Bases of acyclic quantum cluster algebras

Fan Qin

University Paris Diderot - Paris 7

ICRA 2012, Bielefeld, August 16

Introduction	Quantum cluster algebra
Explicit construction	
Correction technique	Main result

Fix $n \leq m \in \mathbb{N}$. A compatible pair (\widetilde{B}, Λ) : • $\widetilde{B} = \begin{pmatrix} B \\ B^c \end{pmatrix} \in Mat_{m \times n}(\mathbb{Z})$, full rank; • $\Lambda \in SkewMat_{m \times m}(\mathbb{Z})$; • $\Lambda(-\widetilde{B}) = \begin{pmatrix} \delta \cdot \mathbf{1}_n \\ 0 \end{pmatrix}$ for some $\delta \in \mathbb{N}$. Quantum torus $\mathcal{T} = \mathcal{T}(\Lambda)$:

- Laurent polynomial ring $\mathbb{Z}[q^{\pm \frac{1}{2}}][x_1^{\pm}, \dots, x_m^{\pm}](+, \cdot);$
- twisted product $*: x_i * x_j = q^{\frac{1}{2}\Lambda_{ij}} x_i \cdot x_j$.

- Quantum cluster variables : generators defined recursively by mutations.
- Quantum cluster monomials: certain monomials of cluster variables.

Introduction	Quantum cluster algebra
Explicit construction	
Correction technique	Main result

Fix $n \leq m \in \mathbb{N}$. A compatible pair (\widetilde{B}, Λ) :

•
$$\widetilde{B} = \begin{pmatrix} B \\ B^c \end{pmatrix} \in Mat_{m \times n}(\mathbb{Z})$$
, full rank;
• $\Lambda \in SkewMat_{m \times m}(\mathbb{Z})$;

•
$$\Lambda(-\widetilde{B}) = \begin{pmatrix} \delta \cdot \mathbf{1}_n \\ 0 \end{pmatrix}$$
 for some $\delta \in \mathbb{N}$.

Quantum torus $\mathcal{T} = \mathcal{T}(\Lambda)$:

- Laurent polynomial ring $\mathbb{Z}[q^{\pm \frac{1}{2}}][x_1^{\pm}, \dots, x_m^{\pm}](+, \cdot);$
- twisted product $*: x_i * x_j = q^{\frac{1}{2}\Lambda_{ij}} x_i \cdot x_j$.

- Quantum cluster variables : generators defined recursively by mutations.
- Quantum cluster monomials: certain monomials of cluster variables.

Introduction	Quantum cluster algebra
Explicit construction	
Correction technique	Main result

Fix $n \leq m \in \mathbb{N}$. A compatible pair (\widetilde{B}, Λ) :

•
$$\widetilde{B} = \begin{pmatrix} B \\ B^c \end{pmatrix} \in Mat_{m \times n}(\mathbb{Z})$$
, full rank;
• $\Lambda \in SkewMat_{m \times m}(\mathbb{Z})$;
• $\Lambda(-\widetilde{B}) = \begin{pmatrix} \delta \cdot \mathbf{1}_n \\ 0 \end{pmatrix}$ for some $\delta \in \mathbb{N}$.

Quantum torus $\mathcal{T} = \mathcal{T}(\Lambda)$:

- Laurent polynomial ring $\mathbb{Z}[q^{\pm \frac{1}{2}}][x_1^{\pm}, \dots, x_m^{\pm}](+, \cdot);$
- twisted product $*: x_i * x_j = q^{\frac{1}{2}\Lambda_{ij}} x_i \cdot x_j$.

- Quantum cluster variables : generators defined recursively by mutations.
- Quantum cluster monomials: certain monomials of cluster variables.

Introduction	Quantum cluster algebra
Explicit construction	
Correction technique	Main result

Fix $n \leq m \in \mathbb{N}$. A compatible pair (\widetilde{B}, Λ) :

•
$$\widetilde{B} = \begin{pmatrix} B \\ B^c \end{pmatrix} \in Mat_{m \times n}(\mathbb{Z})$$
, full rank;
• $\Lambda \in SkewMat_{m \times m}(\mathbb{Z})$;
• $\Lambda(-\widetilde{B}) = \begin{pmatrix} \delta \cdot \mathbf{1}_n \\ \bullet \mathbf{1}_n \end{pmatrix}$ for some $\delta \in \mathbb{N}$.

