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Calabi-Yau categories

Definition
A k-linear hom-finite triangulated category T with shift functor Σ is said
to be Calabi-Yau category if an iterated shift functor Σn = [n] is a Serre
functor for some n ≥ 0.

If so then the minimal n ≥ 0 having this property is called the Calabi–Yau
dimension of T , and it is denoted by CYdim(T ). If T is not Calabi-Yau,
we set CYdim(T ) = ∞.
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Stable Calabi-Yau dimension of a selfinjective algebra

If A is selfinjective then the stable module category mod-A is a triangulated
category with the shift given by the inverse Ω−1 of Heller’s syzygy functor.

Definition
The stable Calabi-Yau dimension of A is the Calabi-Yau dimension of the
stable module category of A.

CYdim(A) = CYdim(mod-A)

[K. Erdmann, A. Skowroński, “The stable Calabi-Yau dimension of tame
symmetric algebras.” 2006]

Proposition
Let A be a selfinjective algebra. Then CYdim(A) = n iff n ≥ 0 is the least
number s.t. Ωn+1 ≅ ν−1.

Sergei Ivanov ()CYdim(A) << ∞ ICRA 2012 2 / 17



Stable Calabi-Yau dimension of a selfinjective algebra

If A is selfinjective then the stable module category mod-A is a triangulated
category with the shift given by the inverse Ω−1 of Heller’s syzygy functor.

Definition
The stable Calabi-Yau dimension of A is the Calabi-Yau dimension of the
stable module category of A.

CYdim(A) = CYdim(mod-A)
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CYdim(A) = 0 or 1

K. Erdmann and A. Skowroński described connected selfinjective algebras
of the stable Calabi-Yau dimensions 0 and 1.

CYdim(A) = 0 ⇔ A is a Nakayama algebra of Loewy length at most 2.

CYdim(A) = 1 ⇔ A ≅ Matm(k[x]/(xn)) for n ≥ 3.
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Reminder of preprojective algebras

Let Q be a quiver with an involution a↦ a of arrows s.t. ⋅
a
(( ⋅

a

hh

The preprojective algebra of Q is a bound quiver algebra

P(Q) = kQ/I where I is the principal ideal I = ( ∑
a∈Q1

aa)

The associated graph ∆ = ∆Q of the quiver with an involution Q is
obtained by replacing each set of arrows {a, a} by an undirected edge.
If the involution a↦ a acts freely then the graph ∆ determines the
preprojective algebra completely, and hence it is denoted by P(∆).
It is well-known that the algebra P(∆) is finite dimensional iff ∆ is
one of the Dynkin graphs An,Dn,E6,7,8. Moreover, in this case, the
algebra P(∆) is selfinjective. These algebras are called preprojective
algebras of Dynkin type.

Sergei Ivanov ()CYdim(A) << ∞ ICRA 2012 4 / 17



Reminder of preprojective algebras

Let Q be a quiver with an involution a↦ a of arrows s.t. ⋅
a
(( ⋅

a

hh

The preprojective algebra of Q is a bound quiver algebra

P(Q) = kQ/I where I is the principal ideal I = ( ∑
a∈Q1

aa)

The associated graph ∆ = ∆Q of the quiver with an involution Q is
obtained by replacing each set of arrows {a, a} by an undirected edge.
If the involution a↦ a acts freely then the graph ∆ determines the
preprojective algebra completely, and hence it is denoted by P(∆).
It is well-known that the algebra P(∆) is finite dimensional iff ∆ is
one of the Dynkin graphs An,Dn,E6,7,8. Moreover, in this case, the
algebra P(∆) is selfinjective. These algebras are called preprojective
algebras of Dynkin type.

Sergei Ivanov ()CYdim(A) << ∞ ICRA 2012 4 / 17



Reminder of preprojective algebras

Let Q be a quiver with an involution a↦ a of arrows s.t. ⋅
a
(( ⋅

a

hh

The preprojective algebra of Q is a bound quiver algebra

P(Q) = kQ/I where I is the principal ideal I = ( ∑
a∈Q1

aa)

The associated graph ∆ = ∆Q of the quiver with an involution Q is
obtained by replacing each set of arrows {a, a} by an undirected edge.
If the involution a↦ a acts freely then the graph ∆ determines the
preprojective algebra completely, and hence it is denoted by P(∆).
It is well-known that the algebra P(∆) is finite dimensional iff ∆ is
one of the Dynkin graphs An,Dn,E6,7,8. Moreover, in this case, the
algebra P(∆) is selfinjective. These algebras are called preprojective
algebras of Dynkin type.

