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Cluster algebras and cateogries

Cluster algebras were introduced by Fomin and Zelevinsky
in 2000.

The combinatorial ingredient of cluster theory, the quiver
mutation, has been categorified by
Buan-Marsh-Reineke-Reiten-Todorov in 2005.sjf

The cluster category C2(Q) can be realized as orbit
category (Keller) or quotient category (Amiot) and can be
generalized to higher cluster categories Cm(Q).
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Aim and method

We aim to show that Buan-Thomas’ coloured quivers for
higher clusters can be interpreted as Ext-quivers of hearts
in certain derived categories.

The main method is to study various exchange graphs.

For more details, see arXiv:1109.2924v2.

http://arxiv.org/abs/1109.2924
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T-structure and its heart

A t-structure P on a triangulated category D is the torsion
part of some torsion pair (w.r.t. triangles) 〈P⊥,P〉 on D
such that P[1] ⊂ P.

A t-structure P is bounded if for every object M, the
shifts M[k] are in P for k � 0 and in P⊥ for k � 0.

The heart of a (bounded) t-structure P is the full
subcategory H = P⊥[1] ∩ P.

We define an order relation H1 ≤ H2 by P2 ⊂ P1, or
P⊥1 ⊂ P⊥2 .
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Simple HRS-tilting

Proposition [Happel, Reiten, Smalø]

Let H be a heart in a triangulated category D with torsion pair
H = 〈F , T 〉. Then there is a heart H] with torsion pair
H] = 〈T ,F [1]〉, called the forward tilts of H.

We say a forward tilt is simple if F = 〈S〉 for a rigid simple S ,

and write it as H]S .
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The exchange graph

Definition

Define the total exchange graph EG(D) of a triangulated
category D to be the oriented graph whose vertices are all
hearts in D and whose edges correspond to simple forward
tiltings between them.
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The exchange graph

Definition

Define the total exchange graph EG(D) of a triangulated
category D to be the oriented graph whose vertices are all
hearts in D and whose edges correspond to simple forward
tiltings between them.

Remark:EG(D) is the Hasse quiver of the order relation ≤.
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The exchange graph

Definition

Define the total exchange graph EG(D) of a triangulated
category D to be the oriented graph whose vertices are all
hearts in D and whose edges correspond to simple forward
tiltings between them.

For any heart H in D and N ≥ 2, define the interval

EGN(D,H) =
{
H′ ∈ EG(D) | H ≤ H′ ≤ H[N − 2]

}
,

and EG◦N(D,H) its ‘principal’ component containing H.
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The bounded derived category D(Q)

Let Q be an acyclic quiver.

We denote by HQ = mod kQ the module category of the
path algebra kQ.

Let D(Q) = Db(mod kQ) be its bounded derived category.

We will write EG◦(Q) for EG(D(Q)), etc.
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Example: A2

Let Q := 2→ 1 be a quiver of type A2. A piece of AR-quiver
of D(Q) is:

· · · P2

��
S1[1]

$$
S2[1]

##
S1 = P1

99

S2

<<

P2[1]

::

· · ·

The interval EG3(Q,HQ) is as follows:

{S1,S2[1]}
,,

{S1, S2}

22

%%

{S1[1], S2[1]}

{P2, S1[1]} // {P2[1], S2}

77

where we denote a heart by the set of its simples.
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Projectives of a heart

Definition

We say that an object P ∈ D is a projective of H if

Homk(P,M) = 0, ∀k 6= 0,M ∈ H;

ProjH = the set of indecomposable projectives of H.

Note that a projective of a heart is not necessary in the heart.

Lemma

ProjH is a silting set, i.e. Extm(P1,P2) = 0 for any
P1,P2 ∈ ProjH and integer m > 0.

The converse is true in general, cf. Koenig-Yang.
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Cluster tilting sets

The m-cluster category Cm(Q) is the orbit category
D(Q)/τ−1 ◦ [m − 1].

An m-cluster tilting set {Pj}nj=1 in Cm(Q) is an
Ext-configuration, i.e. a maximal collection of
non-isomorphic indecomposables such that
ExtkCm(Q)(Pi ,Pj) = 0, for any 1 ≤ k ≤ m − 1.
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Mutation

The forward mutation µi acts on an m-cluster tilting set
{Pj}nj=1, by replacing Pi by

P]i = Cone(Pi →
⊕
j 6=i

Irr(Pi ,Pj)
∗ ⊗ Pj),

where Irr(Pi ,Pj) is the space of irreducible maps Pi → Pj , in
the additive subcategory Add

⊕n
i=1 Pi of Cm(Q).
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Cluster exchange graphs

Definition

The exchange graph CEGm(Q) of m-clusters is the oriented
graph whose vertices are m-cluster tilting sets and whose edges
are the forward mutations.

Theorem [King-Qiu, cf. Ingalls-Thomas, Buan-Reiten-Thomas]

There is a bijection on vertex sets:

J : EG◦N(Q,HQ) → CEGN−1(Q),

H 7→ ProjH .
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Example: A2

For example, the exchange graph CEG2(Q) is as follows:

{P1,P2[1]}
,,

nn

{P1,P2}

22
vv

[[
$$

{P1[1],P2[1]}

{P2, S2} //mm {S1[1], S2}

77

uu

recall that we have a piece of the AR-quiver

P2

��
P1[1]

$$
S2[1]

P1

>>

S2

<<

P2[1]

::
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Coloured quivers

For any cluster tilting set T = {T1, . . . ,Tn} in CEGm(Q),
Buan-Thomas defined a coloured quiver Qc(T) with coloured
quiver mutation.
Note that

The multiplicity of the colour-zero arrows in Q(T) is given
by Irr(Ti ,Tj).