•
$$\Lambda(-B) = \begin{pmatrix} 0 & -n \\ 0 \end{pmatrix}$$
 for some $\delta \in \mathbb{N}$

Quantum torus $\mathcal{T} = \mathcal{T}(\Lambda)$:

- Laurent polynomial ring $\mathbb{Z}[q^{\pm \frac{1}{2}}][x_1^{\pm},\ldots,x_m^{\pm}](+,\cdot);$
- twisted product $*: x_i * x_j = q^{\frac{1}{2}\Lambda_{ij}} x_i \cdot x_j$.

- Quantum cluster variables : generators defined recursively by mutations.
- Quantum cluster monomials: certain monomials of cluster variables.

Introduction Quantum cluster algebra Explicit construction Motivation Correction technique Main result

\mathcal{A}^q should have a "dual canonical basis" which contains all quantum cluster monomials.

Some known results on this direction for \mathcal{A}^q and $\mathcal{A} = \mathcal{A}^q|_{q^{\frac{1}{2}} \mapsto 1}$:

- Hernandez-Leclerc, Lampe: A^q of type ADE, Kronecker (special coefficient type B^c);
- Geiss-Leclerc-Schröer: dual semi-canonical basis of $\mathcal{A} = \mathcal{A}(w)$ for a given Weyl group element w and special B^c ;
- Musiker-Schiffler-Williams: two bases of A arising from unpunctured surfaces (with conjecturally positive structure constants);
- Berenstein-Zelevinsky: triangular basis (with conjectures) of acyclic \mathcal{A}^q (principal part *B* is acyclic).

IntroductionQuantum cluster algebraExplicit constructionMotivationCorrection techniqueMain result

 \mathcal{A}^q should have a "dual canonical basis" which contains all quantum cluster monomials.

Some known results on this direction for \mathcal{A}^q and $\mathcal{A} = \mathcal{A}^q|_{a^{\frac{1}{2}} \mapsto 1}$:

- Hernandez-Leclerc, Lampe: A^q of type ADE, Kronecker (special coefficient type B^c);
- Geiss-Leclerc-Schröer: dual semi-canonical basis of A = A(w) for a given Weyl group element w and special B^c;
- Musiker-Schiffler-Williams: two bases of A arising from unpunctured surfaces (with conjecturally positive structure constants);
- Berenstein-Zelevinsky: triangular basis (with conjectures) of acyclic \mathcal{A}^q (principal part *B* is acyclic).

- 4 同 6 4 日 6 4 日 6

 Introduction
 Quantum cluster algebra

 Explicit construction
 Motivation

 Correction technique
 Main result

 \mathcal{A}^q should have a "dual canonical basis" which contains all quantum cluster monomials.

Some known results on this direction for \mathcal{A}^q and $\mathcal{A} = \mathcal{A}^q|_{q^{\frac{1}{2}} \mapsto 1}$:

- Hernandez-Leclerc, Lampe: A^q of type ADE, Kronecker (special coefficient type B^c);
- Geiss-Leclerc-Schröer: dual semi-canonical basis of $\mathcal{A} = \mathcal{A}(w)$ for a given Weyl group element w and special B^c ;
- Musiker-Schiffler-Williams: two bases of A arising from unpunctured surfaces (with conjecturally positive structure constants);
- Berenstein-Zelevinsky: triangular basis (with conjectures) of acyclic \mathcal{A}^q (principal part *B* is acyclic).

< ロ > < 同 > < 回 > < 回 >

 Introduction
 Quantum cluster algebra

 Explicit construction
 Motivation

 Correction technique
 Main result

 \mathcal{A}^q should have a "dual canonical basis" which contains all quantum cluster monomials.

Some known results on this direction for \mathcal{A}^q and $\mathcal{A}=\mathcal{A}^q|_{q^{\frac{1}{2}}\mapsto 1}$:

- Hernandez-Leclerc, Lampe: A^q of type ADE, Kronecker (special coefficient type B^c);
- Geiss-Leclerc-Schröer: dual semi-canonical basis of $\mathcal{A} = \mathcal{A}(w)$ for a given Weyl group element w and special B^c ;
- Musiker-Schiffler-Williams: two bases of A arising from unpunctured surfaces (with conjecturally positive structure constants);
- Berenstein-Zelevinsky: triangular basis (with conjectures) of acyclic \mathcal{A}^q (principal part *B* is acyclic).

IntroductionQuantum cluster algebraExplicit constructionMotivationCorrection techniqueMain result

 \mathcal{A}^q should have a "dual canonical basis" which contains all quantum cluster monomials.

Some known results on this direction for \mathcal{A}^q and $\mathcal{A}=\mathcal{A}^q|_{q^{\frac{1}{2}}\mapsto 1}$:

- Hernandez-Leclerc, Lampe: A^q of type ADE, Kronecker (special coefficient type B^c);
- Geiss-Leclerc-Schröer: dual semi-canonical basis of $\mathcal{A} = \mathcal{A}(w)$ for a given Weyl group element w and special B^c ;
- Musiker-Schiffler-Williams: two bases of A arising from unpunctured surfaces (with conjecturally positive structure constants);
- Berenstein-Zelevinsky: triangular basis (with conjectures) of acyclic \mathcal{A}^q (principal part *B* is acyclic).