Sergei Ivanov ()CYdim(A) << ∞ ICRA 2012 4 / 17



Reminder of preprojective algebras

Let Q be a quiver with an involution a↦ a of arrows s.t. ⋅
a
(( ⋅

a

hh

The preprojective algebra of Q is a bound quiver algebra

P(Q) = kQ/I where I is the principal ideal I = ( ∑
a∈Q1

aa)

The associated graph ∆ = ∆Q of the quiver with an involution Q is
obtained by replacing each set of arrows {a, a} by an undirected edge.
If the involution a↦ a acts freely then the graph ∆ determines the
preprojective algebra completely, and hence it is denoted by P(∆).
It is well-known that the algebra P(∆) is finite dimensional iff ∆ is
one of the Dynkin graphs An,Dn,E6,7,8. Moreover, in this case, the
algebra P(∆) is selfinjective. These algebras are called preprojective
algebras of Dynkin type.

Sergei Ivanov ()CYdim(A) << ∞ ICRA 2012 4 / 17



Reminder of preprojective algebras

Let Q be a quiver with an involution a↦ a of arrows s.t. ⋅
a
(( ⋅

a

hh

The preprojective algebra of Q is a bound quiver algebra

P(Q) = kQ/I where I is the principal ideal I = ( ∑
a∈Q1

aa)

The associated graph ∆ = ∆Q of the quiver with an involution Q is
obtained by replacing each set of arrows {a, a} by an undirected edge.
If the involution a↦ a acts freely then the graph ∆ determines the
preprojective algebra completely, and hence it is denoted by P(∆).
It is well-known that the algebra P(∆) is finite dimensional iff ∆ is
one of the Dynkin graphs An,Dn,E6,7,8. Moreover, in this case, the
algebra P(∆) is selfinjective. These algebras are called preprojective
algebras of Dynkin type.

Sergei Ivanov ()CYdim(A) << ∞ ICRA 2012 4 / 17



Reminder of preprojective algebras

Let Q be a quiver with an involution a↦ a of arrows s.t. ⋅
a
(( ⋅

a

hh

The preprojective algebra of Q is a bound quiver algebra

P(Q) = kQ/I where I is the principal ideal I = ( ∑
a∈Q1

aa)

The associated graph ∆ = ∆Q of the quiver with an involution Q is
obtained by replacing each set of arrows {a, a} by an undirected edge.
If the involution a↦ a acts freely then the graph ∆ determines the
preprojective algebra completely, and hence it is denoted by P(∆).
It is well-known that the algebra P(∆) is finite dimensional iff ∆ is
one of the Dynkin graphs An,Dn,E6,7,8. Moreover, in this case, the
algebra P(∆) is selfinjective. These algebras are called preprojective
algebras of Dynkin type.

Sergei Ivanov ()CYdim(A) << ∞ ICRA 2012 4 / 17



Preprojective algebra of type Ln

The preprojective algebra of type Ln is the algebra P(QLn), where QLn is
the following quiver with an (not free) involution.

0ε=ε 99
α0 // 1
α0

oo
α1 //
α1

oo . . .
αn−3// n − 2

αn−2 //
αn−3
oo n − 1

αn−2
oo

This is a finite dimensional selfinjective algebra.

Associated quiver Ln ∶= ∆QLn
∶

● ● . . . ● ●

We will denote this algebra by P(Ln).
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CYdim(A) = 2

K. Erdmann and A. Skowroński presented the following not fully correct
statement.

Proposition (not fully correct)
Let A be a preprojective algebra of Dynkin type or of type Ln except types
A1,A2,L1. Then CYdim(A) = 2.

Of course, it is right for algebras of Dynkin type but it does not work for
algebras of type Ln.

Proposition
Let A = P(Ln) be a preprojective k-algebra of type Ln for n ≥ 2. Then A
is a symmetric algebra and the following statements hold.

char(k) = 2 ⇒ CYdim(A) = 2

char(k) ≠ 2 ⇒ CYdim(A) = 5
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Reminder of algebras of quaternion type

An algebra A is algebra of quaternion type if A is connected,
symmetric, tame, the Cartan matrix of A is nonsingular, and the stable
Auslander-Reiten quiver ΓsA of A consists only of tubes of rank at
most 2.
K.Erdmann proved that any algebra of quaternion type is Morita
equivalent to one of 12 types of symmetric bound quiver algebras
(given by certain quivers with certain relations). We will call the list of
these 12 types of algebras Erdmann’s list of algebras of quaternion
type.
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CYdim(A) = 3

K.Erdmann and A.Skowroński proved that the stable Calabi-Yau dimension
of any algebra of quaternion type is equal to 3.

I wanted to find a property simple enough to check for selfinjective bound
quiver algebras A = kQ/I which satisfies the following conditions:

it must be formulated in terms of the quiver Q and the ideal I;
it must follow that CYdim(A) = 3;
it must be satisfied for all algebras from the Erdmann’s list of algebras
of quaternion type.

Having so-called DTI-family of relations is a property of this kind. Now we
will define it.

Sergei Ivanov ()CYdim(A) << ∞ ICRA 2012 8 / 17



CYdim(A) = 3
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Definition of DTI-family of relations

Let A = kQ/I be a bound quiver algebra. Let α be an arrow in Q. We
denote by ∂

∂α ∶ kQ→ A⊗A the linear map defined on paths by the
formula:

∂(α1α2 . . . αm)
∂α

= ∑
i ∶ αi=α

α1 . . . αi−1 ⊗ αi+1 . . . αn

Let J = (Q1) � kQ. We use the following denotation

top(I) ∶= I

JI + IJ

and π ∶ I → top(I) is the canonical projection.
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Definition of DTI-family of relations

Let us denote tw(∑ai ⊗ bi) = ∑ bi ⊗ ai.

