Frobenius-Schur theorem for a class of *-algebras

Kenichi Shimizu

Nagoya University

Frobenius-Schur theorem (1)

G: a compact group,

 $R: G \to GL_n(\mathbb{C})$ an irrep. of G (cont. over \mathbb{C}).

 χ : the character of R (i.e. $\chi = \operatorname{Tr} \circ R : G \to \mathbb{C}$).

- χ is real if ∃P ∈ GL_n(ℂ) s.t. P⁻¹R(g)P ∈ GL_n(ℝ) ∀g ∈ G. Note: χ is real ⇒ χ(g) ∈ ℝ for all g ∈ G.
 χ is complex if χ(g) ∉ ℝ for some g ∈ G.
 χ is quaternionic (or pseudo real) if it is not real
- χ is quaternionic (or pseudo-real) if it is not real but $\chi(g) \in \mathbb{R}$ for all $g \in G$.

Frobenius-Schur theorem (2)

Define the **Frobenius-Schur** (FS) indicator $\nu(\chi)$ by

$$u(\chi) = \int_G \chi(g^2) d\mu(g),$$

where μ is the Haar measure on G s.t. $\mu(G) = 1$.

Theorem(Frobenius-Schur)

$$u(\chi) = egin{cases} +1 & ext{if } \chi ext{ is real,} \\ 0 & ext{if } \chi ext{ is complex,} \\ -1 & ext{if } \chi ext{ is quaternionic.} \end{cases}$$

There are many generalizations of this theorem...

FS theorem for Hopf algebras

- *H*: fin.-dim'l semisimple Hopf alg.
- V: a left H-module with character χ .
- $\Rightarrow
 u(\chi)$ is defined by using the Haar integral of H.

 $\begin{array}{l} \mbox{Theorem (Linchenko-Montgomery)} \\ \mbox{If } V \mbox{ is simple, then } \nu(\chi) \in \{0, \pm 1\}. \mbox{ Moreover:} \\ \nu(\chi) \neq 0 \Leftrightarrow \begin{bmatrix} V \mbox{ has a non-degenerate } H \mbox{-invariant } \\ \mbox{ bilinear form } b: V \times V \rightarrow \mathbb{C} \end{bmatrix}. \\ \mbox{If } \nu(\chi) \neq 0, \mbox{ then the above } b \mbox{ satisfies} \\ b(w,v) = \nu(\chi) \cdot b(v,w) \quad \forall v,w \in V, \end{array}$

Question on the FS theorem for Hopf alg.

- The FS theorem for Hopf alg. is formulated in terms of invariant bilinear forms.
- Question: Can we prove the following for Hopf alg.?

$$u(\chi) = egin{cases} +1 & ext{if } \chi ext{ is real,} \ 0 & ext{if } \chi ext{ is complex,} \ -1 & ext{if } \chi ext{ is quaternionic.} \end{cases}$$

- Before asking this question, we need to define real, complex and quaternionic rep. of a Hopf algebra.
- No definitions, since "we do not have a canonical basis of *H* which plays the role of the group elements in the group algebra" [LM].

Today's theme

• We propose a real-complex-quaternionic type FS theorem for a class of *-algebras.

We can apply the above results to s.s. Hopf *-algebras.

- ⇒ We can define real, complex and quaternionic representations of such a Hopf algebras.
- \Rightarrow For an irreducible *-representation of H, we have

$$u(\chi) = egin{cases} +1 & ext{if } \chi ext{ is real,} \\ 0 & ext{if } \chi ext{ is complex,} \\ -1 & ext{if } \chi ext{ is quaternionic.} \end{cases}$$

[arXiv:1208.2433]

"FS indicator for categories with duality".

- A category s.t. each object X has the 'dual' X^{\vee} .
- For its object X, the FS indicator u(X) is defined.
- Pivotal algebras (Based on 'pivotal Hopf algebras').
 - $\bullet~$ If ${\boldsymbol A}$ is a pivotal algebra, then
 - \Rightarrow Rep(A) is a category with duality.
 - \Rightarrow FS indicator $\nu(V)$ is defined $\forall V \in \operatorname{Rep}(A)$.

[arXiv:1208.2435]

"Frobenius-Schur theorem for a class of *-algebras".

- Pivotal *-algebras = Pivotal algebras with *-structure.
- Real, complex and quaternionic reps are defined.
- (Goal) The FS theorem for pivotal *-algebras.