< ロ > < 同 > < 回 > < 回 > .

Introduction Quantum clu Explicit construction Motivation Correction technique Main result

Theorem (Kimura-Qin)

For acyclic principal part B and special coefficient type B^c , we can construct the dual PBW basis $\{M^{\mathcal{A}}(w)\}$, the generic basis $\{\mathbb{L}^{\mathcal{A}}(w)\}$, and the dual canonical basis $\{L^{\mathcal{A}}(w)\}$ of $\mathcal{A}^{q\dagger}$ (as a $\mathbb{Z}[q^{\pm \frac{1}{2}}]$ -algebra). The structure constants of $\{L^{\mathcal{A}}(w)\}$ are contained in $\mathbb{N}[q^{\pm}]$.

Question

What happens if we take general B^c?

Quantum cluster monomials are similar for different B^c .

Theorem (Fomin-Zelevinsky, Tran)

Quantum cluster variables (monomials) take the form $x^{g}F(y)|_{y_{i}\mapsto x^{\widetilde{B}e_{i}}}$, where F(y) is a polynomial in y_{1}, \ldots, y_{n} such that F(0) = 1.

It would be nice if similar results hold for basis-elements: A B A C

Introduction Quantum cl Explicit construction Motivation Correction technique Main result

Theorem (Kimura-Qin)

For acyclic principal part B and special coefficient type B^c , we can construct the dual PBW basis $\{M^{\mathcal{A}}(w)\}$, the generic basis $\{\mathbb{L}^{\mathcal{A}}(w)\}$, and the dual canonical basis $\{L^{\mathcal{A}}(w)\}$ of $\mathcal{A}^{q\dagger}$ (as a $\mathbb{Z}[q^{\pm \frac{1}{2}}]$ -algebra). The structure constants of $\{L^{\mathcal{A}}(w)\}$ are contained in $\mathbb{N}[q^{\pm}]$.

Question

What happens if we take general B^c?

Quantum cluster monomials are similar for different B^c .

Theorem (Fomin-Zelevinsky, Tran)

Quantum cluster variables (monomials) take the form $x^{g}F(y)|_{y_{i}\mapsto x^{\widetilde{B}e_{i}}}$, where F(y) is a polynomial in y_{1}, \ldots, y_{n} such that F(0) = 1.

It would be nice if similar results hold for basis-elements: A B A C

Introduction Quantum clus Explicit construction Motivation Correction technique Main result

Theorem (Kimura-Qin)

For acyclic principal part B and special coefficient type B^c , we can construct the dual PBW basis $\{M^{\mathcal{A}}(w)\}$, the generic basis $\{\mathbb{L}^{\mathcal{A}}(w)\}$, and the dual canonical basis $\{L^{\mathcal{A}}(w)\}$ of $\mathcal{A}^{q\dagger}$ (as a $\mathbb{Z}[q^{\pm \frac{1}{2}}]$ -algebra). The structure constants of $\{L^{\mathcal{A}}(w)\}$ are contained in $\mathbb{N}[q^{\pm}]$.

Question

What happens if we take general B^c?

Quantum cluster monomials are similar for different B^c .

Theorem (Fomin-Zelevinsky, Tran)

Quantum cluster variables (monomials) take the form $x^{g}F(y)|_{y_{i}\mapsto x^{\widetilde{B}e_{i}}}$, where F(y) is a polynomial in y_{1}, \ldots, y_{n} such that F(0) = 1.

 Introduction
 Quantum cluster algebra

 Explicit construction
 Motivation

 Correction technique
 Main result

Theorem (Main result)

For any acyclic \mathcal{A}^q , bases and their structure constants are similar for different coefficient types B^c and quantizations Λ .

Remark

Our correction technique in the proof could be used in non-acyclic "good" cases.

▲□ ► ▲ □ ► ▲

Monoidal categorification Pseudo-monoidal categorification

In the monoidal category side (l = 1 case), we have $\Pi_{w \in \mathbb{N}^{2n}} \mathcal{K}^*(w) \xrightarrow{L(w, v) \mapsto L(w - C_Q v)} \mathcal{R}_t$ $\downarrow \sum_{v \in \mathbb{N}^n} \langle \ , \pi(w, v) \rangle W^w V^v \qquad \qquad \qquad \downarrow \chi_{q,t} \leq 0$ $\widehat{\mathcal{Y}} = \mathbb{Z}[t^{\pm}][W^w, V^v]_{w,v} \xrightarrow{\widehat{\Pi} : W^w V^v \mapsto W^{w - C_Q v}} \mathcal{Y} = \mathbb{Z}[t^{\pm}][W^w]_w$

K(w): Grothendieck group generated by certain perverse sheaves. $\pi(w, v) \in K(w)$. $\mathcal{K}^*(w)$: dual of K(w).

