Cluster algebras and symmetric matrices

Ahmet Seven

Middle East Technical University, Ankara, Turkey

August 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 \mathbb{T}_n : n-regular tree

t₀: initial vertex

 $B_0 = B_{t_0}$: $n \times n$ skew-symmetrizable matrix (initial exchange matrix)

 $\mathbf{c}_0 = \mathbf{c}_{t_0}$: standard basis of \mathbb{Z}^n To each t in \mathbb{T}_n assign $(\mathbf{c}_t, B_t) = (\mathbf{c}, B)$, a "Y-seed", such that $(\mathbf{c}', B') := \mu_k(\mathbf{c}, B)$:

• The entries of the exchange matrix $B' = (B'_{ij})$ are given by

$$B'_{ij} = \begin{cases} -B_{ij} & \text{if } i = k \text{ or } j = k; \\ B_{ij} + [B_{ik}]_+ [B_{kj}]_+ - [-B_{ik}]_+ [-B_{kj}]_+ & \text{otherwise.} \end{cases}$$
(1)

• The tuple $\mathbf{c}' = (\mathbf{c}'_1, \dots, \mathbf{c}'_n)$ is given by

$$\mathbf{c}'_{i} = \begin{cases} -\mathbf{c}_{i} & \text{if } i = k; \\ \mathbf{c}_{i} + [sgn(\mathbf{c}_{k})B_{k,i}]_{+}\mathbf{c}_{k} & \text{if } i \neq k. \end{cases}$$
(2)

B: skew-symmetrizable $n \times n$ matrix

Diagram of B is the directed graph such that

•
$$i \longrightarrow j$$
 if and only if $B_{j,i} > 0$

- the edge is assigned the weight $|B_{i,j}B_{j,i}|$
- (if the weight is 1 then we omit it in the picture)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Quiver notation:

Diagram of a skew-symmetric matrix = Quiver

•
$$B_{j,i} > 0$$
 many arrows from *i* to *j*

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

quiver notation

diagram notation

- B: skew-symmetrizable $n \times n$ matrix such that $\Gamma(B)$ is *acyclic*, i.e.
 - \blacktriangleright $\Gamma(B)$ has no oriented cycles at all.
- A: the associated generalized Cartan matrix

 $\alpha_1, ..., \alpha_n$: simple roots $Q = span(\alpha_1, ..., \alpha_n) \cong \mathbb{Z}^n$: root lattice $s_i = s_{\alpha_i}$: $Q \to Q$: reflection

$$\bullet \ \mathbf{s}_i(\alpha_j) = \alpha_j - \mathbf{A}_{i,j}\alpha_i$$

real roots: vectors obtained from the simple roots by a sequence of reflections

 (\mathbf{c}_0, B_0) : initial Y-seed with $\Gamma(B_0)$ acyclic

Theorem (Speyer, Thomas)

Each ${\bf c}\mbox{-vector}$ is the coordinate vector of a real root in the basis of simple roots.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

B: skew-symmetrizable

A quasi-Cartan companion of B is a symmetrizable matrix A:

a quasi-Cartan companion of B

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 B_0 : skew-symmetrizable $n \times n$ matrix such that $\Gamma(B_0)$ is acyclic A_0 : the associated generalized Cartan matrix B is mutation-equivalent to B_0

Definition (Barot, Marsh; Parsons)

 $\beta_1, ..., \beta_n$ real roots form a *companion basis* for *B* if $A = (\langle \beta_i, \beta_j^{\vee} \rangle)$ is a quasi-Cartan companion of *B*

• If *B* is skew-symmetric, then these form a companion basis if $A = (\beta_i^T A_0 \beta_j)$.

 $(\beta_i^T \text{ denotes the transpose of } \beta_i \text{ viewed as a column vector.})$

 B_0 : skew-symmetric matrix such that $\Gamma(B_0)$ is acyclic A_0 : the associated generalized Cartan matrix (\mathbf{c}_0, B_0) : initial Y-seed (\mathbf{c}, B) : arbitrary Y-seed

Theorem (S.)

 $A = (\mathbf{c}_i^T A_0 \mathbf{c}_j)$ is a quasi-Cartan companion of B

Furthermore:

▶ If
$$sgn(B_{j,i}) = sgn(\mathbf{c}_j)$$
, then $A_{j,i} = \mathbf{c}_j^T A_0 \mathbf{c}_i = -sgn(\mathbf{c}_j)B_{j,i}$.
▶ If $sgn(B_{j,i}) = -sgn(\mathbf{c}_j)$, then $A_{j,i} = \mathbf{c}_j^T A_0 \mathbf{c}_i = sgn(\mathbf{c}_i)B_{j,i}$.

In particular; if $sgn(\mathbf{c}_j) = -sgn(\mathbf{c}_i)$, then $B_{j,i} = sgn(\mathbf{c}_i)\mathbf{c}_j^T A_0 \mathbf{c}_i$.

More properties of the "c-vector companion" A :

- Every directed path of the diagram Γ(B) has at most one edge {i, j} such that A_{i,j} > 0.
- Every oriented cycle of the diagram Γ(B) has exactly one edge {i,j} such that A_{i,j} > 0.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Every non-oriented cycle of the diagram Γ(B) has an even number of edges {i, j} such that A_{i,j} > 0. B: skew-symmetric matrix

Definition

A set C of edges in $\Gamma(B)$ is called an "admissible cut" if

every oriented cycle contains exactly one edge in C

(for quivers with potentials, also introduced by Herschend, lyama; for cluster tilting, introduced by Buan, Reiten, S.)

every non-oriented cycle contains exactly an even number of edges in C.

If $\Gamma(B)$ is mutation-equivalent to an acyclic diagram, then it has an admissible cut of edges: those $\{i, j\}$ such that $A_{i,j} > 0$.

Equivalently:

if the diagram of a skew-symmetric matrix does not have an admissible cut of edges, then it is not mutation-equivalent to any acyclic diagram.

(日)、

э