

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange graph of hearts The exchange graph of $\mathcal{D}(Q)$ Exchange graph of clusters Coloured quiver

Calabi-Yau double

The Calabi-Yau category The result

Coloured quivers for higher clusters via Ext-quivers of hearts

Yu Qiu

Département de Mathématiques, Université de Sherbrooke joint work with Alastair King

ICRA2012, Bielefeld, Germany. Aug. 2012

ICRA2012

Yu Qiu

Outline

Introduction

- From hearts to clusters
- Exchange grap of hearts
- graph of $\mathcal{D}(Q)$
- of clusters
- and Ext-quivers
- Calabi-Yau double
- The Calabi-Yau category The result

Introduction

From hearts to clusters

- Exchange graph of hearts
- The exchange graph of $\mathcal{D}(Q)$
- Exchange graph of clusters
- Coloured quivers and Ext-quivers

Calabi-Yau double

- The Calabi-Yau category
- The result

2

ICRA2012

Yu Qiu

Outline

Introduction

- From hearts to clusters
- Exchange grap of hearts The exchange graph of $\mathcal{D}(Q)$
- Exchange grap
- Coloured quivers and Ext-quivers
- Calabi-Yau double
- The Calabi-Yau category The result

Introduction

From hearts to clusters

- Exchange graph of hearts
- The exchange graph of $\mathcal{D}(Q)$
- Exchange graph of clusters
- Coloured quivers and Ext-quivers

) Calabi-Yau double

- The Calabi-Yau category
- The result

2

ICRA2012

Yu Qiu

Outline

Introduction

- From hearts to clusters
- Exchange graph of hearts The exchange graph of $\mathcal{D}(Q)$
- Exchange grap of clusters
- Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

Introduction

From hearts to clusters

- Exchange graph of hearts
- The exchange graph of $\mathcal{D}(Q)$
- Exchange graph of clusters
- Coloured quivers and Ext-quivers

3 Calabi-Yau double

- The Calabi-Yau category
- The result

ICRA2012

Yu Qiu

Outline

Introduction

- From hearts to clusters
- Exchange grap of hearts The exchange
- graph of $\mathcal{D}(Q)$ Exchange grap
- Coloured quivers
- Calabi-Yau double
- The Calabi-Yau category The result

Introduction

From hearts to clusters

- Exchange graph of hearts
- The exchange graph of $\mathcal{D}(Q)$
- Exchange graph of clusters
- Coloured quivers and Ext-quivers

) Calabi-Yau double

- The Calabi-Yau category
- The result

Cluster algebras and cateogries

ICRA2012

Yu Qiu

Outline

- From hearts to clusters
- Exchange grap of hearts The exchange
- graph of $\mathcal{D}(Q)$ Exchange graph
- Coloured quivers
- Calabi-Yau double
- The Calabi-Yau category The result

- Cluster algebras were introduced by Fomin and Zelevinsky in 2000.
- The combinatorial ingredient of cluster theory, the quiver mutation, has been categorified by Buan-Marsh-Reineke-Reiten-Todorov in 2005.sjf
- The cluster category C₂(Q) can be realized as orbit category (Keller) or quotient category (Amiot) and can be generalized to higher cluster categories C_m(Q).

Cluster algebras and cateogries

ICRA2012

Yu Qiu

Outline

- From hearts to clusters
- Exchange grap of hearts The exchange
- graph of $\mathcal{D}(Q)$ Exchange graph
- Coloured quivers
- Calabi-Yau double
- The Calabi-Yau category The result

- Cluster algebras were introduced by Fomin and Zelevinsky in 2000.
- The combinatorial ingredient of cluster theory, the quiver mutation, has been categorified by Buan-Marsh-Reineke-Reiten-Todorov in 2005.sjf
- The cluster category C₂(Q) can be realized as orbit category (Keller) or quotient category (Amiot) and can be generalized to higher cluster categories C_m(Q).

Cluster algebras and cateogries

ICRA2012

Yu Qiu

Outline

- From hearts to clusters
- Exchange grapl of hearts
- The exchange graph of $\mathcal{D}(Q)$ Exchange graph
- of clusters Coloured quivers
- Calabi-Yau
- double
- The Calabi-Yau category The result

- Cluster algebras were introduced by Fomin and Zelevinsky in 2000.
- The combinatorial ingredient of cluster theory, the quiver mutation, has been categorified by Buan-Marsh-Reineke-Reiten-Todorov in 2005.sjf
- The cluster category C₂(Q) can be realized as orbit category (Keller) or quotient category (Amiot) and can be generalized to higher cluster categories C_m(Q).

Aim and method

ICRA2012

Yu Qiu

Outline

- From hearts to clusters
- Exchange grap of hearts
- graph of $\mathcal{D}(Q)$ Exchange graph
- of clusters Coloured quivers
- and Ext-quivers
- Calabi-Yaı double
- The Calabi-Yau category The result

- We aim to show that Buan-Thomas' coloured quivers for higher clusters can be interpreted as Ext-quivers of hearts in certain derived categories.
- The main method is to study various exchange graphs.
- For more details, see arXiv:1109.2924v2.

Aim and method

ICRA2012

Yu Qiu

Outline

Introduction

- From hearts to clusters
- Exchange grap of hearts
- The exchange graph of $\mathcal{D}(Q)$
- of clusters
- and Ext-quivers
- Calabi-Yau double
- The Calabi-Yau category The result

- We aim to show that Buan-Thomas' coloured quivers for higher clusters can be interpreted as Ext-quivers of hearts in certain derived categories.
 - The main method is to study various exchange graphs.

For more details, see arXiv:1109.2924v2.

Aim and method

ICRA2012

Yu Qiu

Outline

- From hearts to clusters
- Exchange grap of hearts
- The exchange graph of $\mathcal{D}(Q)$
- of clusters Coloured auivers
- and Ext-quivers
- Calabi-Yaı double
- The Calabi-Yau category The result

- We aim to show that Buan-Thomas' coloured quivers for higher clusters can be interpreted as Ext-quivers of hearts in certain derived categories.
 - The main method is to study various exchange graphs.
 - For more details, see arXiv:1109.2924v2.

2

ICRA2012

Yu Qiu

Outline

Introduction

From hearts t clusters

Exchange graph of hearts

The exchange graph of $\mathcal{D}(Q)$ Exchange graph of clusters Coloured quiver and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

Introduction

From hearts to clusters

- Exchange graph of hearts
- The exchange graph of $\mathcal{D}(Q)$
- Exchange graph of clusters
- Coloured quivers and Ext-quivers

Calabi-Yau double

- The Calabi-Yau category
- The result

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange graph of hearts

The exchange graph of $\mathcal{D}(Q)$ Exchange graph of clusters Coloured quiver and Ext-quivers

Calabi-Yaı double

The Calabi-Yau category The result

- A *t-structure* \mathcal{P} on a triangulated category \mathcal{D} is the torsion part of some torsion pair (w.r.t. triangles) $\langle \mathcal{P}^{\perp}, \mathcal{P} \rangle$ on \mathcal{D} such that $\mathcal{P}[1] \subset \mathcal{P}$.
- A t-structure *P* is *bounded* if for every object *M*, the shifts *M*[*k*] are in *P* for *k* ≫ 0 and in *P*[⊥] for *k* ≪ 0.
- The *heart* of a (bounded) t-structure \mathcal{P} is the full subcategory $\mathcal{H} = \mathcal{P}^{\perp}[1] \cap \mathcal{P}$.

