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. . . . . .

Building a module out of another module

.

Question

.

.

.

. ..

.

.

Let M,N be finitely generated modules. When can M be built out of
N by taking

direct summands,

extensions, and

syzygies?

〈X〉 = the smallest subcategory of mod R containing X
and closed under the above three operations

When M ∈ 〈N〉?
When M /∈ 〈N〉?
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. . . . . .

.

Example

.

.

.

. ..

.

.

R = k[x, y]

.

. . 1 R/(xy) ∈ 〈R/(x)⊕ R/(y)⊕ k〉

.

.
.

2 R/(x) /∈ 〈R/(y)〉

Indeed:

.

.

.

1 There is an exact sequence
0→ R/(xy)→ R/(x)⊕ R/(y)→ k→ 0,
which induces an exact sequence
0→ Ωk→ R/(xy)⊕ R→ R/(x)⊕ R/(y)→ 0.

.

.

.

2 If R/(x) ∈ 〈R/(y)〉, then
(R/(x))(x) ∈ 〈(R/(y))(x)〉 = proj R(x), a contradiction.
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. . . . . .

.

Motivation

.

.

.

. ..

.

.

Want to establish a criterion for M to be in 〈N〉.

A resolving subcategory of mod R is a full subcategory containing
proj R and closed under direct summands, extensions and syzygies.
Since 〈N〉 is resolving, we should be done if we can:

.

Goal

.

.

.

. ..

. .

Classify resolving subcategories.

.

Example

.

.

.

. ..

.

.

Using our classification, we will see (without making exact sequences):

R = k[[x, y]]/(xy) ⇒ R/(x) ∈ 〈R/(x− y)⊕ (x, y)〉
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. . . . . .

Resolving subcategories in PD(R)

PD(R) = {M ∈ mod R | pd M <∞}

.

Definition

.

.

.

. ..

.

.

An N-valued function f on Spec R is grade consistent if:

f(p) ≤ grade(p) for all p ∈ Spec R,

If p ⊆ q in Spec R, then f(p) ≤ f(q).

.

Theorem 1

.

.

.

. ..

.

.

R = commutative Noetherian ring{
Resolving subcategories of

mod R contained in PD(R)

} φ−→
1−1←−
ψ

{
Grade consistent

functions on Spec R

}

φ(X ) = [ p 7→ maxX∈X{pd Xp} ]
ψ(f) = {M ∈ mod R | pd Mp ≤ f(p) for all p }
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. . . . . .

.

Remark

.

.

.

. ..

.

.

Angeleri Hügel, Posṕı̌sil, Šťov́ıček and Trlifaj have recently given
essentially the same classification as Theorem 1 independently.

.

Corollary

.

.

.

. ..

.

.

R = regular ring{
Resolving subcategories

of mod R

} φ−→
1−1←−
ψ

{
Grade consistent functions

on Spec R

}

.

Corollary (Auslander (1962))

.

.

.

. ..

.

.

R = regular ring TFAE for M,N ∈ PD(R):

.

.

.

1 pd Mp ≤ pd Np for all p ∈ Spec R.

.

.

.

2 Supp TorR
i (M,X) ⊆ Supp TorR

i (N,X)
for all i > 0 and all X ∈ mod R.

In fact, these two conditions are equivalent to M ∈ 〈N〉.
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. . . . . .

Dominant resolving subcategories

A resolving subcategory X of mod R is dominant if for all
p ∈ Spec R there is n ≥ 0 such that Ωnκ(p) ∈ add{Xp}X∈X .

.

Theorem 2

.

.

.

. ..

.

.

R = Cohen-Macaulay ring{
Dominant resolving

subcategories of mod R

} φ−→
1−1←−
ψ

{
Grade consistent

functions on Spec R

}

φ(X ) = [ p 7→ ht p−minX∈X{depth Xp} ]
ψ(f) = {M ∈ mod R | depth Mp ≥ ht p− f(p) for all p }

.

Corollary

.

.

.

. ..

.

.

R = regular ring{
Resolving subcategories

of mod R

} φ−→
1−1←−
ψ

{
Grade consistent functions

on Spec R

}
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. . . . . .

.

Corollary

.

.

.

