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Poset representations

Let PP be one of the above posets.
Poset representations: By rep, P we denote the category of all
systems (V*, (VX)XE’])) which satisfy:

» V, is a finite dimensional K-vector space,

» V, C V. is a subspace for each x € P,

» V. C V, holds whenever x < y in P, and

> there exist x,y € P with V, =0 and V, = V., (finite

support).



Poset representations

Let PP be one of the above posets.
Poset representations: By rep, P we denote the category of all
systems (V*, (VX)XE’])) which satisfy:

» V, is a finite dimensional K-vector space,

» V, C V. is a subspace for each x € P,

» V. C V, holds whenever x < y in P, and

> there exist x,y € P with V, =0 and V, = V., (finite

support).

A chain of categories: The relations for P(n+ 1) are satisfied in
P(n), hence the categories rep, P(n), n € N, form a chain:

repx P(1) C repx P(2) C repx P(3) C -+



Symmetries of the poset

We consider three symmetry operations of the posets, pictured
here for the poset P(3), and the endofunctors which they induce
on its category of representations.
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system has a corresponding conservation law.
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Aim

Noether’s Theorem: Any symmetry of the action of a physical
system has a corresponding conservation law.

» Symmetries of the posets emphasize the role of operations:

reflection ~- duality
rotation ~~ AR-translation 7
shift ~» graded shift

> In turn, the operations on rep P(n) motivate invariants:

graded shift ~» slope o
duality ~ drift § = 42

dn
AR-translation ~» curvature x = 942

—dr
» Using the invariants we study the chain of categories:

repx P(1) C repx P(2) C repi P(3) C - -+



Related categories

The category S(n) of invariant subspaces (C.M. Ringel, D. Simson,
P. Zhang e.a.) occurs as a factor (M. Kleiner):

Proposition. The functor G : repx P(n) — S(n) given by the
picture

Vi Vi
I v
V* Vé - V3 Vé G V3

AN o

v
VI_ Vs "V = V=V =V, = VsV, VY
AWJ o y v

vy ViV, V/=Ve- V. ViV )V



Related categories

The category S(n) of invariant subspaces (C.M. Ringel, D. Simson,
P. Zhang e.a.) occurs as a factor (M. Kleiner):

Proposition. The functor G : repx P(n) — S(n) given by the

picture Vs Vi
I v
V, Vi —/Vs Vi > V4

SN /]

v v
Viie vy “Vvg o= VY-V~ Ve = VIV, VY
U | | y oo
Vy V§ oV, V"2V, -V, V. V{—V,/ V]
is full and has kernel the ideal Z consisting of all maps which factor
through a sum of projective poset representations of type P .



Related categories

The category S(n) of invariant subspaces (C.M. Ringel, D. Simson,
P. Zhang e.a.) occurs as a factor (M. Kleiner):

Proposition. The functor G : repx P(n) — S(n) given by the

picture Vs Vi
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U] | | y oo
vy V52V, V"2V, -V, V. V{—V,/ V]
is full and has kernel the ideal Z consisting of all maps which factor
through a sum of projective poset representations of type P .

Corollary. The stable category rep, P(n) is equivalent to the
stable category of vector bundles over weighted projective lines
X(2,3,n) (X.-W. Chen, D. Kussin, H. Lenzing, H. Meltzer).
Moreover, repy P(n) is equivalent to the category of graded
lattices over tiled orders (W. Rump).



The reflection

Each of the posets P(n) is symmetric with respect to reflection at
one of the centers. On the module category, this operation induces
the reflection duality:
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The reflection

Each of the posets P(n) is symmetric with respect to reflection at
one of the centers. On the module category, this operation induces
the reflection duality:

SIN, N

V]_// V2I D]_// D2/ D3 Kl// K2/ K3
J } Pave ¢ ¢
Vo Vg 2V, Doy Dy Dy Ko Ky Ka

N o

Lemma. The reflection duality D : rep, P(n) — rep, P(n)
preserves the ideal Z and induces the duality on the quotient
S(n) = repy P(n)/Z given by

D(Uc V) = (D(V/U)C DV).
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The rotation
The rotation of the poset gives rise to a autoequivalence R of
order three on its category of representations.
We pick the orientation such that V — V' — V" — V.