• We define an order relation $\mathcal{H}_1 \leq \mathcal{H}_2$ by $\mathcal{P}_2 \subset \mathcal{P}_1$, or $\mathcal{P}_1^{\perp} \subset \mathcal{P}_2^{\perp}$.

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange graph of hearts

The exchange graph of $\mathcal{D}(Q)$ Exchange graph of clusters Coloured quiver and Ext-quivers

Calabi-Yaı double

The Calabi-Yau category The result

- A *t-structure* \mathcal{P} on a triangulated category \mathcal{D} is the torsion part of some torsion pair (w.r.t. triangles) $\langle \mathcal{P}^{\perp}, \mathcal{P} \rangle$ on \mathcal{D} such that $\mathcal{P}[1] \subset \mathcal{P}$.
- A t-structure *P* is *bounded* if for every object *M*, the shifts *M*[*k*] are in *P* for *k* ≫ 0 and in *P*[⊥] for *k* ≪ 0.
- The *heart* of a (bounded) t-structure \mathcal{P} is the full subcategory $\mathcal{H} = \mathcal{P}^{\perp}[1] \cap \mathcal{P}$.
- We define an order relation $\mathcal{H}_1 \leq \mathcal{H}_2$ by $\mathcal{P}_2 \subset \mathcal{P}_1$, or $\mathcal{P}_1^{\perp} \subset \mathcal{P}_2^{\perp}$.

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange graph of hearts

The exchange graph of $\mathcal{D}(Q)$ Exchange graph of clusters Coloured quivers and Ext-quivers

Calabi-Yaı double

The Calabi-Yau category The result

- A *t-structure* \mathcal{P} on a triangulated category \mathcal{D} is the torsion part of some torsion pair (w.r.t. triangles) $\langle \mathcal{P}^{\perp}, \mathcal{P} \rangle$ on \mathcal{D} such that $\mathcal{P}[1] \subset \mathcal{P}$.
- A t-structure *P* is *bounded* if for every object *M*, the shifts *M*[*k*] are in *P* for *k* ≫ 0 and in *P*[⊥] for *k* ≪ 0.
- The *heart* of a (bounded) t-structure *P* is the full subcategory *H* = *P*[⊥][1] ∩ *P*.

• We define an order relation $\mathcal{H}_1 \leq \mathcal{H}_2$ by $\mathcal{P}_2 \subset \mathcal{P}_1$, or $\mathcal{P}_1^{\perp} \subset \mathcal{P}_2^{\perp}$.

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange graph of hearts

The exchange graph of $\mathcal{D}(Q)$ Exchange graph of clusters Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

- A *t-structure* P on a triangulated category D is the torsion part of some torsion pair (w.r.t. triangles) ⟨P[⊥], P⟩ on D such that P[1] ⊂ P.
- A t-structure *P* is *bounded* if for every object *M*, the shifts *M*[*k*] are in *P* for *k* ≫ 0 and in *P*[⊥] for *k* ≪ 0.
- The *heart* of a (bounded) t-structure *P* is the full subcategory *H* = *P*[⊥][1] ∩ *P*.
- We define an order relation $\mathcal{H}_1 \leq \mathcal{H}_2$ by $\mathcal{P}_2 \subset \mathcal{P}_1$, or $\mathcal{P}_1^{\perp} \subset \mathcal{P}_2^{\perp}$.

Simple HRS-tilting

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange graph of hearts

The exchange graph of $\mathcal{D}(Q)$ Exchange graph of clusters Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

Proposition [Happel, Reiten, Smalø]

Let \mathcal{H} be a heart in a triangulated category \mathcal{D} with torsion pair $\mathcal{H} = \langle \mathcal{F}, \mathcal{T} \rangle$. Then there is a heart \mathcal{H}^{\sharp} with torsion pair $\mathcal{H}^{\sharp} = \langle \mathcal{T}, \mathcal{F}[1] \rangle$, called the *forward tilts* of \mathcal{H} .

We say a forward tilt is *simple* if $\mathcal{F} = \langle S \rangle$ for a rigid simple *S*, and write it as \mathcal{H}_{S}^{\sharp} .

Simple HRS-tilting

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange graph of hearts

The exchange graph of $\mathcal{D}(Q)$ Exchange graph of clusters Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

Proposition [Happel, Reiten, Smalø]

Let \mathcal{H} be a heart in a triangulated category \mathcal{D} with torsion pair $\mathcal{H} = \langle \mathcal{F}, \mathcal{T} \rangle$. Then there is a heart \mathcal{H}^{\sharp} with torsion pair $\mathcal{H}^{\sharp} = \langle \mathcal{T}, \mathcal{F}[1] \rangle$, called the *forward tilts* of \mathcal{H} .

We say a forward tilt is *simple* if $\mathcal{F} = \langle S \rangle$ for a rigid simple *S*, and write it as \mathcal{H}_{S}^{\sharp} .

The exchange graph

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange graph of hearts

The exchange graph of $\mathcal{D}(Q)$ Exchange graph of clusters Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

Definition

Define the total exchange graph $EG(\mathcal{D})$ of a triangulated category \mathcal{D} to be the oriented graph whose vertices are all hearts in \mathcal{D} and whose edges correspond to simple forward tiltings between them.

The exchange graph

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange graph of hearts

The exchange graph of $\mathcal{D}(Q)$ Exchange graph of clusters Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

Definition

Define the total exchange graph $EG(\mathcal{D})$ of a triangulated category \mathcal{D} to be the oriented graph whose vertices are all hearts in \mathcal{D} and whose edges correspond to simple forward tiltings between them.

Remark:EG(\mathcal{D}) is the Hasse quiver of the order relation \leq .

The exchange graph

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange graph of hearts

The exchange graph of $\mathcal{D}(Q)$ Exchange graph of clusters Coloured quivers and Ext-quivers

Calabi-Yaı double

The Calabi-Yau category The result

Definition

Define the total exchange graph $EG(\mathcal{D})$ of a triangulated category \mathcal{D} to be the oriented graph whose vertices are all hearts in \mathcal{D} and whose edges correspond to simple forward tiltings between them.