 $\{L(w, v)\}$: basis dual to simple perverse sheaves.

 $C_Q: \mathbb{N}^n \to \mathbb{Z}^{2n}$: quantum Cartan matrix.

R^t: deformed Grothendieck ring.

 $\hat{\mathcal{Y}}, \mathcal{Y}$: quantum tori (Laurent polynomials with twisted products *). $\chi_{q,t} \leq 0$: truncated *t*-analogue of *q*-character.

Monoidal categorification Pseudo-monoidal categorification

In the monoidal category side (I = 1 case), we have $\Pi_{w \in \mathbb{N}^{2n}} \mathcal{K}^{*}(w) \xrightarrow{L(w, v) \mapsto L(w - C_{Q}v)} \mathcal{R}_{t}$ $\downarrow \sum_{v \in \mathbb{N}^{n}} \langle \ , \pi(w, v) \rangle W^{w} V^{v} \qquad \qquad \downarrow \chi_{q,t} \leq 0$ $\widehat{\mathcal{Y}} = \mathbb{Z}[t^{\pm}][W^{w}, V^{v}]_{w,v} \xrightarrow{\widehat{\Pi} : W^{w} V^{v} \mapsto W^{w - C_{Q}v}} \mathcal{Y} = \mathbb{Z}[t^{\pm}][W^{w}]_{w}$

K(w): Grothendieck group generated by certain perverse sheaves. $\pi(w, v) \in K(w)$. $\mathcal{K}^*(w)$: dual of K(w). $\{L(w, v)\}$: basis dual to simple perverse sheaves. $C_Q : \mathbb{N}^n \to \mathbb{Z}^{2n}$: quantum Cartan matrix. R^t : deformed Grothendieck ring. $\widehat{\mathcal{Y}}, \mathcal{Y}$: quantum tori (Laurent polynomials with twisted products *). $\chi_{q,t} \leq 0$: truncated *t*-analogue of *q*-character.

In the monoidal category side (I = 1 case), we have $\Pi_{w \in \mathbb{N}^{2n}} \mathcal{K}^{*}(w) \xrightarrow{L(w, v) \mapsto L(w - C_{Q}v)} \mathcal{R}_{t}$ $\downarrow \sum_{v \in \mathbb{N}^{n}} \langle \ , \pi(w, v) \rangle W^{w} V^{v} \qquad \qquad \downarrow \chi_{q,t} \leq 0$ $\widehat{\mathcal{Y}} = \mathbb{Z}[t^{\pm}][W^{w}, V^{v}]_{w,v} \xrightarrow{\widehat{\Pi} : W^{w} V^{v} \mapsto W^{w - C_{Q}v}} \mathcal{Y} = \mathbb{Z}[t^{\pm}][W^{w}]_{w}$

K(w): Grothendieck group generated by certain perverse sheaves. $\pi(w, v) \in K(w)$. $\mathcal{K}^*(w)$: dual of K(w). $\{L(w, v)\}$: basis dual to simple perverse sheaves. $C_Q : \mathbb{N}^n \to \mathbb{Z}^{2n}$: quantum Cartan matrix. R^t : deformed Grothendieck ring.

 \mathcal{Y} , \mathcal{Y} : quantum tori (Laurent polynomials with twisted products *). $\chi_{q,t} \leq 0$: truncated *t*-analogue of *q*-character.

In the monoidal category side (I = 1 case), we have $\Pi_{w \in \mathbb{N}^{2n}} \mathcal{K}^{*}(w) \xrightarrow{L(w, v) \mapsto L(w - C_{Q}v)} \mathcal{R}_{t}$ $\downarrow \sum_{v \in \mathbb{N}^{n}} \langle \ , \pi(w, v) \rangle W^{w} V^{v} \qquad \qquad \downarrow \chi_{q,t} \leq 0$ $\widehat{\mathcal{Y}} = \mathbb{Z}[t^{\pm}][W^{w}, V^{v}]_{w,v} \xrightarrow{\widehat{\Pi} : W^{w} V^{v} \mapsto W^{w - C_{Q}v}} \mathcal{Y} = \mathbb{Z}[t^{\pm}][W^{w}]_{w}$