Categories with duality

A category with duality is a category $\boldsymbol{\mathcal{C}}$ equipped with

- a contrav. functor $(-)^{\vee}:\mathcal{C}
 ightarrow\mathcal{C}$, $X\mapsto X^{\vee}$.
- ullet a natural trans. $j_X:X o X^{eeee}$ $(X\in\mathcal{C}).$

satisfying

$$(j_X)^ee\circ j_{X^ee}=\mathrm{id}_{X^ee}\quad (orall X\in\mathcal{C}).$$

Example:

- $\mathcal{C} = \operatorname{Rep}(G)$, G a group.
- For $V \in \operatorname{Rep}(G)$, V^{\vee} is the contragradient rep.

FS indicator for categories with duality

Suppose that
$$\mathcal{C}$$
 and $(-)^{\vee}$ are \mathbb{C} -linear, and
 $\dim_{\mathbb{C}} \operatorname{Hom}_{\mathcal{C}}(X,Y) < \infty \quad \forall X,Y \in \mathcal{C}.$
Define $T_{X,Y}: \operatorname{Hom}_{\mathcal{C}}(X,Y^{\vee}) \to \operatorname{Hom}_{\mathcal{C}}(Y,X^{\vee})$ by
 $T_{X,Y}(f): Y \xrightarrow{j_{Y}} Y^{\vee \vee} \xrightarrow{f^{\vee}} X^{\vee}.$

Definition (FS indicator)

For
$$X \in \mathcal{C}$$
, define $u(X) := \operatorname{Tr}(T_{X,X})$.

• Based on the definition of the (higher) FS indicator for pivotal monoidal categories (Ng-Schauenburg).

Pivotal algebras

Pivotal Hopf algebras are defined so that its representation category is a pivotal monoidal category.

$$\begin{pmatrix} \mathsf{pivotal} \\ \mathsf{algebras} \end{pmatrix} \stackrel{\text{def}}{=} \begin{pmatrix} \mathsf{pivotal} \\ \mathsf{Hopf} \ \mathsf{algebras} \end{pmatrix} - \begin{pmatrix} \mathsf{coalgebra} \\ \mathsf{structure} \end{pmatrix}$$

Definition

A pivotal algebra is a triple (A,S,g) consisting of

- an algebra $oldsymbol{A}$ (over \mathbb{C}),
- ullet an anti-algebra map S:A
 ightarrow A, and
- ullet an invertible element $g\in A$

s.t.
$$S(g)=g^{-1}$$
 and $S^2(a)=gag^{-1}$ $(orall a\in A).$

Representation theory of pivotal algebras

Let A = (A, S, g) be a pivotal algebra.

• For $V \in \operatorname{Rep}(V)$, define $V^{ee} = \operatorname{Hom}_{\mathbb{C}}(V,\mathbb{C})$.

 $\bullet\,$ The action of $a\in A$ on V^{\vee} is given by

$$(a \cdot f)(v) = f(S(a)v) \quad (f \in V^{ee}, v \in V).$$

• Define
$$j_V:V o V^{ee ee}$$
 by $j_V(v)(f)=f(gv) \quad (v\in V,f\in V^ee).$

Then $\operatorname{Rep}(A)$ is a category with duality.

⇒ The FS indicator $\nu(V)$ is defined $\forall V \in \operatorname{Rep}(A)$. ⇒ $\nu(V)$ for simple V has the following property: · · ·

FS theorem for pivotal algebras

Theorem

For a simple module
$$V \in \operatorname{Rep}(A)$$
, we have $u(V) \in \{0, \pm 1\}.$

Moreover,

$$u(V)
e 0 \Leftrightarrow \left[egin{array}{l} \exists \textit{non-degenerate bilinear form} \ b: V imes V
ightarrow \mathbb{C} \textit{ s.t.} \ b(av,w) = b(v,S(a)w). \end{array}
ight]$$

If u(V)
eq 0, then the above b satisfiesb(w,gv)=
u(V)b(v,w).

••• an analog of the FS theorem for Hopf algebras.

Formula for the FS indicator

Can we express u(V) by the character of V?

- No formula like " $u(V) = \int_G \chi(g^2) d\mu(g)$ ".
- If A is separable, then we can prove:

Theorem

If A = (A, S, g) is separable with separability idempotent $E = \sum E'_i \otimes E''_i$, then we have

$$u(V) = \sum \chi_V(S(E'_i)gE''_i)$$

for all $V \in \operatorname{Rep}(A)$.

• For our purpose, this formula is not needed.

A *-algebra is a $\mathbb{C}\text{-algebra}$ with antilinear $*:A \to A$

s.t.
$$a^{**}=a$$
, $(ab)^*=b^*a^*$ $orall a,b\in A$.

• $x \in A$ is positive if $x = a^*a$ for some a.

Definition

A pivotal *-algebra is a pivotal algebra (A, S, g) s.t. A is a *-algebra, g is positive and

$$(\#) \quad S(S(a)^*)^* = a \quad (orall a \in A).$$

Hopf *-algebras automatically satisfy (#) with S = antipode.