For any heart \mathcal{H} in \mathcal{D} and $N \geq 2$, define the interval

 $\mathsf{EG}_{\mathsf{N}}(\mathcal{D},\mathcal{H}) = \big\{ \mathcal{H}' \in \mathsf{EG}(\mathcal{D}) \mid \mathcal{H} \leq \mathcal{H}' \leq \mathcal{H}[\mathsf{N}-2] \big\},\$

and $EG^{\circ}_{N}(\mathcal{D},\mathcal{H})$ its 'principal' component containing \mathcal{H} .

2

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange grap of hearts

The exchange graph of $\mathcal{D}(Q)$

Exchange graph of clusters Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

Introduction

From hearts to clusters

• Exchange graph of hearts

- The exchange graph of $\mathcal{D}(Q)$
- Exchange graph of clusters
- Coloured quivers and Ext-quivers

Calabi-Yau double

- The Calabi-Yau category
- The result

ICRA2012

- Yu Qiu
- Outline
- Introduction
- From hearts to clusters
- Exchange grap of hearts
- The exchange graph of $\mathcal{D}(Q)$
- Exchange graph of clusters Coloured quivers
- Calabi-Yau double
- The Calabi-Yau category The result

• Let Q be an acyclic quiver.

- We denote by $\mathcal{H}_Q = \mod \mathbf{k}Q$ the module category of the path algebra $\mathbf{k}Q$.
- Let $\mathcal{D}(Q) = \mathcal{D}^b(\text{mod} \mathbf{k} Q)$ be its bounded derived category.
 - We will write $EG^{\circ}(Q)$ for $EG(\mathcal{D}(Q))$, etc.

ICRA2012

- Yu Qiu
- Outline
- Introduction
- From hearts to clusters
- Exchange grap of hearts
- The exchange graph of $\mathcal{D}(Q)$
- Exchange graph of clusters Coloured quivers
- Calabi-Yau
- The Calabi-Yau category The result

- Let Q be an acyclic quiver.
- We denote by $\mathcal{H}_Q = \mod \mathbf{k}Q$ the module category of the path algebra $\mathbf{k}Q$.
- Let $\mathcal{D}(Q) = \mathcal{D}^{b}(\text{mod } \mathbf{k}Q)$ be its bounded derived category. • We will write $\mathsf{EC}^{\circ}(Q)$ for $\mathsf{EC}(\mathcal{D}(Q))$, etc.

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange grapl of hearts

The exchange graph of $\mathcal{D}(Q)$

Exchange graph of clusters Coloured quiver

and Ext-quivers

Calabi-Yaı double

The Calabi-Yau category The result

- Let Q be an acyclic quiver.
- We denote by $\mathcal{H}_Q = \mod \mathbf{k}Q$ the module category of the path algebra $\mathbf{k}Q$.
- Let $\mathcal{D}(Q) = \mathcal{D}^b(\text{mod } \mathbf{k}Q)$ be its bounded derived category.

• We will write $\mathsf{EG}^\circ(Q)$ for $\mathsf{EG}(\mathcal{D}(Q))$, etc.

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange grapl of hearts

The exchange graph of $\mathcal{D}(Q)$

Exchange graph of clusters

and Ext-quivers

Calabi-Yaı double

The Calabi-Yau category The result

- Let Q be an acyclic quiver.
- We denote by $\mathcal{H}_Q = \mod \mathbf{k}Q$ the module category of the path algebra $\mathbf{k}Q$.
- Let $\mathcal{D}(Q) = \mathcal{D}^b(\text{mod } \mathbf{k}Q)$ be its bounded derived category.
- We will write $EG^{\circ}(Q)$ for $EG(\mathcal{D}(Q))$, etc.

Example: A_2

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

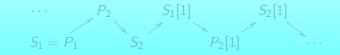
Exchange grap of hearts

The exchange graph of $\mathcal{D}(Q)$

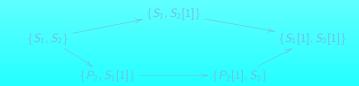
Exchange graph of clusters Coloured quivers and Ext-quivers

Calabi-Yaı double

The Calabi-Yau category The result Let $Q := 2 \rightarrow 1$ be a quiver of type A_2 . A piece of AR-quiver of $\mathcal{D}(Q)$ is:



The interval $EG_3(Q, \mathcal{H}_Q)$ is as follows:



where we denote a heart by the set of its simples.

Example: A_2

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

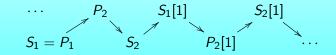
Exchange grap of hearts

The exchange graph of $\mathcal{D}(Q)$

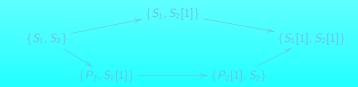
Coloured quivers

Calabi-Yaı double

The Calabi-Yau category The result Let $Q := 2 \rightarrow 1$ be a quiver of type A_2 . A piece of AR-quiver of $\mathcal{D}(Q)$ is:



The interval $EG_3(Q, \mathcal{H}_Q)$ is as follows:



where we denote a heart by the set of its simples.

Example: A_2

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

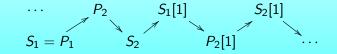
Exchange grap of hearts

The exchange graph of $\mathcal{D}(Q)$

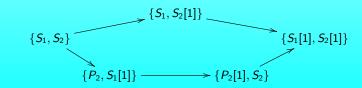
Exchange graph of clusters Coloured quiver and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result Let $Q := 2 \rightarrow 1$ be a quiver of type A_2 . A piece of AR-quiver of $\mathcal{D}(Q)$ is:



The interval $EG_3(Q, \mathcal{H}_Q)$ is as follows:



where we denote a heart by the set of its simples.

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange grapl of hearts

The exchange graph of $\mathcal{D}(Q)$

Exchange graph of clusters Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

Definition

We say that an object $P \in \mathcal{D}$ is a *projective* of \mathcal{H} if

• Hom^k(P, M) = 0, $\forall k \neq 0, M \in \mathcal{H}$;

 $\operatorname{Proj} \mathcal{H} =$ the set of indecomposable projectives of \mathcal{H} .

Note that a projective of a heart is not necessary in the heart.

emma

Proj \mathcal{H} is a silting set, i.e. $\operatorname{Ext}^m(P_1, P_2) = 0$ for any $P_1, P_2 \in \operatorname{Proj} \mathcal{H}$ and integer m > 0.

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange graph of hearts

The exchange graph of $\mathcal{D}(Q)$

Exchange graph of clusters Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

Definition

We say that an object $P \in \mathcal{D}$ is a *projective* of \mathcal{H} if

• Hom^k(P, M) = 0, $\forall k \neq 0, M \in \mathcal{H}$;

 $\operatorname{Proj} \mathcal{H} =$ the set of indecomposable projectives of \mathcal{H} .