$$\begin{split} &\mathcal{K}(w) \text{: Grothendieck group generated by certain perverse sheaves.} \\ &\pi(w,v) \in \mathcal{K}(w). \\ &\mathcal{K}^*(w) \text{: dual of } \mathcal{K}(w). \\ &\{L(w,v)\} \text{: basis dual to simple perverse sheaves.} \\ &\mathcal{C}_Q: \mathbb{N}^n \to \mathbb{Z}^{2n} \text{: quantum Cartan matrix.} \\ &\mathcal{R}^t \text{: deformed Grothendieck ring.} \\ &\widehat{\mathcal{Y}}, \ \mathcal{Y} \text{: quantum tori (Laurent polynomials with twisted products *).} \end{split}$$

 $(q,t)^{\leq 0}$: truncated *t*-analogue of *q*-character.

In the monoidal category side (I = 1 case), we have $\Pi_{w \in \mathbb{N}^{2n}} \mathcal{K}^{*}(w) \xrightarrow{L(w, v) \mapsto L(w - C_{Q}v)} \mathcal{R}_{t}$ $\downarrow \sum_{v \in \mathbb{N}^{n}} \langle \ , \pi(w, v) \rangle W^{w} V^{v} \qquad \qquad \downarrow \chi_{q,t} \leq 0$ $\widehat{\mathcal{Y}} = \mathbb{Z}[t^{\pm}][W^{w}, V^{v}]_{w,v} \xrightarrow{\widehat{\Pi} : W^{w} V^{v} \mapsto W^{w-C_{Q}v}} \mathcal{Y} = \mathbb{Z}[t^{\pm}][W^{w}]_{w}$

K(w): Grothendieck group generated by certain perverse sheaves. $\pi(w, v) \in K(w)$. $\mathcal{K}^*(w)$: dual of K(w). $\{L(w, v)\}$: basis dual to simple perverse sheaves. $C_Q : \mathbb{N}^n \to \mathbb{Z}^{2n}$: quantum Cartan matrix. R^t : deformed Grothendieck ring. $\widehat{\mathcal{Y}}, \mathcal{Y}$: quantum tori (Laurent polynomials with twisted products *). $\chi_{q,t} \leq 0$: truncated *t*-analogue of *q*-character.

In the quantum cluster algebra side, we have

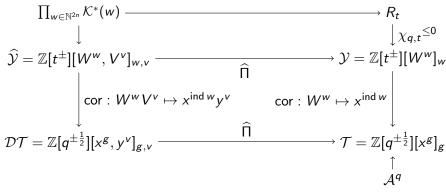
$$\mathcal{DT} = \mathbb{Z}[q^{\pm \frac{1}{2}}][x^g, y^v]_{g, v} \xrightarrow{\widehat{\Pi} : x^g y^v \mapsto x^{g + \widetilde{B}_v}} \mathcal{T} = \mathbb{Z}[q^{\pm \frac{1}{2}}][x^g]_g$$

$$\uparrow$$

$$\mathcal{A}^q$$

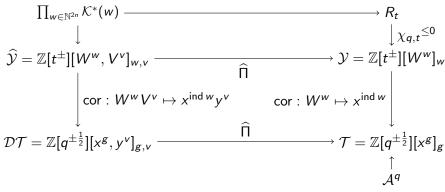
æ

When B^c is special (*z*-coefficient), we have the following commutative diagram:



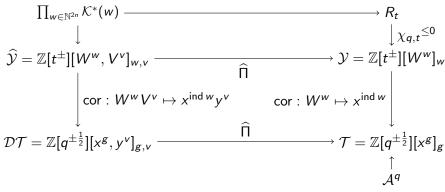
ind: natural linear function on \mathbb{N}^{2n} which depends on \tilde{B} . R_t is isomorphic to \mathcal{A}^q . Then we obtain (positive) bases of \mathcal{A}^q . But for general B^c , cor $\hat{\Pi} \neq \hat{\Pi}$ cor.

When B^c is special (*z*-coefficient), we have the following commutative diagram:



ind: natural linear function on \mathbb{N}^{2n} which depends on \widehat{B} . R_t is isomorphic to \mathcal{A}^q . Then we obtain (positive) bases of \mathcal{A}^q . But for general B^c , $\operatorname{cor}\widehat{\Pi} \neq \widehat{\Pi}$ cor.

When B^c is special (*z*-coefficient), we have the following commutative diagram:



ind: natural linear function on \mathbb{N}^{2n} which depends on \tilde{B} . R_t is isomorphic to \mathcal{A}^q . Then we obtain (positive) bases of \mathcal{A}^q . But for general B^c , $\operatorname{cor} \widehat{\Pi} \neq \widehat{\Pi} \operatorname{cor}$.