Qc(T) is monochromatic and skew-symmetric:

Ti

c ))
ii
m−1−c

Tj , 0 ≤ c ≤ m − 1 is the colour.
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Augmented graded quivers

We can turn a coloured quiver Qc(T) into the augmented
graded quiver Q+(T) by

shifting the degree/colour of all arrows by +1,

and adding a loop of degree m + 1 at each vertex.

So Q+(T) is (m+1)-Calabi-Yau.
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Ext-quivers of hearts

Definition

Let H be a finite heart in a triangulated category D. The
Ext-quiver Q(SimH) is the graded quiver whose vertices are
SimH and whose graded edges correspond to a basis of
End•(S,S), where S =

⊕
S∈SimH S .

Further, define the CY-N double of a graded quiver Q, denoted
by NQ.
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Ext-quivers of hearts

Definition

Let H be a finite heart in a triangulated category D. The
Ext-quiver Q(SimH) is the graded quiver whose vertices are
SimH and whose graded edges correspond to a basis of
End•(S,S), where S =

⊕
S∈SimH S .

Further, define the CY-N double of a graded quiver Q, denoted
by NQ.

•
k
(( •
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Ext-quivers of hearts

Definition

Let H be a finite heart in a triangulated category D. The
Ext-quiver Q(SimH) is the graded quiver whose vertices are
SimH and whose graded edges correspond to a basis of
End•(S,S), where S =

⊕
S∈SimH S .

Further, define the CY-N double of a graded quiver Q, denoted
by NQ.

•N 99

k
((

hh
N−k

• Nee
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First link

Recall J : EG◦N(Q,HQ) ↪→ CEGN−1(Q),H 7→ ProjH.

Key Proposition [King-Qiu]

For any heart H ∈ EG◦N(Q,HQ), we have

Q+(ProjH) = NQ(SimH).

Irr(Pi ,Pj) ∼= Ext1(Sj , Si )
∗
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Examples: Quivers of A3-type and N = 3

Coloured • \\
0

BB

1

•
��
0

•��
1

•
0

��1��• 1 //

0
BB

•
1

\\

0
oo

Augmented •
��
\\

1
BB

2

•MM
��
1

• mm��
2

•
��

1

��2��•MM
2 //

1
BB

• mm
2

\\

1
oo

Ext-quiver • __ 1

•
��
1

•

•??1

• •
��

1
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The Ginzburg dg algebra

Let ΓN Q be the N-Calabi-Yau Ginzburg (dg) algebra
associated to Q.

D(ΓN Q) = Dfd(mod ΓN Q), which is N-Calabi-Yau.

D(ΓN Q) admits a standard heart HΓ
∼= HQ = mod kQ.

The spherical twists of simples in HΓ generate the
Seidel-Thomas braid group Br(ΓN Q).

EG◦(ΓN Q) = the ‘principal’ component of EG(D(ΓN Q)).
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Inducing hearts

(Keller) The quotient ΓN Q → Q induces a functor

I : D(Q)→ D(ΓN Q),

called Lagrangian immersion.

Proposition [King-Qiu]

There is an isomorphism I∗ : EG◦N(Q,HQ)→ EG◦N(ΓN Q,HΓ),
Ĥ 7→ H, such that H is determined by SimH = I(Sim Ĥ) and
satisfying

Q(SimH) = NQ(Sim Ĥ).
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The maps

Amiot constructed a short exact sequence of triangulated
categories:

0→ D(ΓN Q)→ per(ΓN Q)→ CN−1(Q)→ 0,

which induces a Br(ΓN Q)-invariant map

υ : EG◦(ΓN Q)→ CEGN−1(Q).
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Isomorphisms between exchange graphs

Theorem [King-Qiu]

We have bijections (as vertex set):

Ĥ ∈

H ∈

EG◦N(Q,HQ)

∼= I∗
��

∼=
J // CEGN−1(Q)

EG◦N(ΓN Q,HΓ) ∼=
// EG◦(ΓN Q)/Br

υ ∼=

OO
3 Proj Ĥ

Q(SimH) = NQ(Sim Ĥ) = Q+(Proj Ĥ) = Q+(υ(H)).
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Ĥ ∈

H ∈

EG◦N(Q,HQ)

∼= I∗
��

∼=
J // CEGN−1(Q)

EG◦N(ΓN Q,HΓ) ∼=
// EG◦(ΓN Q)/Br

υ ∼=

OO
3 Proj Ĥ
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The punchline

Theorem [King-Qiu]

For any heart H ∈ EG◦(ΓN Q), the Ext-quiver Q(H) is equal to
the augmented graded quiver Q+(υ(H)) of the corresponding
cluster tilting set.

Duality

Projectives Simples

Cluster Heart

Mutation Tilting

Coloured quiver Ext-quiver
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END

Thanks for your attention!!
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