gl. dim $\mathscr{B} < \infty$.
 - **2.** gl. dim $\mathscr{A} < \infty$ and gl. dim $\mathscr{C} < \infty$.

Let $F: \mathscr{D} \longrightarrow \mathcal{G}$ be a right exact functor between abelian categories where we assume that \mathscr{D} has enough projectives.

We say that F has locally bounded homological dimension, if there exists $n \ge 0$ such that whenever $L_m F(A) = 0$ for $m \gg 0$ then $L_m F(A) = 0$ for every m > n + 1.

The minimum such n (if it exists) is called the **locally bounded homological dimension** of F and is denoted by l.b.hom.dim F.

Let $R_{ab}(\mathscr{A}, \mathscr{B}, \mathscr{C})$.

① If the functor I: $\mathscr{C} \longrightarrow \mathscr{B}$ has locally bounded homological dimension, then:

$$FPD(\mathscr{C}) \leq FPD(\mathscr{B}) + l.b.hom.dim l$$

Let $R_{ab}(\mathscr{A}, \mathscr{B}, \mathscr{C})$.

① If the functor I: $\mathscr{C} \longrightarrow \mathscr{B}$ has locally bounded homological dimension, then:

$$FPD(\mathscr{C}) \leq FPD(\mathscr{B}) + I.b.hom.dim I$$

2 If the functors $r: \mathscr{C} \longrightarrow \mathscr{B}$ and $p: \mathscr{B} \longrightarrow \mathscr{A}$ are exact, then:

$$\mathsf{FPD}(\mathscr{A}) \leq \mathsf{FPD}(\mathscr{B}) \leq \mathsf{FPD}(\mathscr{A}) + \mathsf{FPD}(\mathscr{C}) + 1$$

Let $R_{ab}(\mathscr{A}, \mathscr{B}, \mathscr{C})$.

① If the functor I: $\mathscr{C} \longrightarrow \mathscr{B}$ has locally bounded homological dimension, then:

$$FPD(\mathscr{C}) \leq FPD(\mathscr{B}) + I.b.hom.dim I$$

② If the functors $r: \mathscr{C} \longrightarrow \mathscr{B}$ and $p: \mathscr{B} \longrightarrow \mathscr{A}$ are exact, then:

$$\mathsf{FPD}(\mathscr{A}) \leq \mathsf{FPD}(\mathscr{B}) \leq \mathsf{FPD}(\mathscr{A}) + \mathsf{FPD}(\mathscr{C}) + 1$$

Corollary

Let R be a ring and $e^2 = e \in R$. If the functor $Re \otimes_{eRe}$ — has locally bounded homological dimension then:

Fin. dim
$$eRe < Fin. dim R + I.b.hom.dim $Re \otimes_{eRe} -$$$

Let Λ be an Artin algebra with rep. dim $\Lambda \leq 3$ and e an idempotent element of Λ . Then:

- rep. dim $e \Lambda e \leq 3$.
- 2 If the Λ -module $\Lambda/\Lambda e\Lambda$ is projective, then:

rep. dim
$$\Lambda/\Lambda e\Lambda \leq 3$$

Let Λ be an Artin algebra with rep. dim $\Lambda \leq 3$ and e an idempotent element of Λ . Then:

- rep. dim $e \Lambda e \leq 3$.
- 2 If the Λ -module $\Lambda/\Lambda e\Lambda$ is projective, then:

rep. dim
$$\Lambda/\Lambda e\Lambda \leq 3$$

Corollary

Let Λ be an Artin algebra. Then:

rep. dim
$$\Lambda \leq 3 \iff \text{rep. dim End}_{\Lambda}(P) \leq 3$$

for any finitely generated projective Λ -module P.

Let Λ be an Artin algebra with rep. dim $\Lambda \leq 3$ and $e^2 = e \in \Lambda$. Then:

fin. dim $e\Lambda e < \infty$

Let Λ be an Artin algebra with rep. dim $\Lambda \leq 3$ and $e^2 = e \in \Lambda$. Then:

fin. dim
$$e\Lambda e < \infty$$

Proof.

rep. dim
$$\Lambda \leq 3 \implies$$
 rep. dim $e\Lambda e \leq 3 \xrightarrow[Todorov]{lgusa}$ fin. dim $e\Lambda e < \infty$

Let Λ be an Artin algebra and $\Gamma = \operatorname{End}_{\Lambda}(\Lambda \oplus \operatorname{D} \Lambda)$. Then:

$$\mathsf{rep.\,dim}\,\Lambda \ \leq \ \mathsf{gl.\,dim}\,\Lambda + \mathsf{gl.\,dim}_{\Gamma/\Gamma e_\Lambda\Gamma}\Gamma + 1$$

and

$$\mathsf{gl.\,dim}_{\Gamma/\Gamma e_{\Lambda}\Gamma}\Gamma \ \leq \ \mathsf{gl.\,dim}\,\Gamma/\Gamma e_{\Lambda}\Gamma + \mathsf{pd}_{\Gamma}\,\Gamma/\Gamma e_{\Lambda}\Gamma$$

where gl. $\dim_{\Gamma/\Gamma e_{\Lambda}\Gamma}\Gamma = \sup\{\operatorname{pd}_{\Gamma}X \mid X \in \operatorname{mod-}\Gamma/\Gamma e_{\Lambda}\Gamma\}.$