Observation: For general B^c and Λ , the failures are:

$$\widehat{\Pi}\operatorname{cor}(W^{w}V^{v}) \neq \widehat{\Pi}(\operatorname{cor}W^{w}V^{v}),$$

$$\operatorname{cor}(W^{w^{1}}V^{v^{1}} * W^{w^{2}}V^{v^{2}}) \neq \operatorname{cor}(W^{w^{1}}V^{v^{1}}) * \operatorname{cor}(W^{w^{2}}V^{v^{2}}),$$

$$leading \ term(\operatorname{cor}\chi_{q,t}^{\leq 0}\mathbb{L}(w)) \neq x^{\operatorname{ind}O(w)},$$

where $x^{\text{ind }O(w)}$ is the expected leading term of the generic basis element associated with the generic object O(w) in $C(\tilde{B})$. They become equalities again if we put some explicit correction terms which take values in $x_{n+1}, \dots, x_{\max(m,2n)}$ and $q^{\frac{1}{2}}$ -powers.

Observation: For general B^c and Λ , the failures are:

$$\widehat{\Pi}\operatorname{cor}(W^{w}V^{v}) \neq \widehat{\Pi}(\operatorname{cor} W^{w}V^{v}),$$
$$\operatorname{cor}(W^{w^{1}}V^{v^{1}} * W^{w^{2}}V^{v^{2}}) \neq \operatorname{cor}(W^{w^{1}}V^{v^{1}}) * \operatorname{cor}(W^{w^{2}}V^{v^{2}}),$$
$$leading \ term(\operatorname{cor}\chi_{q,t}^{\leq 0}\mathbb{L}(w)) \neq x^{\operatorname{ind} O(w)},$$

where $x^{\text{ind }O(w)}$ is the expected leading term of the generic basis element associated with the generic object O(w) in $C(\tilde{B})$. They become equalities again if we put some explicit correction terms which take values in $x_{n+1}, \ldots, x_{\max(m,2n)}$ and $q^{\frac{1}{2}}$ -powers.

Theorem (Bases)

Any acyclic \mathcal{A}^q have three $\mathbb{Z}[q^{\pm \frac{1}{2}}][x_{n+1}, \ldots, x_m]$ -bases: the generic basis $\{\mathbb{L}^{\mathcal{A}}(w), w \in \mathcal{J}\}$, the dual PBW basis $\{M^{\mathcal{A}}(w), w \in \mathcal{J}\}$, and the dual canonical basis $\{L^{\mathcal{A}}(w), w \in \mathcal{J}\}$, where $\mathcal{J} = \{w \in \mathbb{N}^{2n} | w_i \text{ or } w_{n+i} = 0, \forall 1 \leq i \leq n\}$,

$$L^{\mathcal{A}}(w) = \sum_{v} P_{q^{-\frac{\delta}{2}}}(\operatorname{Gr}_{v}(^{\sigma}W))q^{-\frac{\delta}{2}\dim\operatorname{Gr}_{v}(^{\sigma}W)}x^{\operatorname{ind}O(w)+\widetilde{B}v},$$
$$M^{\mathcal{A}}(w) = \sum_{v} P_{q^{\frac{\delta}{2}}}(\mathcal{L}(v,w))q^{-\frac{\delta}{2}\dim\mathcal{M}^{\bullet}(v,w)}x^{\operatorname{ind}O(w)+\widetilde{B}v},$$
$$L^{\mathcal{A}}(w) = \sum_{v} a_{v,0;w}(q^{\frac{\delta}{2}})x^{\operatorname{ind}O(w)+\widetilde{B}v}.$$

Proof.

We could explicitly compute the transition matrices (depend on B^c , Λ).

In fact, the role of R_t in previous calculation can be replaced by \mathcal{A}^q with special B^c , Λ .

Proposition (Correction technique)

Fix B (not necessarily acyclic). If for some special B^c and quantization Λ , some elements of the quantum torus satisfy an algebraic relation, then for general (B^c)' and Λ ', in "good" cases, there exists an explicit similar algebraic relation for similar elements.

Here, "good" means:

- the original elements take the form $x^g F(y)|_{y^v = x^{\widetilde{B}v}}$;
- (2) \widetilde{B} and \widetilde{B}' are of full ranks, $\delta' = d \cdot \delta$ for some $d \in \mathbb{N}$.
- (a) more conditions (eg. F(0) = 1, the algebraic relation takes special form, etc.).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In fact, the role of R_t in previous calculation can be replaced by \mathcal{A}^q with special B^c , Λ .

