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Decomposable classes

Definition

A class of (right R-) modules C is decomposable, provided there exists a
cardinal k such that each module in C is a direct sum of < k-generated
modules from C.
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Decomposable classes

Definition

A class of (right R-) modules C is decomposable, provided there exists a

cardinal k such that each module in C is a direct sum of < k-generated
modules from C.

Some classic examples

o [Kaplansky'58] The class Py is decomposable
(and k = Ny is sufficient for all R).
o [Faith-Walker'67] The class Zy of all injective modules is
decomposable, iff R is right noetherian.
@ [Gruson-Jensen'73, Huisgen-Zimmermann'79]
Mod-R is decomposable, iff R is right pure-semisimple
(k = N is sufficient in this case).
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Transfinite extensions and deconstructible classes

Definition

Let C be a class of modules. A module M is a transfinite extension of the
modules in C, provided that there exists an increasing sequence

(M, | @ < o) consisting of submodules of M such that My =0, M, = M,

and
0 My =Ugzo Mg for each limit ordinal o < o, and
@ for each o < 0, My41/M, is isomorphic to an element of C.
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Transfinite extensions and deconstructible classes

Definition

Let C be a class of modules. A module M is a transfinite extension of the
modules in C, provided that there exists an increasing sequence

(M, | @ < o) consisting of submodules of M such that My =0, M, = M,
and

0 My =Ugzo Mg for each limit ordinal o < o, and

@ for each o < 0, My41/M, is isomorphic to an element of C.

Notation: M & Trans(C).
A class A is closed under transfinite extensions, if Trans(A) C A.

Definition (Eklof)

A class of modules A is deconstructible, provided there is a cardinal
such that A = Trans(\A,), where A,; denotes the class of all
< k-presented modules from A.
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The ubiquity of deconstructibility

All decomposable classes are deconstructible (but not vice versa).
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The ubiquity of deconstructibility

All decomposable classes are deconstructible (but not vice versa). J

Enochs et al.’01

For each n < w, the classes P,, Z,, and F,, of all modules of projective,
injective, and flat dimension < n are deconstructible.
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Enochs et al.’01

For each n < w, the classes P,, Z,, and F, of all modules of projective,
injective, and flat dimension < n are deconstructible.

Eklof-T.'01, S¥ovicek-T.'09

For each set of modules S, the class +(S™) is deconstructible.
Here, St = KerExtk (S, —), and B = KerExtk (—, B) .
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The ubiquity of deconstructibility

All decomposable classes are deconstructible (but not vice versa). J

Enochs et al.’01

For each n < w, the classes P,, Z,, and F, of all modules of projective,
injective, and flat dimension < n are deconstructible.

Eklof-T.'01, S¥ovicek-T.'09

For each set of modules S, the class +(S™) is deconstructible.
Here, St = KerExtk (S, —), and B = KerExtk (—, B) .

The ubiquity of approximations [Saorin-Stovitek'11], [Enochs'12]

All deconstructible classes are precovering; the ones closed under products
are also preenveloping.
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However, non-deconstructible classes do exist ...

Eklof-Shelah'03

It is consistent with ZFC that the class of all Whitehead groups (= +{Z})
is not deconstructible.
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Eklof-Shelah'03

It is consistent with ZFC that the class of all Whitehead groups (= +{Z})
is not deconstructible.

o

Herbera-T.'12

Assume that R is not right perfect. Then the class of all flat Mittag-Leffler
modules is not deconstructible.
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However, non-deconstructible classes do exist ...

Eklof-Shelah'03

It is consistent with ZFC that the class of all Whitehead groups (= +{Z})
is not deconstructible.

o

Herbera-T.'12
Assume that R is not right perfect. Then the class of all flat Mittag-Leffler
modules is not deconstructible.

A module M is flat Mittag-Leffler provided the functor M ®g — is exact,
and for each system of left R-modules (N; | i € 1), the canonical map
M @r [1;jc; Ni = [1icy M ®r N; is monic.

.\
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Locally F-free modules

Let R be a ring and F be a class of modules.
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Locally F-free modules

Let R be a ring and F be a class of modules.

Definition
A module M is locally F-free, if M possesses a subset S consisting of
countable direct sums of modules from F, such that

@ each countable subset of M is contained in an element of S, and

@ 0 € S, and S is closed under unions of countable chains.

(ICRA XV) Trees and locally free modules 6 /17



Locally F-free modules

Let R be a ring and F be a class of modules.