Remark: For a representation M = (M! C M;)icz € S(n), the

corresponding poset representation encodes the subspaces M/, the

ambient spaces M; and the factor spaces M;/M! in the following

subposets of P(n).
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Proposition. For the unbounded posets of discrete representation
type, the rotation is just the square of the Auslander-Reiten
translation, up to a shift.




The shift

The shift in the poset in vertical direction gives rise to the graded
shift on the category of representations.

The position with respect to the shift is measured by the slope.

Roughly, the slope is just the barycenter of the generators in the
aligned poset, where generators for multiple columns are averaged
out.



The shift

The shift in the poset in vertical direction gives rise to the graded
shift on the category of representations.

The position with respect to the shift is measured by the slope.

Roughly, the slope is just the barycenter of the generators in the
aligned poset, where generators for multiple columns are averaged

out.
1
Slope formula: (V) = — Z w(x)ox (V) for V € repy P(n),
x€P(n)
where g is the number of generators,
y+34 ifx=y"
wu(x) = y ifx=y" and
y—3 ifx=y
O'X(V) — dim \/Vj_ . l(dlm x+1+ x + dim %—FVX

x+1

+V/ . V- +V,
l(dlm X+1+ Vit V! + dim L—i—dlm %X)
6 Vx+1 VX‘H



Example

The category rep, P(3) for P(3) = wb{ﬂ * has the following
3/

4
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Example

The category rep, P(3) for P(3) = wb{ﬂ * has the following
3/ 4

2//
partial Auslander-Reiten quiver:
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» The slope increases with the graded shift.
> It is invariant under rotation.
» There is constant d such that o(DX) = d — o(X) holds.



The drift

For X € repyc P(ng), we consider the sequence o,(X) of slopes
when X is considered an object in rep, P(n) for n > ng.

Four Examples: Consider the poset P(3) = ' D{A ’,
ol 3 4

dim X on(X) for n >3 o3(X) drift




The drift

For X € repyc P(ng), we consider the sequence o,(X) of slopes
when X is considered an object in rep, P(n) for n > ng.

Four Examples: Consider the poset P(3) =

dim X on(X) for n >3 o3(X) drift
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The drift

For X € repyc P(ng), we consider the sequence o,(X) of slopes
when X is considered an object in rep, P(n) for n > ng.

Four Examples: Consider the poset P(3) = ' D{A ’,
ol 3 4
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The drift

For X € repyc P(ng), we consider the sequence o,(X) of slopes
when X is considered an object in rep, P(n) for n > ng.

Four Examples: Consider the poset P(3) = ! D{A g
2// 3/ 4

dim X on(X) for n >3 o3(X) drift
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The curvature
Theorem. If X — Y is an irreducible morphism in rep, P(n) then
6—n

o(Y)=0(X)+ 1




The curvature
Theorem. If X — Y is an irreducible morphism in rep, P(n) then
6—n
12

o(Y)=0(X)+

Definition: The curvature in rep, P(n) is defined as

do 6—n
") =g T e

n |1 2 3 4 5 6 7 8 9 12
I |0 ZA, ZDy ZEs ZEs & ZA
|~ e 20 e o o g
CO I T T S A s




Summary

Symmetry properties of the posets P(n) lead to invariants for the
study of repy P(n).
» For each object, the slope determines its position within
repx P(n).
» The drift is the change of the slope as the object moves along
the chain

repx P(1) C repx P(2) C repix P(3) C - -+

» The curvature is positive, zero or negative, depending on
whether rep, P(n) is of discrete, tame or wild representation

type.



Summary

Symmetry properties of the posets P(n) lead to invariants for the
study of repy P(n).

» For each object, the slope determines its position within
repx P(n).

» The drift is the change of the slope as the object moves along
the chain

repx P(1) C repx P(2) C repix P(3) C - -+

» The curvature is positive, zero or negative, depending on
whether rep, P(n) is of discrete, tame or wild representation

type.
Thank Youl
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