Let Λ be an Artin algebra and $\Gamma = \operatorname{End}_{\Lambda}(\Lambda \oplus \operatorname{D} \Lambda)$. Then:

$$\mathsf{rep.\,dim}\,\Lambda \ \leq \ \mathsf{gl.\,dim}\,\Lambda + \mathsf{gl.\,dim}_{\Gamma/\Gamma e_\Lambda\Gamma}\Gamma + 1$$

and

$$\mathsf{gl.\,dim}_{\Gamma/\Gamma e_\Lambda\Gamma}\Gamma \ \leq \ \mathsf{gl.\,dim}\,\Gamma/\Gamma e_\Lambda\Gamma + \mathsf{pd}_\Gamma\,\Gamma/\Gamma e_\Lambda\Gamma$$

where gl. $\dim_{\Gamma/\Gamma e_{\Lambda}\Gamma}\Gamma = \sup\{\operatorname{pd}_{\Gamma}X \mid X \in \operatorname{mod-}\Gamma/\Gamma e_{\Lambda}\Gamma\}.$

Proof.

- $\bullet \Gamma = \mathsf{End}_{\Lambda}(\Lambda \oplus \mathsf{D}\,\Lambda) \simeq \begin{pmatrix} \Lambda & \mathsf{D}\,\Lambda \\ \mathsf{Hom}_{\Lambda}(\mathsf{D}\,\Lambda,\Lambda) & \Lambda \end{pmatrix}.$
- $e_{\Lambda} = \begin{pmatrix} 1_{\Lambda} & 0 \\ 0 & 0 \end{pmatrix}$ idempotent element of Γ.

Definition

A recollement situation between triangulated categories \mathcal{U}, \mathcal{T} and \mathcal{V} is a diagram

of triangulated functors satisfying the following conditions:

- 1. (l, e, r) is an adjoint triple.
- 2. (q, i, p) is an adjoint triple.
- 3. The functors i, I, and r are fully faithful.
- 4. Im i = Ker e.

Let \mathcal{T} be a triangulated category and $X \in \mathcal{T}$. We write:

$$\langle X \rangle = \langle X \rangle_1 = \mathsf{add}\{X[i] \mid i \in \mathbb{Z}\}$$

$$\langle X \rangle_{n+1} = \mathsf{add}\{Y \in \mathcal{T} \mid \exists \ M \longrightarrow Y \longrightarrow N \longrightarrow M[1] \ \mathsf{triangle}$$
 with $M \in \langle X \rangle$ and $N \in \langle X \rangle_n\}$

Let \mathcal{T} be a triangulated category and $X \in \mathcal{T}$. We write:

$$\langle X \rangle = \langle X \rangle_1 = \mathsf{add}\{X[i] \mid i \in \mathbb{Z}\}$$

$$\langle X \rangle_{n+1} = \mathsf{add}\{Y \in \mathcal{T} \mid \exists \ M \longrightarrow Y \longrightarrow N \longrightarrow M[1] \ \mathsf{triangle}$$
 with $M \in \langle X \rangle$ and $N \in \langle X \rangle_n\}$

Then the **Rouquier dimension** of \mathfrak{T} is defined as follows:

$$\dim \mathfrak{T} = \min\{n \geq 0 \mid \exists X \in \mathfrak{T} \text{ such that } \langle X \rangle_{n+1} = \mathfrak{T}\}$$

Problem

Given a $R_{tr}(\mathcal{U}, \mathcal{T}, \mathcal{V})$, can we give bounds for the dimension of \mathcal{T} in terms of the dimensions of \mathcal{U} and \mathcal{V} ?

Problem

Given a $R_{tr}(\mathcal{U}, \mathcal{T}, \mathcal{V})$, can we give bounds for the dimension of \mathcal{T} in terms of the dimensions of \mathcal{U} and \mathcal{V} ?

Theorem

Let $(\mathcal{U}, \mathcal{T}, \mathcal{V})$ be a recollement of triangulated categories. Then:

$$\max \left\{ \dim \mathcal{U}, \dim \mathcal{V} \right\} \leq \dim \mathcal{T} \leq \dim \mathcal{U} + \dim \mathcal{V} + 1$$

Let $\Lambda = \begin{pmatrix} R & RN_S \\ 0 & S \end{pmatrix}$ be a triangular matrix ring. Then:

$$\max \left\{ \dim \mathbf{D}^b(R), \dim \mathbf{D}^b(S) \right\} \leq \dim \mathbf{D}^b(\Lambda)$$

$$\leq \dim \mathbf{D}^b(R) + \dim \mathbf{D}^b(S) + 1$$