Real, complex and quaternionic reps

Set
$$A_{\mathbb{R}} = \{a \in A \mid S(a)^* = a\}.$$

V: a simple left A-module.

- V is real if \exists basis of V s.t. the corresponding matrix rep $ho: A \to M_n(\mathbb{C})$ satisfies: $ho(a) \in M_n(\mathbb{R}) \quad \forall a \in A_{\mathbb{R}}.$
- V is complex if $\exists a \in A_{\mathbb{R}}$ s.t. $\chi(a) \not\in \mathbb{R}$.
- V is quaternionic if it is neither real nor complex.
- V: a *-representation

$$\Leftrightarrow$$
 \exists a Hermitian inner product $(-,-)$ on V s.t. $(v,aw)=(a^*v,w) \quad (a\in A,v,w\in V).$

FS theorem for pivotal *-algebras

Theorem

If V is an irreducible *-representation, then

$$u(V) = egin{cases} +1 & ext{if } \chi ext{ is real,} \ 0 & ext{if } \chi ext{ is complex,} \ -1 & ext{if } \chi ext{ is quaternionic.} \end{cases}$$

Example. H: fin.-dim'l weak Hopf C^* -algebra.

- \Rightarrow A = (H, S, g) is a pivotal *-algebra, where
 - S:H
 ightarrow H is the antipode,
 - $g \in H$ is the canonical grouplike element.

 \Rightarrow FS theorem for fin.-dim'l weak Hopf C^* -algebras.

Pivotal *-algebras arise from:

- Doi's grouplike algebras (a generalization of finite groups and association schemes).
- Similar results hold in coalgebraic settings.
 - Applications to corepresentation theory for a class of Hopf *-algebras, including compact quantum groups (in the sense of Woronowicz).

For more details on my talk, please refer to:

- [arXiv:1208.2433] Frobenius-Schur indicator for categories with duality.
- [arXiv:1208.2435] Frobenius-Schur theorem for a class of *-algebras.

Appendix. Group algebras (twisted case)

G: a finite group, $\tau \in \operatorname{Aut}(G)$ s.t. $\tau^2 = \operatorname{id}$. Note: $\mathbb{C}G$ is a *-algebra by $g^* = g^{-1}$ ($g \in G$). Consider $A_{\tau} := (\mathbb{C}G, S_{\tau}, 1)$, where $S_{\tau} = \tau(g)^{-1}$.

1. A formula of the FS indicator $u^{ au}(V)$:

$$u^ au(V) = rac{1}{|G|} \sum_{g \in G} \chi_V(au(g) \cdot g).$$

2. The real form $A_{\mathbb{R}}$:

$$(A_{ au})_{\mathbb{R}} = \operatorname{span}_{\mathbb{R}}\{eta_g^{\operatorname{re}},eta_g^{\operatorname{im}}\mid g\in G\}, \ eta_g^{\operatorname{re}} = rac{1}{2}(g+ au(g)), \quad eta_g^{\operatorname{im}} = rac{1}{2\sqrt{-1}}(g- au(g)).$$

By the theorem, we have

$$u^{ au}(V) = egin{cases} +1 & ext{if } \chi ext{ is 'real',} \ 0 & ext{if } \chi ext{ is 'complex',} \ -1 & ext{if } \chi ext{ is 'quaternionic'.} \end{cases}$$

The meanings of 'real', 'complex', 'quaternionic' are different from the untwisted case. For example:

$$egin{aligned} &
ho(a) \in M_n(\mathbb{R}) & & orall a \in (A_ au)_\mathbb{R} \ & \iff &
ho(eta_g^{ ext{re}}),
ho(eta_g^{ ext{im}}) \in M_n(\mathbb{R}) & & orall g \in G \ & \iff &
ho(au(g)) = \overline{
ho(g)} & & orall g \in G \end{aligned}$$

Note:
$$g=eta_g^{
m re}+\sqrt{-1}eta_g^{
m im}$$
, $au(g)=eta_g^{
m re}-\sqrt{-1}eta_g^{
m im}$.

Theorem (Kawanaka-Matsuyama)

Let χ be an irreducible character of G. $\nu^{\tau}(\chi) = +1$ if and only if χ is the character of a matrix rep. $\rho: G \to GL_n(\mathbb{C})$ s.t.

$$ho(au(g)) = \overline{
ho(g)} \ \ orall g \in G.$$

 $u^{ au}(\chi) = 0 \text{ iff ...(omitted; interpret in the same way).}$ $u^{ au}(\chi) = -1 \text{ iff ...(again omitted).}$

• We can also prove a 'twisted' FS theorem for group-like algebras.