Definition
Let A = kQ/I be a bound quiver algebra. A Q1-indexed family
R = {rα}α∈Q1 of elements in I we call a DTI-family of relations
(differentially twist invariant) if the following properties are satisfied:

(DTI-1) rα ∈ ejIei for α ∶ i→ j. ⋅
α

++ ⋅
rα

kk

(DTI-2) ∂rβ
∂α = tw (∂rα∂β ) for any α,β ∈ Q1.

(DTI-3) the family πR = {π(rα)}α∈Q1 is a basis in top(I).
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∂α = tw (∂rα∂β ) for any α,β ∈ Q1.

(DTI-3) the family πR = {π(rα)}α∈Q1 is a basis in top(I).
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Example of an algebra with DTI-family of relations
denotation quiver relations with denoted

DTI-family of relations

ANak3,2 0
α0 //

rα2
99

1

α1��

rα0





2

α2

^^

rα1

YY

rα0 = α1α2

rα1 = α2α0

rα2 = α0α1

(DTI-1) obvious

(DTI-2) ∂rα0
∂α1

= e1 ⊗ α2;
∂rα1
∂α0

= α2 ⊗ e1 ⇒ ∂rα0
∂α1

= tw (∂rα1∂α0
)

(DTI-3) all paths of length at least 3 lie in JI + IJ. It follows that
top(I) = ⟨rα0 , rα1 , rα2⟩
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Examples of algebras with DTI-family of relations

denotation &
assumption

quiver relations with denoted
DTI-family of relations

ANakn,m

n divides m + 1

0
α0 // 1

α1��
n − 1

αn−1 ==

2
α2��αn−2

cc
. . .

rαi = αi+1αi+2 . . . αi+m
0 ≤ i < n

— 0α 99
β // 1
γ
oo

rα = βγ − α2,
rβ = γα,
rγ = αβ.
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Main results about algebras with DTI-family of relations.

Theorem
Let A = kQ/I be a selfinjective bounded quiver algebra with DTI-family of
relations non isomorphic to the algebras k[x]/(xn) and ANak3,2 . Then
CYdim(A) = 3.

Theorem
Every algebra from Erdmann’s list of quaternion algebras has DTI-family of
relations.

Qk(a, b) ●α :: β
zz

rα = α2 − (βα)k−1β − aα3,

rβ = β2 − (αβ)k−1α − bβ3,
α4, β4.
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Let us go back to the preprojective algebra P(Ln)

P(Ln) = P(QLn)

QLn ∶
0ε=ε 99

α0 // 1
α0

oo
α1 //
α1

oo . . .
αn−3// n − 2

αn−2 //
αn−3
oo n − 1

αn−2
oo

Proposition
Let A = P(Ln) be a preprojective k-algebra of type Ln for n ≥ 2. Then A
is a symmetric algebra and the following statements hold.

char(k) = 2 ⇒ CYdim(A) = 2

char(k) ≠ 2 ⇒ CYdim(A) = 5
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Main ideas of the proof that CYdim(P(Ln)) = 5

If n ≥ 2 and char(k) ≠ 2 then CYdim(P(Ln)) = 5

Let us denote A = P(Ln).

Steps of the proof:
A is a symmetric algebra.
So CYdim(A) = n iff n is the least number s.t. Ωn+1 ≅ Id.

We have to prove that Ω6 ≅ Id and Ωi /≅ Id for 1 ≤ i ≤ 5.

Ω3
Ae(A) ≅ Aτ where τ ∶ A→ A is an automorphism s.t. τ(ei) = ei and

τ(α) = −α for i ∈ Q0, α ∈ Q1.

Hence Ω3(M) ≅M ⊗A Ω3
Ae(A) ≅Mτ . It follows that Ω6 ≅ Id

The main problem here is to prove that Ω3 ≅ (−)τ /≅ Id as
endofunctors on mod-A.
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We assume the contrary, that there is an isomorphism of endofunctors
f ∶ Id→ (−)τ on the category mod-A.
We consider the module M ∶= P0/rad2(P0), where P0 = e0A, and
prove that HomA(M,Mτ) = HomA(M,Mτ)
We prove that M ≅Mτ but there is NO an isomorphism
fM ∶M →Mτ s.t. the following diagram is commutative in mod-A.

M
ε ⋅ //

fM ≅

��

M

fM ≅

��
Mτ

ε ⋅ //Mτ

The equality HomA(M,Mτ) = HomA(M,Mτ) follows that there is no
such an isomorphism even in mod-A.
So f ∶ Id→ (−)τ is NOT a natural transformation. It contradicts to
the assumption! ◻
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Thank you for your attention!
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