Cluster algebras and symmetric matrices

Ahmet Seven

Middle East Technical University, Ankara, Turkey

August 2012
\mathbb{T}_n: n-regular tree
t_0: initial vertex
$B_0 = B_{t_0}$: $n \times n$ skew-symmetrizable matrix (initial exchange matrix)
$c_0 = c_{t_0}$: standard basis of \mathbb{Z}^n

To each t in \mathbb{T}_n assign $(c_t, B_t) = (c, B)$, a "Y-seed", such that $(c', B') := \mu_k(c, B)$:
The entries of the exchange matrix \(B' = (B'_{ij}) \) are given by

\[
B'_{ij} = \begin{cases}
-B_{ij} & \text{if } i = k \text{ or } j = k; \\
B_{ij} + [B_{ik}]_+ + [B_{kj}]_+ - [-B_{ik}]_+ + [-B_{kj}]_+ & \text{otherwise.}
\end{cases}
\]

(1)

The tuple \(c' = (c'_1, \ldots, c'_n) \) is given by

\[
c'_i = \begin{cases}
-c_i & \text{if } i = k; \\
c_i + [\text{sgn}(c_k) B_{k,i}]_+ c_k & \text{if } i \neq k.
\end{cases}
\]

(2)
B: skew-symmetrizable $n \times n$ matrix

Diagram of B is the directed graph such that

- vertices: 1, ..., n
- $i \rightarrow j$ if and only if $B_{j,i} > 0$
 - the edge is assigned the weight $|B_{i,j}B_{j,i}|$
 - (if the weight is 1 then we omit it in the picture)

Quiver notation:

Diagram of a skew-symmetric matrix = Quiver

- $B_{j,i} > 0$ many arrows from i to j
quiver notation

4

diagram notation
B: skew-symmetrizable $n \times n$ matrix such that $\Gamma(B)$ is acyclic, i.e.

- $\Gamma(B)$ has no oriented cycles at all.

A: the associated generalized Cartan matrix

- $A_{i,i} = 2$
- $A_{i,j} = -|B_{i,j}|$

$\alpha_1, \ldots, \alpha_n$: simple roots

$Q = \text{span}(\alpha_1, \ldots, \alpha_n) \cong \mathbb{Z}^n$: root lattice

$s_i = s_{\alpha_i}: Q \to Q$: reflection

- $s_i(\alpha_j) = \alpha_j - A_{i,j}\alpha_i$

real roots: vectors obtained from the simple roots by a sequence of reflections
(c_0, B_0): initial Y-seed with $\Gamma(B_0)$ acyclic

Theorem (Speyer, Thomas)

Each c-vector is the coordinate vector of a real root in the basis of simple roots.
B: skew-symmetrizable

A **quasi-Cartan companion** of B is a symmetrizable matrix A:

- $A_{i,i} = 2$
- $A_{i,j} = \pm B_{i,j}$ for all $i \neq j$.

Diagram of B:

```
  4
 /\  \
0 ---- 0 ---- 0
   \  /
    0
```

Diagram of a quasi-Cartan companion of B:

```
(+)
/\  \
0 ---- 0 ---- 0
   \  /
    0
```

(-)

(+)

(-)
B_0: skew-symmetrizable $n \times n$ matrix such that $\Gamma(B_0)$ is acyclic

A_0: the associated generalized Cartan matrix

B is mutation-equivalent to B_0

Definition (Barot, Marsh; Parsons)

β_1, \ldots, β_n real roots form a companion basis for B if

$A = (\langle \beta_i, \beta_j \rangle)$ is a quasi-Cartan companion of B

- If B is skew-symmetric, then these form a companion basis if $A = (\beta_i^T A_0 \beta_j)$.

(β_i^T denotes the transpose of β_i viewed as a column vector.)
B_0: skew-symmetric matrix such that $\Gamma(B_0)$ is acyclic
A_0: the associated generalized Cartan matrix
(c_0, B_0): initial Y-seed
(c, B): arbitrary Y-seed

Theorem (S.)

$A = (c_i^T A_0 c_j)$ is a quasi-Cartan companion of B

Furthermore:

- If $\text{sgn}(B_{j,i}) = \text{sgn}(c_j)$, then $A_{j,i} = c_j^T A_0 c_i = -\text{sgn}(c_j) B_{j,i}$.
- If $\text{sgn}(B_{j,i}) = -\text{sgn}(c_j)$, then $A_{j,i} = c_j^T A_0 c_i = \text{sgn}(c_i) B_{j,i}$.

In particular; if $\text{sgn}(c_j) = -\text{sgn}(c_i)$, then $B_{j,i} = \text{sgn}(c_i) c_j^T A_0 c_i$.
More properties of the “c-vector companion” A:

- Every directed path of the diagram $\Gamma(B)$ has at most one edge $\{i, j\}$ such that $A_{i,j} > 0$.

- Every oriented cycle of the diagram $\Gamma(B)$ has exactly one edge $\{i, j\}$ such that $A_{i,j} > 0$.

- Every non-oriented cycle of the diagram $\Gamma(B)$ has an even number of edges $\{i, j\}$ such that $A_{i,j} > 0$.
Definition
A set C of edges in $\Gamma(B)$ is called an “admissible cut” if

- every oriented cycle contains exactly one edge in C
 (for quivers with potentials, also introduced by Herschend, Iyama; for cluster tilting, introduced by Buan, Reiten, S.)
- every non-oriented cycle contains exactly an even number of edges in C.

If $\Gamma(B)$ is mutation-equivalent to an acyclic diagram, then it has an admissible cut of edges: those $\{i, j\}$ such that $A_{i,j} > 0$.

B: skew-symmetric matrix
Equivalently:

if the diagram of a skew-symmetric matrix does not have an admissible cut of edges, then it is not mutation-equivalent to any acyclic diagram.