Note that a projective of a heart is not necessary in the heart.

emma

Proj \mathcal{H} is a silting set, i.e. $\operatorname{Ext}^m(P_1, P_2) = 0$ for any $P_1, P_2 \in \operatorname{Proj} \mathcal{H}$ and integer m > 0.

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange graph of hearts

The exchange graph of $\mathcal{D}(Q)$

Exchange graph of clusters Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

Definition

We say that an object $P \in \mathcal{D}$ is a *projective* of \mathcal{H} if

• Hom^k(P, M) = 0, $\forall k \neq 0, M \in \mathcal{H}$;

Proj \mathcal{H} = the set of indecomposable projectives of \mathcal{H} .

Note that a projective of a heart is not necessary in the heart.

Lemma

Proj \mathcal{H} is a silting set, i.e. $\operatorname{Ext}^{m}(P_{1}, P_{2}) = 0$ for any $P_{1}, P_{2} \in \operatorname{Proj} \mathcal{H}$ and integer m > 0.

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange graph of hearts

The exchange graph of $\mathcal{D}(Q)$

Exchange graph of clusters Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

Definition

We say that an object $P \in \mathcal{D}$ is a *projective* of \mathcal{H} if

• Hom^k(P, M) = 0, $\forall k \neq 0, M \in \mathcal{H}$;

Proj $\mathcal{H} =$ the set of indecomposable projectives of \mathcal{H} .

Note that a projective of a heart is not necessary in the heart.

Lemma

Proj \mathcal{H} is a silting set, i.e. $\operatorname{Ext}^m(P_1, P_2) = 0$ for any $P_1, P_2 \in \operatorname{Proj} \mathcal{H}$ and integer m > 0.

2

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange grap of hearts

The exchange graph of $\mathcal{D}(Q$

Exchange graph of clusters

Coloured quivers and Ext-quivers

Calabi-Yaı double

The Calabi-Yau category The result

Introduction

From hearts to clusters

- Exchange graph of hearts
- The exchange graph of $\mathcal{D}(Q)$
- Exchange graph of clusters
- Coloured quivers and Ext-quivers

Calabi-Yau double

- The Calabi-Yau category
- The result

Cluster tilting sets

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange grap of hearts

The exchange graph of $\mathcal{D}(Q)$

Exchange graph of clusters

Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result • The *m*-cluster category $C_m(Q)$ is the orbit category $\mathcal{D}(Q)/\tau^{-1} \circ [m-1]$.

An *m*-cluster tilting set {P_j}ⁿ_{j=1} in C_m(Q) is an Ext-configuration, i.e. a maximal collection of non-isomorphic indecomposables such that Ext^k_{C_m(Q)}(P_i, P_j) = 0, for any 1 ≤ k ≤ m − 1.

Cluster tilting sets

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange grap of hearts

The exchange graph of $\mathcal{D}(Q$

Exchange graph of clusters

Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

- The *m*-cluster category $C_m(Q)$ is the orbit category $\mathcal{D}(Q)/\tau^{-1} \circ [m-1]$.
- An *m*-cluster tilting set {P_j}ⁿ_{j=1} in C_m(Q) is an Ext-configuration, i.e. a maximal collection of non-isomorphic indecomposables such that Ext^k_{C_m(Q)}(P_i, P_j) = 0, for any 1 ≤ k ≤ m − 1.

Mutation

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange grap of hearts

The exchange graph of $\mathcal{D}(Q)$

Exchange graph of clusters

Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result The forward mutation μ_i acts on an *m*-cluster tilting set $\{P_j\}_{i=1}^n$, by replacing P_i by

$$P_i^{\sharp} = \operatorname{Cone}(P_i \to \bigoplus_{j \neq i} \operatorname{Irr}(P_i, P_j)^* \otimes P_j),$$

where $Irr(P_i, P_j)$ is the space of irreducible maps $P_i \to P_j$, in the additive subcategory $Add \bigoplus_{i=1}^n P_i$ of $C_m(Q)$.

Mutation

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange grap of hearts

The exchange graph of $\mathcal{D}(Q)$

Exchange graph of clusters

Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result The forward mutation μ_i acts on an *m*-cluster tilting set $\{P_j\}_{i=1}^n$, by replacing P_i by

$$P_i^{\sharp} = \operatorname{Cone}(P_i \to \bigoplus_{j \neq i} \operatorname{Irr}(P_i, P_j)^* \otimes P_j),$$

where $Irr(P_i, P_j)$ is the space of irreducible maps $P_i \to P_j$, in the additive subcategory $Add \bigoplus_{i=1}^n P_i$ of $C_m(Q)$.

Cluster exchange graphs

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange grapl of hearts

The exchange graph of $\mathcal{D}(Q)$

Exchange graph of clusters

Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

Definition

The exchange graph $CEG_m(Q)$ of *m*-clusters is the oriented graph whose vertices are *m*-cluster tilting sets and whose edges are the forward mutations.

Theorem [King-Qiu, cf. Ingalls-Thomas, Buan-Reiten-Thomas]

There is a bijection on vertex sets:

 $\begin{aligned} \mathcal{J} &: \mathsf{EG}^{\circ}_N(Q, \mathcal{H}_Q) &\to & \mathsf{CEG}_{N-1}(Q), \\ & \mathcal{H} &\mapsto & \mathsf{Proj}\,\mathcal{H}\,. \end{aligned}$

Cluster exchange graphs

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange grap of hearts

The exchange graph of $\mathcal{D}(Q)$

Exchange graph of clusters

Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

Definition

The exchange graph $CEG_m(Q)$ of *m*-clusters is the oriented graph whose vertices are *m*-cluster tilting sets and whose edges are the forward mutations.

Theorem [King-Qiu, cf. Ingalls-Thomas, Buan-Reiten-Thomas]

There is a bijection on vertex sets:

$$\mathcal{J} : \mathsf{EG}^{\circ}_{N}(Q, \mathcal{H}_{Q}) \to \mathsf{CEG}_{N-1}(Q),$$

 $\mathcal{H} \mapsto \mathsf{Proj} \mathcal{H}.$

Example: A_2

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange grap of hearts

The exchange graph of $\mathcal{D}(\mathcal{G})$

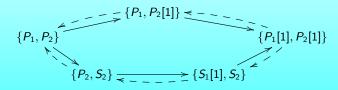
Exchange graph of clusters

Coloured quivers and Ext-quivers

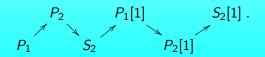
Calabi-Yaı double

The Calabi-Yau category The result

For example, the exchange graph $CEG_2(Q)$ is as follows:



recall that we have a piece of the AR-quiver



Outline

2

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange grap of hearts

graph of $\mathcal{D}(Q)$ Exchange graph of clusters

Coloured quivers and Ext-quivers

Calabi-Yaı double

The Calabi-Yau category The result

Introduction

From hearts to clusters

- Exchange graph of hearts
- The exchange graph of $\mathcal{D}(Q)$
- Exchange graph of clusters
- Coloured quivers and Ext-quivers

Calabi-Yau double

- The Calabi-Yau category
- The result

Coloured quivers

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange grap of hearts

The exchange graph of $\mathcal{D}(Q)$ Exchange graph of clusters

Coloured quivers and Ext-quivers

Calabi-Yaı double

The Calabi-Yau category The result For any cluster tilting set $\mathbf{T} = \{T_1, \ldots, T_n\}$ in $CEG_m(Q)$, Buan-Thomas defined a coloured quiver $\mathcal{Q}^c(\mathbf{T})$ with coloured quiver mutation.

lote that

The multiplicity of the colour-zero arrows in $Q(\mathbf{T})$ is given by $Irr(T_i, T_j)$.