Proposition (Correction technique)

Fix B (not necessarily acyclic). If for some special B^c and quantization Λ , some elements of the quantum torus satisfy an algebraic relation, then for general (B^c)' and Λ ', in "good" cases, there exists an explicit similar algebraic relation for similar elements.

Here, "good" means:

- the original elements take the form $x^{g}F(y)|_{y^{v}=x^{\widetilde{B}v}}$;
- (2) \widetilde{B} and \widetilde{B}' are of full ranks, $\delta' = d \cdot \delta$ for some $d \in \mathbb{N}$.
- (a) more conditions (eg. F(0) = 1, the algebraic relation takes special form, etc.).

(日) (同) (三) (三)

In fact, the role of R_t in previous calculation can be replaced by \mathcal{A}^q with special B^c , Λ .

Proposition (Correction technique)

Fix B (not necessarily acyclic). If for some special B^c and quantization Λ , some elements of the quantum torus satisfy an algebraic relation, then for general $(B^c)'$ and Λ' , in "good" cases, there exists an explicit similar algebraic relation for similar elements.

Here, "good" means:

- the original elements take the form $x^{g}F(y)|_{y^{v}=x^{\widetilde{B}v}}$;
- (2) \widetilde{B} and \widetilde{B}' are of full ranks, $\delta' = d \cdot \delta$ for some $d \in \mathbb{N}$.
- (a) more conditions (eg. F(0) = 1, the algebraic relation takes special form, etc.).

In fact, the role of R_t in previous calculation can be replaced by \mathcal{A}^q with special B^c , Λ .

Proposition (Correction technique)

Fix B (not necessarily acyclic). If for some special B^c and quantization Λ , some elements of the quantum torus satisfy an algebraic relation, then for general $(B^c)'$ and Λ' , in "good" cases, there exists an explicit similar algebraic relation for similar elements.

Here, "good" means:

- the original elements take the form $x^g F(y)|_{v^v = x^{\widetilde{B}v}}$;
- (2) \widetilde{B} and \widetilde{B}' are of full ranks, $\delta' = d \cdot \delta$ for some $d \in \mathbb{N}$.
- (a) more conditions (eg. F(0) = 1, the algebraic relation takes special form, etc.).

(日) (同) (三) (三)

In fact, the role of R_t in previous calculation can be replaced by \mathcal{A}^q with special B^c , Λ .

Proposition (Correction technique)

Fix B (not necessarily acyclic). If for some special B^c and quantization Λ , some elements of the quantum torus satisfy an algebraic relation, then for general $(B^c)'$ and Λ' , in "good" cases, there exists an explicit similar algebraic relation for similar elements.

Here, "good" means:

- the original elements take the form $x^g F(y)|_{v^v = x^{\widetilde{B}v}}$;
- **2** \widetilde{B} and \widetilde{B}' are of full ranks, $\delta' = d \cdot \delta$ for some $d \in \mathbb{N}$.
- So more conditions (eg. F(0) = 1, the algebraic relation takes special form, etc.).

(日) (同) (三) (三)

an exchange relation for quantum cluster variables:

"play the role of quantum F-polynomial"

- (2) a basis element = a polynomial of cluster variables: check that a "basis" is contained in \mathcal{A}^q
- a defining equation for structure constants of a basis:

Theorem (Positive structure constants)

$$L^{\mathcal{A}}(w^{1}) * L^{\mathcal{A}}(w^{2}) = q^{\frac{1}{2}\wedge(\operatorname{ind}(w^{1}),\operatorname{ind}(w^{2})) - \frac{\delta}{2}\wedge^{z}(\operatorname{ind}^{z}(w^{1}),\operatorname{ind}^{z}(w^{2}))}$$

$$\sum_{w^3 \in \mathcal{J}} {}^{\phi} b^{w^3}_{w^1, w^2; \widetilde{B}}(q^{\frac{\delta}{2}}) L^{\mathcal{A}}(w^3).$$

- an exchange relation for quantum cluster variables:
 "play the role of quantum *F*-polynomial"
- (2) a basis element = a polynomial of cluster variables: check that a "basis" is contained in \mathcal{A}^q
- a defining equation for structure constants of a basis:

Theorem (Positive structure constants)

$$L^{\mathcal{A}}(w^{1}) * L^{\mathcal{A}}(w^{2}) = q^{\frac{1}{2}\wedge(\operatorname{ind}(w^{1}),\operatorname{ind}(w^{2})) - \frac{\delta}{2}\wedge^{z}(\operatorname{ind}^{z}(w^{1}),\operatorname{ind}^{z}(w^{2}))}$$

$$\sum_{w^3 \in \mathcal{J}} {}^{\phi} b^{w^3}_{w^1, w^2; \widetilde{B}}(q^{\frac{\delta}{2}}) L^{\mathcal{A}}(w^3).$$