Definition
A module M is locally F-free, if M possesses a subset S consisting of
countable direct sums of modules from F, such that

@ each countable subset of M is contained in an element of S, and

@ 0 € S, and S is closed under unions of countable chains.

Note: If M is countably generated and locally F-free, then M is a
countable direct sum of modules from F.
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Examples

A module M is Ni-projective provided it is locally F-free,
where F = the class of all countably presented projective modules.
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Examples

A module M is Ni-projective provided it is locally F-free,
where F = the class of all countably presented projective modules.

For instance, if R = Z, then an abelian group A is Ni-projective,
iff all countable subgroups of A are free.

In particular, the Baer-Specker group Z" is Ni-projective for each , but
not free.

Theorem (Herbera-T.'12)
flat Mittag-Leffler = N1-projective.

A\
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Trees for locally F-free modules

Let x be an infinite cardinal, and T, be the set of all finite sequences of
ordinals < K, so
T.={7:n—k|n<w}
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Trees for locally F-free modules

Let x be an infinite cardinal, and T, be the set of all finite sequences of
ordinals < K, so

T.={7:n—k|n<w}

Partially ordered by inclusion, T, is a tree, called the tree on k.

Let Br(T.) denote the set of all branches of T,. Each v € Br(T,) can be
identified with an w-sequence of ordinals < k, so

Br(Tx) ={v:w— s}
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Trees for locally F-free modules

Let x be an infinite cardinal, and T, be the set of all finite sequences of
ordinals < K, so

T.={7:n—k|n<w}

Partially ordered by inclusion, T, is a tree, called the tree on k.

Let Br(T.) denote the set of all branches of T,. Each v € Br(T,) can be
identified with an w-sequence of ordinals < k, so

Br(Tx) ={v:w — k}.

So card T,; = &, and card Br(T,) = x*.

Notation: ¢(7) denotes the length of 7 for each 7 € T.

(ICRA XV) Trees and locally free modules 8 /17



The countable patterns

(ICRA XV)

Trees and locally free modules



The countable patterns

Bass modules

Let R be a ring, and F be a class of modules
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The countable patterns

Bass modules
Let R be a ring, and F be a class of modules.

I|m F denotes the class of all the modules N that are countable direct
I|m|ts of the modules from F. W.l.o.g., N is the direct limit of a chain

8i—1 i 8i+1
FR&FRES. . 5FEF, 5. ..

with F; € F and g; € Homg(F;, Fiy1) for all i < w.
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The countable patterns

Bass modules
Let R be a ring, and F be a class of modules.

I|m F denotes the class of all the modules N that are countable direct
I|m|ts of the modules from F. W.l.o.g., N is the direct limit of a chain

8i—1 i 8i+1
FR&FRES. . 5FEF, 5. ..

with F; € F and g; € Homg(F;, Fiy1) for all i < w.

Example

Let F be the class of all countably generated projective modules. Then
Ii_mm]-" is the class of all countably presented flat modules.
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Decorating trees with patterns

Let D =@, .7, Fir), and P =] 7 Fyr)- We are going to construct a
module D C L C P as follows:

J
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Decorating trees with patterns

Let D =D, 1. Fyr), and P =[], cr. Fyr). We are going to construct a
module D C L C P as follows:

For v € Br(Tx), i <w, and x € F;, we define x,; € P by
7"-I/[i(Xui) = X,

mulj(Xvi) = gj—1...8i(x) for each i < j < w,
7r(xyi) = 0 otherwise,

where 7 € Homg(P, Fy()) denotes the 7th projection for each 7 € T,.

v
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Decorating trees with patterns

Let D =D, 1. Fyr), and P =[], cr. Fyr). We are going to construct a
module D C L C P as follows:

For v € Br(Tx), i <w, and x € F;, we define x,; € P by
7"-I/[i(Xui) = X,

mulj(Xvi) = gj—1...8i(x) for each i < j < w,
7r(xyi) = 0 otherwise,

where 7 € Homg(P, Fy()) denotes the 7th projection for each 7 € T,.

v

Let Y,; = {xi | x € Fi}. Then Y, is a submodule of P isomorphic to F,-.J
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The locally F-free module L

Put X,; = Zjﬁi Y,,J'. Then X,; C X,,’,'_|_1 for each i < w.
Let X, = Ujc, Xviv and L = ZueBr(Tn) e
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The locally F-free module L

Put X,; = Zjﬁi Y,,J'. Then X,; C X,,’,'_|_1 for each i < w.