 $\circ \ \mathcal{Q}^{\mathrm{c}}(\mathsf{T})$ is monochromatic and skew-symmetric:

$$T_i \underbrace{\overset{c}{\underset{m-1-c}{\overset{c}{\underset{m-1-c}{\atop}}}}}_{m-1-c} T_j \ , \quad 0 \leq c \leq m-1 \ \text{is the colour.}$$

Coloured quivers

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange grap of hearts The exchange

graph of $\mathcal{D}(Q)$ Exchange graph of clusters

Coloured quivers and Ext-quivers

Calabi-Yaı double

The Calabi-Yau category The result For any cluster tilting set $\mathbf{T} = \{T_1, \ldots, T_n\}$ in $CEG_m(Q)$, Buan-Thomas defined a coloured quiver $\mathcal{Q}^c(\mathbf{T})$ with coloured quiver mutation.

Note that

 The multiplicity of the colour-zero arrows in Q(T) is given by Irr(T_i, T_j).

• $\mathcal{Q}^{\mathrm{c}}(\mathsf{T})$ is monochromatic and skew-symmetric:

$$T_i \underbrace{\overset{c}{\underset{m-1-c}{\overset{c}{\underset{m-1-c}{\overset{c}{\underset{m-1-c}{\overset{c}{\underset{m-1-c}{\overset{c}{\underset{m-1-c}{\overset{c}{\underset{m-1-c}{\underset{m-1-c}{\overset{c}{\underset{m-1-c}{\underset{m-1-c}{\overset{c}{\underset{m-1-c}{m-1-c}{\underset{m-1-c}{\atopm-1-c}{\underset{m-1-c}{m-1-c}{m-1-c}{m}{m-1-c}{m}{m-1-c}{m}{m}$$

Coloured quivers

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange grap of hearts

graph of $\mathcal{D}(Q)$ Exchange graph of clusters

Coloured quivers and Ext-quivers

Calabi-Yaı double

The Calabi-Yau category The result For any cluster tilting set $\mathbf{T} = \{T_1, \ldots, T_n\}$ in $CEG_m(Q)$, Buan-Thomas defined a coloured quiver $\mathcal{Q}^c(\mathbf{T})$ with coloured quiver mutation.

Note that

- The multiplicity of the colour-zero arrows in $Q(\mathbf{T})$ is given by $Irr(T_i, T_j)$.
- $\mathcal{Q}^{c}(\mathbf{T})$ is monochromatic and skew-symmetric:

$$T_i \underbrace{\overset{c}{\underset{m-1-c}{\overset{c}{\underset{m-1-c}{\overset{c}{\underset{m-1-c}{\overset{c}{\underset{m-1-c}{\overset{c}{\underset{m-1-c}{\overset{c}{\underset{m-1-c}{\underset{m-1-c}{\overset{c}{\underset{m-1-c}{m-1-c}{\underset{m-1-c}{m-1-c}{m-1-c}{\underset{m-1-c}{m-1-c}{m-1-c}{\underset{m-1-$$

Augmented graded quivers

ICRA2012

- Yu Qiu
- Outline
- Introduction
- From hearts to clusters
- Exchange grap of hearts
- graph of $\mathcal{D}(Q)$ Exchange graph
- Coloured quivers and Ext-quivers
- Calabi-Yaı double
- The Calabi-Yau category The result

We can turn a coloured quiver $\mathcal{Q}^c(T)$ into the augmented graded quiver $\mathcal{Q}^+(T)$ by

- shifting the degree/colour of all arrows by +1,
- and adding a loop of degree m + 1 at each vertex.

o $\mathcal{Q}^+(\mathbf{T})$ is (m+1)-Calabi-Yau.

Augmented graded quivers

ICRA2012

- Yu Qiu
- Outline
- Introduction
- From hearts to clusters
- Exchange grap of hearts
- The exchange graph of $\mathcal{D}(Q)$ Exchange graph of clusters
- Coloured quivers and Ext-quivers
- Calabi-Yaı double
- The Calabi-Yau category The result

We can turn a coloured quiver $Q^c(T)$ into the *augmented* graded quiver $Q^+(T)$ by

- shifting the degree/colour of all arrows by +1,
- and adding a loop of degree m + 1 at each vertex.

So $Q^+(\mathbf{T})$ is (m+1)-Calabi-Yau.

Ext-quivers of hearts

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange grap of hearts

The exchange graph of $\mathcal{D}(Q)$ Exchange graph of clusters

Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

Definition

Let \mathcal{H} be a finite heart in a triangulated category \mathcal{D} . The Ext-quiver $\mathcal{Q}(\operatorname{Sim} \mathcal{H})$ is the graded quiver whose vertices are $\operatorname{Sim} \mathcal{H}$ and whose graded edges correspond to a basis of $\operatorname{End}^{\bullet}(\mathbf{S}, \mathbf{S})$, where $\mathbf{S} = \bigoplus_{S \in \operatorname{Sim} \mathcal{H}} S$.

Further, define the *CY-N* double of a graded quiver Q, denoted by ${}^{N}\overline{Q}$.

Ext-quivers of hearts

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange grap of hearts

The exchange graph of $\mathcal{D}(Q)$ Exchange graph of clusters

Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

Definition

Let \mathcal{H} be a finite heart in a triangulated category \mathcal{D} . The Ext-quiver $\mathcal{Q}(\operatorname{Sim} \mathcal{H})$ is the graded quiver whose vertices are $\operatorname{Sim} \mathcal{H}$ and whose graded edges correspond to a basis of $\operatorname{End}^{\bullet}(\mathbf{S}, \mathbf{S})$, where $\mathbf{S} = \bigoplus_{S \in \operatorname{Sim} \mathcal{H}} S$.

Further, define the *CY-N* double of a graded quiver Q, denoted by ${}^{N}\overline{Q}$.