. ..

.

.

(R,m, k) = d-dimensional Cohen-Macaulay local ring
If R is an isolated singularity, then:{

Resolving subcategories
of mod R containing Ωdk

} φ−→
1−1←−
ψ

{
Grade consistent

functions on Spec R

}

.

Example

.

.

.

. ..

. .

(R,m) = 1-dimensional Cohen-Macaulay reduced local ring
L = nonzero R-module of finite length

⇒ φ(〈L⊕m〉) = ht
⇒ 〈L⊕m〉 = ψ(ht) = mod R
In particular:

R = k[[x, y]]/(xy) ⇒ R/(x) ∈ 〈R/(x− y)⊕ (x, y)〉
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. . . . . .

Resolving subcategories over complete

intersections

.

Theorem 3

.

.

.

. ..

.

.

R = locally complete intersection ring




Resolving
subcategories

of mod R





Φ−→
1−1←−

Ψ





Resolving
subcategories

contained
in CM(R)




×





Resolving
subcategories

contained
in PD(R)





CM(R) = {M ∈ mod R | M is maximal Cohen-Macaulay }
Φ(X ) = (X ∩ CM(R),X ∩ PD(R))
Ψ(Y,Z) = 〈Y ∪ Z〉
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Resolving subcategories over complete

intersections

.

Theorem 3

.

.

.

. ..

.

.

R = locally complete intersection ring




Resolving
subcategories

of mod R





Φ−→
1−1←−

Ψ





Resolving
subcategories

contained
in CM(R)




×
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


Resolving
subcategories

contained
in PD(R)





CM(R) = {M ∈ mod R | M is maximal Cohen-Macaulay }
Φ(X ) = (X ∩ CM(R),X ∩ PD(R))
Ψ(Y,Z) = 〈Y ∪ Z〉

Ryo Takahashi (Nagoya Univ/UNL) Classifying resolving subcategories August 13–17, 2012 9 / 11



. . . . . .

.

Corollary

.

.

.

. ..

.

.

R = locally hypersurface ring



Resolving
subcategories

of mod R





Φ−→
1−1←−

Ψ





Specialization
closed subsets

of Sing R



×





Grade consistent
functions

on Spec R





Φ(X ) = (IPD(X ), φ(X ))
IPD(X ) = { p ∈ Spec R | pd Xp =∞ for some X ∈ X }
Ψ(W, f) = {M ∈ ψ(f) | IPD(M) ⊆ W }

.

Corollary

.

.

.

. ..

.

.

R = regular ring{
Resolving subcategories

of mod R

} φ−→
1−1←−
ψ

{
Grade consistent functions

on Spec R

}
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. . . . . .

.

Theorem 4

.

.

.

. ..

.

.

Let R be a local complete intersection. Then the resolving
subcategories contained in CM(R) are precisely the thick
subcategories of CM(R) containing R.

.

Corollary

.

.

.

. ..

. .

Let R = S/(x1, . . . , xn) be a local complete intersection. Using
Therems 3,4 and Stevenson’s classification theorem, one can classify all
the resolving subcategories of mod R.
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History of the classification of subcategories

Since 1960s

Ring Theory

Stable Homotopy Theory

Algebraic Geometry

Modular Representation Theory

. . . . . .



.

.

. ..
.

.

Classifications of subcategories of module categories

.

.
.

1 Gabriel (1962), Garkusha–Prest (2008)
Serre and localizing subcategories

.

.

.

2 Hovey (2000), T (2008), Krause (2008)
Wide subcategories and full subcategories closed under
submodules and extensions

.

.

.

3 Stanley–Wang (2011)
Narrow subcategories and torsion classes

.

.

.

4 Krause–Stevenson (preprint)
Thick subcategories containing projectives

. . . . . .



.

.

. ..

.

.

Classifications of thick and localizing subcategories of triangulated
categories

.

.
.

1 Devinatz–Hopkins–Smith (1988), Hopkins–Smith (1998)
Stable homotopy categories

.

.

.

2 Hopkins (1988), Neeman (1992), Thomason (1997)
Derived categories of commutative rings and schemes

.

.

.