- an exchange relation for quantum cluster variables:
 "play the role of quantum *F*-polynomial"
- a basis element = a polynomial of cluster variables check that a "basis" is contained in A^q
- a defining equation for structure constants of a basis:

Theorem (Positive structure constants)

$$L^{\mathcal{A}}(w^{1}) * L^{\mathcal{A}}(w^{2}) = q^{\frac{1}{2}\wedge(\operatorname{ind}(w^{1}),\operatorname{ind}(w^{2})) - \frac{\delta}{2}\wedge^{z}(\operatorname{ind}^{z}(w^{1}),\operatorname{ind}^{z}(w^{2}))}$$

$$\sum_{w^3 \in \mathcal{J}} {}^{\phi} b^{w^3}_{w^1, w^2; \widetilde{B}}(q^{\frac{\delta}{2}}) L^{\mathcal{A}}(w^3).$$

- an exchange relation for quantum cluster variables:
 "play the role of quantum *F*-polynomial"
- 2 a basis element = a polynomial of cluster variables: check that a "basis" is contained in \mathcal{A}^q

a defining equation for structure constants of a basis:

Theorem (Positive structure constants)

$$L^{\mathcal{A}}(w^{1}) * L^{\mathcal{A}}(w^{2}) = q^{\frac{1}{2}\wedge(\operatorname{ind}(w^{1}),\operatorname{ind}(w^{2})) - \frac{\delta}{2}\wedge^{z}(\operatorname{ind}^{z}(w^{1}),\operatorname{ind}^{z}(w^{2}))}$$

$$\sum_{w^3 \in \mathcal{J}} {}^{\phi} b^{w^3}_{w^1, w^2; \widetilde{B}}(q^{\frac{\delta}{2}}) L^{\mathcal{A}}(w^3).$$

- an exchange relation for quantum cluster variables:
 "play the role of quantum *F*-polynomial"
- 2 a basis element = a polynomial of cluster variables: check that a "basis" is contained in \mathcal{A}^q
- a defining equation for structure constants of a basis:

Theorem (Positive structure constants)

$$L^{\mathcal{A}}(w^{1}) * L^{\mathcal{A}}(w^{2}) = q^{\frac{1}{2}\wedge(\operatorname{ind}(w^{1}),\operatorname{ind}(w^{2})) - \frac{\delta}{2}\wedge^{z}(\operatorname{ind}^{z}(w^{1}),\operatorname{ind}^{z}(w^{2}))}$$

$$\sum_{w^3 \in \mathcal{J}} {}^{\phi} b^{w^3}_{w^1, w^2; \widetilde{B}}(q^{\frac{\delta}{2}}) L^{\mathcal{A}}(w^3).$$

- an exchange relation for quantum cluster variables:
 "play the role of quantum *F*-polynomial"
- **2** a basis element = a polynomial of cluster variables: check that a "basis" is contained in \mathcal{A}^q
- a defining equation for structure constants of a basis:

Theorem (Positive structure constants)

$$L^{\mathcal{A}}(w^{1}) * L^{\mathcal{A}}(w^{2}) = q^{\frac{1}{2}\Lambda(\operatorname{ind}(w^{1}),\operatorname{ind}(w^{2})) - \frac{\delta}{2}\Lambda^{z}(\operatorname{ind}^{z}(w^{1}),\operatorname{ind}^{z}(w^{2}))} \\ \cdot \sum_{w^{3} \in \mathcal{J}} {}^{\phi} b^{w^{3}}_{w^{1},w^{2};\widetilde{B}}(q^{\frac{\delta}{2}}) L^{\mathcal{A}}(w^{3}).$$

Here, for any
$$w^1$$
, w^2 , w^3 in \mathcal{J} , we define an element in
 $\mathbb{Z}[q^{\pm \frac{1}{2}}][x_{n+1}^{\pm}, \dots, x_m^{\pm}]:$

$${}^{\phi}b_{w^1,w^2;\widetilde{B}}^{w^3} = x^{\operatorname{ind} O(w^1) + \operatorname{ind} O(w^2) - \operatorname{ind} O(w^3) - \operatorname{ind}(w^1 + w^2 - w^3)}$$

$$\sum_{w:{}^{\phi}w = w^3} b_{w^1,w^2}^w x^{\operatorname{ind} {}^{f}w} x^{\widetilde{B}v + \operatorname{ind} C_Qv},$$

where v is determined by

$$w = w^1 + w^2 - C_Q v.$$

< ロ > < 部 > < 注 > < 注 > < </p>

æ