Ext-quivers of hearts

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange grap of hearts

The exchange graph of $\mathcal{D}(Q)$ Exchange graph of clusters

Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

Definition

Let \mathcal{H} be a finite heart in a triangulated category \mathcal{D} . The Ext-quiver $\mathcal{Q}(\operatorname{Sim} \mathcal{H})$ is the graded quiver whose vertices are $\operatorname{Sim} \mathcal{H}$ and whose graded edges correspond to a basis of $\operatorname{End}^{\bullet}(\mathbf{S}, \mathbf{S})$, where $\mathbf{S} = \bigoplus_{S \in \operatorname{Sim} \mathcal{H}} S$.

Further, define the *CY-N* double of a graded quiver Q, denoted by ${}^{N}\overline{Q}$.

First link

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange graph of hearts The exchange graph of $\mathcal{D}(Q)$

Exchange graph of clusters Coloured quivers

Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

$\mathsf{Recall}\ \mathcal{J}:\mathsf{EG}^{\circ}_{\mathsf{N}}(\mathcal{Q},\mathcal{H}_{\mathcal{Q}})\hookrightarrow\mathsf{CEG}_{\mathsf{N}-1}(\mathcal{Q}),\mathcal{H}\mapsto\mathsf{Proj}\,\mathcal{H}.$

Key Proposition [King-Qiu]

For any heart $\mathcal{H} \in \mathrm{EG}^{\circ}_{N}(Q, \mathcal{H}_{Q})$, we have

 $\mathcal{Q}^+(\operatorname{Proj}\mathcal{H}) = {}^N \overline{\mathcal{Q}}(\operatorname{Sim}\mathcal{H}).$

 $\mathsf{lrr}(P_i, P_j) \cong \mathsf{Ext}^1(S_j, S_i)^*$

First link

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange graph of hearts The exchange graph of $\mathcal{D}(Q)$

Exchange graph of clusters

Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

$\mathsf{Recall} \ \mathcal{J}: \mathsf{EG}^{\circ}_{\mathsf{N}}(\mathcal{Q},\mathcal{H}_{\mathcal{Q}}) \hookrightarrow \mathsf{CEG}_{\mathsf{N}-1}(\mathcal{Q}), \mathcal{H} \mapsto \mathsf{Proj}\, \mathcal{H}.$

Key Proposition [King-Qiu]

For any heart $\mathcal{H} \in EG_N^{\circ}(Q, \mathcal{H}_Q)$, we have

 $Q^+(\operatorname{Proj} \mathcal{H}) = {}^N \overline{\mathcal{Q}(\operatorname{Sim} \mathcal{H})}.$

 $\mathsf{Irr}(P_i,P_j)\cong\mathsf{Ext}^1(S_j,S_i)^*$

First link

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange graph of hearts The exchange graph of $\mathcal{D}(Q)$

Exchange graph of clusters

Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

$\mathsf{Recall} \ \mathcal{J}: \mathsf{EG}^{\circ}_{\mathsf{N}}(\mathcal{Q},\mathcal{H}_{\mathcal{Q}}) \hookrightarrow \mathsf{CEG}_{\mathsf{N}-1}(\mathcal{Q}), \mathcal{H} \mapsto \mathsf{Proj}\, \mathcal{H}.$

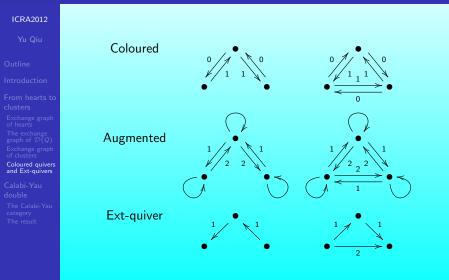
Key Proposition [King-Qiu]

For any heart $\mathcal{H} \in EG_N^{\circ}(Q, \mathcal{H}_Q)$, we have

 $\mathcal{Q}^+(\operatorname{Proj} \mathcal{H}) = {}^N \overline{\mathcal{Q}(\operatorname{Sim} \mathcal{H})}.$

 $\operatorname{Irr}(P_i, P_j) \cong \operatorname{Ext}^1(S_j, S_i)^*$

Examples: Quivers of A_3 -type and N = 3



Outline

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange grap of hearts The exchange graph of $\mathcal{D}(Q$ Exchange grap

of clusters Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

Introduction

From hearts to clusters

- Exchange graph of hearts
- The exchange graph of $\mathcal{D}(Q)$
- Exchange graph of clusters
- Coloured quivers and Ext-quivers

3 Calabi-Yau double

- The Calabi-Yau category
- The result

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange grap of hearts

The exchange graph of $\mathcal{D}(Q)$ Exchange grap

Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category

Let $\Gamma_N Q$ be the *N*-*Calabi*-Yau Ginzburg (dg) algebra associated to Q.

- $\mathcal{D}(\Gamma_N Q) = \mathcal{D}_{fd}(\text{mod }\Gamma_N Q)$, which is *N*-Calabi-Yau.
- $\mathcal{D}(\Gamma_N Q)$ admits a standard heart $\mathcal{H}_{\Gamma} \cong \mathcal{H}_Q = \operatorname{mod} \mathbf{k} Q$.
- The spherical twists of simples in \mathcal{H}_{Γ} generate the Seidel-Thomas braid group $Br(\Gamma_N Q)$.

• $EG^{\circ}(\Gamma_N Q) = the 'principal' component of <math>EG(\mathcal{D}(\Gamma_N Q))$.

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange grap of hearts The exchange

Exchange grap

Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

Let $\Gamma_N Q$ be the *N*-Calabi-Yau Ginzburg (dg) algebra associated to Q.

- $\mathcal{D}(\Gamma_N Q) = \mathcal{D}_{fd} (\text{mod } \Gamma_N Q)$, which is *N*-Calabi-Yau.
- $\mathcal{D}(\Gamma_N Q)$ admits a standard heart $\mathcal{H}_{\Gamma} \cong \mathcal{H}_Q = \operatorname{mod} \mathbf{k} Q$.
- The spherical twists of simples in \mathcal{H}_{Γ} generate the Seidel-Thomas braid group $Br(\Gamma_N Q)$.

• $\mathsf{EG}^{\circ}(\Gamma_N Q) = \mathsf{the}$ 'principal' component of $\mathsf{EG}(\mathcal{D}(\Gamma_N Q))$.

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange grap of hearts

graph of $\mathcal{D}(Q)$ Exchange grap

of clusters Coloured quive

and Ext-quivers

double

The Calabi-Yau category

Let $\Gamma_N Q$ be the *N*-Calabi-Yau Ginzburg (dg) algebra associated to Q.

- $\mathcal{D}(\Gamma_N Q) = \mathcal{D}_{fd}(\text{mod }\Gamma_N Q)$, which is *N*-Calabi-Yau.
- $\mathcal{D}(\Gamma_N Q)$ admits a standard heart $\mathcal{H}_{\Gamma} \cong \mathcal{H}_Q = \operatorname{mod} \mathbf{k} Q$.