Let X, = Ui, Xvir and L = Z:IJGBV(TN) Xo-

Lemma

L/D = NBIT2), and L is locally F-free.
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The locally F-free module L

Put X,; = ngi Y,j.- Then X,; € X, i1 for each i < w.

Let Xl/ = Ui<w XI/ir and L = EVGBr(Tm) Xl/'

Lemma

L/D = NBIT2), and L is locally F-free.

Lemma (Griffith's trick)

Let M be a module such that Extk (A, M) = 0 for each locally F-free
module A. Then Extg (N, M) = 0 for each module N € lim F.
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Non-deconstructibility for locally F-free modules

e F a class of modules,
e [ the class of all locally F-free modules,

e D the class of all direct summands of the modules M that fit into an
exact sequence

0—-F —-M-—C =0,

where F' is a free module and C’ is a countable direct sum of modules
from F.
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Non-deconstructibility for locally F-free modules

e F a class of modules,
e [ the class of all locally F-free modules,

e D the class of all direct summands of the modules M that fit into an

exact sequence
0—-F —-M-—C =0,

where F' is a free module and C’ is a countable direct sum of modules
from F.

Theorem

Assume that L is closed under transfinite extensions, but there exists a
countably presented module C € (lim F)\D. Then L is not
deconstructible.
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Infinite dimensional tilting modules

Definition
T is a tilting module provided that
@ T has finite projective dimension,
o Exth (T, T(®)) = 0 for each cardinal &, and

@ there exists an exact sequence 0 - R — Tg — --- — T, — 0 such
that r < w, and for each i < r, T; is a direct summand of a (possibly

infinite) direct sum of copies of T .
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Infinite dimensional tilting modules

Definition
T is a tilting module provided that

@ T has finite projective dimension,

o Exth (T, T(®)) = 0 for each cardinal &, and

@ there exists an exact sequence 0 - R — Tg — --- — T, — 0 such
that r < w, and for each i < r, T; is a direct summand of a (possibly
infinite) direct sum of copies of T .

{T}loo = ﬂ1<i KerExtf;? (T,—) is the tilting class induced by T.
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Infinite dimensional tilting modules

Definition
T is a tilting module provided that
@ T has finite projective dimension,
o Exth (T, T(®)) = 0 for each cardinal &, and

@ there exists an exact sequence 0 - R — Tg — --- — T, — 0 such
that r < w, and for each i < r, T; is a direct summand of a (possibly
infinite) direct sum of copies of T .

{T}t = N;.; KerExtk (T, —) is the tilting class induced by T.
Two tilting modules are equivalent, if they induce the same tilting class.
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Infinite dimensional tilting modules

Definition
T is a tilting module provided that
@ T has finite projective dimension,
o Exth (T, T(®)) = 0 for each cardinal &, and
@ there exists an exact sequence 0 - R — Tg — --- — T, — 0 such

that r < w, and for each i < r, T; is a direct summand of a (possibly
infinite) direct sum of copies of T .

{T}t = N;.; KerExtk (T, —) is the tilting class induced by T.
Two tilting modules are equivalent, if they induce the same tilting class.

v

A characterization of tilting classes

The tilting classes are exactly the classes of the form S+, where S is a set
of strongly finitely presented modules of bounded projective dimension.

(ICRA XV) Trees and locally free modules 13 /17



Non-deconstructibility via tilting

(ICRA XV)

Trees and locally free modules



Non-deconstructibility via tilting

Corollary

Let T be a tilting module which is a direct sum of countably presented
modules, T = @, Ti. Let Fr be a representative set of {T; | i € I}.
Assume lim Fr ¢ Dr. Then Lt is not deconstructible.
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Non-deconstructibility via tilting

Corollary

Let T be a tilting module which is a direct sum of countably presented
modules, T = @, Ti. Let Fr be a representative set of {T; | i € I}.
Assume lim Fr ¢ Dr. Then Lt is not deconstructible.

Warning: The tilting module T above cannot be ) -pure-injective. J
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Flat Mittag-Leffler modules revisited

e R a non-right perfect ring, so there is a strictly decreasing chain of
principal left ideals

Rag 2 --- 2D Rap...a0 2 Rapy1an...a30 2 ...