3 Benson–Carlson–Rickard (1997), Friedlander–Pevtsova (2007),
Benson–Iyengar–Krause (2011)
Stable and derived categories of finite groups and group schemes

.

.

.

4 T (2010), Stevenson (preprint)
Singularity categories of complete intersections

. . . . . .



.

.

. ..
.

.

Classifications of resolving subcategories

.

.
.

1 Auslander–Reiten (1991)
Contravariantly finite resolving subcategories over an Artin algebra
of finite global dimension

.

.

.

2 T (2011)
Contravariantly finite resolving subcategories over a Gorenstein
Henselian local ring

.

.

.

3 T (2010)
Resolving subcategories contained in CM(R) over a local
hypersurface R

. . . . . .



Examples of a grade consistent function

.

.

. ..

.

.

f : Spec R→ N, p ∈ Spec R

.

.
.

1 f(p) = 0

.

. . 2 f(p) = grade(p)

.

.

.

3 R = domain f(p) =

{
1 (p 6= 0)

0 (p = 0)

By the map φ in Theorem 1:

.

.

.

1 7→ proj R

.

.

.

2 7→ PD(R)

.

.

.

3 7→ {M ∈ mod R | pd M ≤ 1 }
By the map φ in Theorem 2:

.

.

.

1 7→ CM(R)

.

.

.

2 7→ mod R

.

.

.

3 7→ {M ∈ mod R | CMdim M ≤ 1 }

. . . . . .



Resolving subcategories in PD0(R)

.

Corollary

.

.

.

. ..

.

.

(R,m, k) = commutative Noetherian local ring of depth t
All the resolving subcategories contained in PD0(R) are:

proj R = PD0
0(R) ( PD1

0(R) ( · · · ( PDt
0(R) = PD0(R).

Moreover, for each integer 1 ≤ n ≤ t:

PDn
0(R) = 〈TrΩn−1k〉.

PD0(R) = {M ∈ PD(R) | Mp is Rp-free for all p 6= m }
PDn

0(R) = {M ∈ PD0(R) | pd M ≤ n }

. . . . . .



Criteria for a module to be in a resolving

subcategory

.

Corollary

.

.

.

. ..

.

.

X = resolving subcategory of mod R contained in PD(R)
TFAE for M ∈ mod R:

.

.

.

1 M ∈ X .

.

.

.

2 pd Mp ≤ maxX∈X{pd Xp} for all p.

.

Corollary

.

.

.

. ..

.

.

R = Cohen-Macaulay ring
X = dominant resolving subcategory of mod R
TFAE for M ∈ mod R:

.

.

.

1 M ∈ X .

.

.

.

2 depth Mp ≥ minX∈X{depth Xp} for all p.

. . . . . .



1-dimensional Cohen-Macaulay local rings

.

Corollary

.

.

.

. ..

.

.

R = Cohen-Macaulay local ring of dimension 1
Then {Grade consistent functions} = {0, grade}. Hence:

{
Resolving subcategories

contained in PD(R)

}
= {proj R,PD(R)},

{
Dominant resolving

subcategories

}
= {CM(R),mod R}.

. . . . . .



Basic definitions

.

.
.

1 An extension of modules M and N is a module E such that there
is an exact sequence

0→ M→ E→ N→ 0.

.

.

.

2 The grade of an ideal I is defined as:

grade(I) = inf{ i ≥ 0 | Exti
R(R/I,R) 6= 0 }.

This is equal to the maximum of the lengths of regular sequences
in I.

.

.

.

3 A local ring (R,m) is an isolated singularity if Rp is regular for all
p ∈ Spec R \ {m}.

. . . . . .



.

.

.

4 A subset W of Spec R is specialization closed if:

p ∈ W, q ∈ Spec R, p ⊆ q ⇒ q ∈ W.

This is nothing but a union of Zariski-closed subsets.

.

.
.

5 The singular locus of R is defined as:

Sing R = { p ∈ Spec R | Rp is not regular }.

.

.

.

6 A thick subcategory X of CM(R) is a full subcategory closed
under direct summands and satisfying the “2 out of 3 property”:
for an exact sequence

0→ L→ M→ N→ 0

of modules in CM(R), if two of L,M,N are in X , then so is the
third.

. . . . . .