 The spherical twists of simples in H_Γ generate the Seidel-Thomas braid group Br(Γ_N Q).

• $\mathsf{EG}^{\circ}(\Gamma_N Q) = \mathsf{the}$ 'principal' component of $\mathsf{EG}(\mathcal{D}(\Gamma_N Q))$.

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange grap of hearts

graph of $\mathcal{D}(Q)$ Exchange grap

Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result Let $\Gamma_N Q$ be the *N*-Calabi-Yau Ginzburg (dg) algebra associated to Q.

- $\mathcal{D}(\Gamma_N Q) = \mathcal{D}_{fd}(\text{mod }\Gamma_N Q)$, which is *N*-Calabi-Yau.
- $\mathcal{D}(\Gamma_N Q)$ admits a standard heart $\mathcal{H}_{\Gamma} \cong \mathcal{H}_Q = \text{mod } \mathbf{k}Q$.
- The spherical twists of simples in \mathcal{H}_{Γ} generate the Seidel-Thomas braid group $Br(\Gamma_N Q)$.

• $\mathsf{EG}^{\circ}(\Gamma_N Q) = \mathsf{the} \text{ 'principal' component of } \mathsf{EG}(\mathcal{D}(\Gamma_N Q)).$

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange grap of hearts

graph of $\mathcal{D}(Q)$ Exchange grap

Coloured quivers

Calabi-Yau double

The Calabi-Yau category Let $\Gamma_N Q$ be the *N*-Calabi-Yau Ginzburg (dg) algebra associated to Q.

- $\mathcal{D}(\Gamma_N Q) = \mathcal{D}_{fd}(\text{mod }\Gamma_N Q)$, which is *N*-Calabi-Yau.
- $\mathcal{D}(\Gamma_N Q)$ admits a standard heart $\mathcal{H}_{\Gamma} \cong \mathcal{H}_Q = \operatorname{mod} \mathbf{k} Q$.
- The spherical twists of simples in H_Γ generate the Seidel-Thomas braid group Br(Γ_N Q).
- $EG^{\circ}(\Gamma_N Q) = the 'principal' component of <math>EG(\mathcal{D}(\Gamma_N Q))$.

Inducing hearts

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange graph of hearts The exchange graph of $\mathcal{D}(Q)$ Exchange graph of clusters

and Ext-quivers

Calabi-Yaı double

The Calabi-Yau category The result

(Keller) The quotient $\Gamma_N Q \rightarrow Q$ induces a functor

$$\mathcal{I}:\mathcal{D}(Q)\to\mathcal{D}(\Gamma_N Q),$$

called Lagrangian immersion.

Proposition [King-Qiu]

There is an isomorphism $\mathcal{I}_* : EG^{\circ}_N(Q, \mathcal{H}_Q) \to EG^{\circ}_N(\Gamma_N Q, \mathcal{H}_{\Gamma}), \widehat{\mathcal{H}} \mapsto \mathcal{H}$, such that \mathcal{H} is determined by $Sim \mathcal{H} = \mathcal{I}(Sim \widehat{\mathcal{H}})$ and satisfying

$$\mathcal{Q}(\mathsf{Sim}\,\mathcal{H}) = {}^{N}\overline{\mathcal{Q}}(\mathsf{Sim}\,\widehat{\mathcal{H}}).$$

Inducing hearts

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange graph of hearts The exchange graph of $\mathcal{D}(Q)$ Exchange graph of clusters

Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result (Keller) The quotient $\Gamma_N Q o Q$ induces a functor

$$\mathcal{I}:\mathcal{D}(Q)\to\mathcal{D}(\Gamma_N Q),$$

called Lagrangian immersion.

Proposition [King-Qiu]

There is an isomorphism $\mathcal{I}_* : EG^{\circ}_N(Q, \mathcal{H}_Q) \to EG^{\circ}_N(\Gamma_N Q, \mathcal{H}_{\Gamma}), \widehat{\mathcal{H}} \mapsto \mathcal{H}$, such that \mathcal{H} is determined by $Sim \mathcal{H} = \mathcal{I}(Sim \widehat{\mathcal{H}})$ and satisfying

$$\mathcal{Q}(\mathsf{Sim}\,\mathcal{H}) = {}^{N}\overline{\mathcal{Q}(\mathsf{Sim}\,\widehat{\mathcal{H}})}.$$

Outline

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange grap of hearts The exchange graph of $\mathcal{D}(Q$ Exchange grap of clusters

and Ext-quivers

Calabi-Yaı double

The Calabi-Yau category The result

Introduction

From hearts to clusters

- Exchange graph of hearts
- The exchange graph of $\mathcal{D}(Q)$
- Exchange graph of clusters
- Coloured quivers and Ext-quivers

3 Calabi-Yau double

- The Calabi-Yau category
- The result

The maps

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange graph of hearts The exchange graph of $\mathcal{D}(Q)$ Exchange graph of clusters

Coloured quivers and Ext-quivers

Calabi-Yaı double

The Calabi-Yau category The result

Amiot constructed a short exact sequence of triangulated categories:

$$0 \to \mathcal{D}(\Gamma_N Q) \to \mathsf{per}(\Gamma_N Q) \to \mathcal{C}_{N-1}(Q) \to 0,$$

which induces a $Br(\Gamma_N Q)$ -invariant map

 $v: \mathsf{EG}^{\circ}(\Gamma_N Q) \to \mathsf{CEG}_{N-1}(Q).$

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange graph of hearts The exchange graph of $\mathcal{D}(Q)$ Exchange graph of clusters Coloured quiver and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

Theorem [King-Qiu]

We have bijections (as vertex set):

$$\widehat{\mathcal{H}} \in \operatorname{EG}^{\circ}_{N}(Q, \mathcal{H}_{Q}) \xrightarrow{\mathcal{J}} \operatorname{CEG}_{N-1}(Q) \quad \ni \operatorname{Proj} \widehat{\mathcal{H}}$$

$$\cong \left| \mathcal{I}_{*} \qquad v \right| \cong$$

$$\mathcal{H} \in \operatorname{EG}^{\circ}_{N}(\Gamma_{N}Q, \mathcal{H}_{\Gamma}) \xrightarrow{\cong} \operatorname{EG}^{\circ}(\Gamma_{N}Q) / \operatorname{Br}$$

 $\mathcal{Q}(\operatorname{Sim} \mathcal{H}) = {}^{N}\overline{\mathcal{Q}(\operatorname{Sim} \widehat{\mathcal{H}})} = \mathcal{Q}^{+}(\operatorname{Proj} \widehat{\mathcal{H}}) = \mathcal{Q}^{+}(v(\mathcal{H})).$

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange graph of hearts The exchange graph of $\mathcal{D}(Q)$ Exchange graph of clusters Coloured quiver and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

Theorem [King-Qiu]

We have bijections (as vertex set):

$$\widehat{\mathcal{H}} \in \operatorname{EG}^{\circ}_{N}(Q, \mathcal{H}_{Q}) \xrightarrow{\mathcal{J}} \operatorname{CEG}_{N-1}(Q) \quad \ni \operatorname{Proj} \widehat{\mathcal{H}}$$

$$\cong \left| \mathcal{I}_{*} \qquad v \right| \cong$$

$$\mathcal{H} \in \operatorname{EG}^{\circ}_{N}(\Gamma_{N}Q, \mathcal{H}_{\Gamma}) \xrightarrow{\cong} \operatorname{EG}^{\circ}(\Gamma_{N}Q) / \operatorname{Br}$$

 $\mathcal{Q}(\operatorname{Sim} \mathcal{H}) = {}^{N}\overline{\mathcal{Q}}(\operatorname{Sim} \widehat{\mathcal{H}}) = \mathcal{Q}^{+}(\operatorname{Proj} \widehat{\mathcal{H}}) = \mathcal{Q}^{+}(v(\mathcal{H})).$

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange graph of hearts The exchange graph of $\mathcal{D}(Q)$ Exchange graph of clusters Coloured quiver and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

Theorem [King-Qiu]

We have bijections (as vertex set):

$$\widehat{\mathcal{H}} \in \operatorname{EG}^{\circ}_{N}(Q, \mathcal{H}_{Q}) \xrightarrow{\mathcal{J}} \operatorname{CEG}_{N-1}(Q) \quad \ni \operatorname{Proj} \widehat{\mathcal{H}}$$

$$\cong \left| \mathcal{I}_{*} \qquad v \right| \cong$$

$$\mathcal{H} \in \operatorname{EG}^{\circ}_{N}(\Gamma_{N}Q, \mathcal{H}_{\Gamma}) \xrightarrow{\cong} \operatorname{EG}^{\circ}(\Gamma_{N}Q) / \operatorname{Br}$$

 $\mathcal{Q}(\operatorname{Sim} \mathcal{H}) = {}^{N} \overline{\mathcal{Q}(\operatorname{Sim} \widehat{\mathcal{H}})} = \mathcal{Q}^{+}(\operatorname{Proj} \widehat{\mathcal{H}}) = \mathcal{Q}^{+}(v(\mathcal{H})).$

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange graph of hearts The exchange graph of $\mathcal{D}(Q)$ Exchange graph of clusters Coloured quiver and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

Theorem [King-Qiu]

We have bijections (as vertex set):

$$\widehat{\mathcal{H}} \in \operatorname{EG}^{\circ}_{N}(Q, \mathcal{H}_{Q}) \xrightarrow{\mathcal{J}} \operatorname{CEG}_{N-1}(Q) \quad \ni \operatorname{Proj} \widehat{\mathcal{H}}$$

$$\cong \left| \mathcal{I}_{*} \qquad \upsilon \right| \cong$$

$$\mathcal{H} \in \operatorname{EG}^{\circ}_{N}(\Gamma_{N}Q, \mathcal{H}_{\Gamma}) \xrightarrow{\cong} \operatorname{EG}^{\circ}(\Gamma_{N}Q) / \operatorname{Br}$$

 $\mathcal{Q}(\operatorname{Sim} \mathcal{H}) = {}^{N} \overline{\mathcal{Q}(\operatorname{Sim} \widehat{\mathcal{H}})} = \mathcal{Q}^{+}(\operatorname{Proj} \widehat{\mathcal{H}}) = \mathcal{Q}^{+}(v(\mathcal{H})).$

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange graph of hearts The exchange graph of $\mathcal{D}(Q)$ Exchange graph of clusters Coloured quiver and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

Theorem [King-Qiu]

We have bijections (as vertex set):

$$\widehat{\mathcal{H}} \in \operatorname{EG}^{\circ}_{N}(Q, \mathcal{H}_{Q}) \xrightarrow{\mathcal{J}} \operatorname{CEG}_{N-1}(Q) \quad \ni \operatorname{Proj} \widehat{\mathcal{H}}$$

$$\cong \left| \mathcal{I}_{*} \qquad v \right| \cong$$

$$\mathcal{H} \in \operatorname{EG}^{\circ}_{N}(\Gamma_{N}Q, \mathcal{H}_{\Gamma}) \xrightarrow{\cong} \operatorname{EG}^{\circ}(\Gamma_{N}Q) / \operatorname{Br}$$

$$\mathcal{Q}(\mathsf{Sim}\,\mathcal{H}) = {}^{N}\overline{\mathcal{Q}(\mathsf{Sim}\,\widehat{\mathcal{H}})} = \mathcal{Q}^{+}(\mathsf{Proj}\,\widehat{\mathcal{H}}) = \mathcal{Q}^{+}(\upsilon(\mathcal{H})).$$

The punchline

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange graph of hearts The exchange graph of $\mathcal{D}(Q)$ Exchange graph of clusters

and Ext-quivers

Calabi-Yaı double

The Calabi-Yau category The result

Theorem [King-Qiu]

For any heart $\mathcal{H} \in \mathsf{EG}^{\circ}(\Gamma_N Q)$, the Ext-quiver $\mathcal{Q}(\mathcal{H})$ is equal to the augmented graded quiver $\mathcal{Q}^+(\upsilon(\mathcal{H}))$ of the corresponding cluster tilting set.

Duality

Projectives	
	Heart

The punchline

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange graph of hearts The exchange graph of $\mathcal{D}(Q)$ Exchange graph of clusters

Coloured quivers and Ext-quivers

Calabi-Yau double

The Calabi-Yau category The result

Theorem [King-Qiu]

For any heart $\mathcal{H} \in EG^{\circ}(\Gamma_N Q)$, the Ext-quiver $\mathcal{Q}(\mathcal{H})$ is equal to the augmented graded quiver $\mathcal{Q}^+(\upsilon(\mathcal{H}))$ of the corresponding cluster tilting set.

Duality

Projectives	
	Heart

The punchline

ICRA2012

Yu Qiu

Outline

Introduction

From hearts to clusters

Exchange graph of hearts The exchange graph of $\mathcal{D}(Q)$ Exchange graph of clusters

Coloured quivers and Ext-quivers

Calabi-Yaı double

The Calabi-Yau category The result

Theorem [King-Qiu]

For any heart $\mathcal{H} \in EG^{\circ}(\Gamma_N Q)$, the Ext-quiver $\mathcal{Q}(\mathcal{H})$ is equal to the augmented graded quiver $\mathcal{Q}^+(\upsilon(\mathcal{H}))$ of the corresponding cluster tilting set.

Duality

Projectives	Simples
Cluster	Heart
Mutation	Tilting
Coloured quiver	Ext-quiver

ICRA2012	
Yu Qiu	

The result

Thanks for your attention!!