=
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Flat Mittag-Leffler modules revisited

e R a non-right perfect ring, so there is a strictly decreasing chain of
principal left ideals

Rag 2 --- 2D Rap...a0 2 Rapy1an...a30 2 ...

e The Bass module N is the direct limit of the chain

. . aj—1.- i aj41-
RERZL.ZRER™
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Flat Mittag-Leffler modules revisited

e R a non-right perfect ring, so there is a strictly decreasing chain of
principal left ideals

Rag 2 --- 2D Rap...a0 2 Rapy1an...a30 2 ...
e The Bass module N is the direct limit of the chain
R&% R VR R

o T =@, Ti, where {T; | i € I} is a representative set of all countably
generated projective modules.
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Flat Mittag-Leffler modules revisited

e R a non-right perfect ring, so there is a strictly decreasing chain of
principal left ideals

Rag 2 --- D Rap...a0 2 Rapyian...a0 2 ...
e The Bass module N is the direct limit of the chain
R&% R VR R

o T =@, Ti where {T; |ic I} is a representative set of all countably
generated projective modules.

Then N € (||.m)w Fr)\ Dr, and L1 = the class of all Ri-projective
modules, so we recover
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Flat Mittag-Leffler modules revisited

e R a non-right perfect ring, so there is a strictly decreasing chain of
principal left ideals

Rag 2 --- 2D Rap...a0 2 Rapy1an...a30 2 ...

=

e The Bass module N is the direct limit of the chain
RE&RYL . ZRB R

o T =@, Ti where {T; |ic I} is a representative set of all countably

generated projective modules.

Then N € (||.m)w Fr)\ Dr, and L1 = the class of all Ri-projective
modules, so we recover

Corollary (Herbera-T.'12)
The class of all flat Mittag-Leffler modules is not deconstructible. J
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Tilting and non-deconstructibility over Dedekind domains

Let R be a Dedekind domain with the quotient field @ # R, and P be any
subset of mspec(R).
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Tilting and non-deconstructibility over Dedekind domains

Let R be a Dedekind domain with the quotient field @ # R, and P be any
subset of mspec(R).

Lemma (Bazzoni-Eklof-T.'05)

The module Tp = (,cp Ro ® Dgemspec(ry\p E(R/q) is tilting, and each
tilting module is equivalent to one like this.
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Tilting and non-deconstructibility over Dedekind domains

Let R be a Dedekind domain with the quotient field @ # R, and P be any
subset of mspec(R).

Lemma (Bazzoni-Eklof-T.'05)

The module Tp = (,cp Ro ® Dgemspec(ry\p E(R/q) is tilting, and each
tilting module is equivalent to one like this.

v

Corollary (Slavik-T.)

Assume that P # () and mspec(R) \ P is countable. Then the class Lt, is
not deconstructible.

o
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Tilting and non-deconstructibility over Dedekind domains

Let R be a Dedekind domain with the quotient field @ # R, and P be any
subset of mspec(R).

Lemma (Bazzoni-Eklof-T.'05)

The module Tp = (,cp Ro ® Dgemspec(ry\p E(R/q) is tilting, and each
tilting module is equivalent to one like this.

v

Corollary (Slavik-T.)

Assume that P # () and mspec(R) \ P is countable. Then the class Lt, is
not deconstructible.

o

e For P = mspec(R), we recover the flat Mittag-Leffler case in this
setting.
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Tilting and non-deconstructibility over Dedekind domains

Let R be a Dedekind domain with the quotient field @ # R, and P be any
subset of mspec(R).

Lemma (Bazzoni-Eklof-T.'05)

The module Tp = (,cp Ro ® Dgemspec(ry\p E(R/q) is tilting, and each
tilting module is equivalent to one like this.

v

Corollary (Slavik-T.)

Assume that P # () and mspec(R) \ P is countable. Then the class Lt, is
not deconstructible.

v

e For P = mspec(R), we recover the flat Mittag-Leffler case in this
setting.

e Warning: for P = (), we have Tp = Q ® @qemspec(R) E(R/q), and
L1, = 1o is deconstructible.
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(ICRA XV)

Trees and locally free modules



Non-deconstructibility over tame hereditary algebras

e R a tame hereditary artin algebra of infinite representation type,
e p a representative set of all indecomposable preprojective modules.
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Non-deconstructibility over tame hereditary algebras

e R a tame hereditary artin algebra of infinite representation type,
e p a representative set of all indecomposable preprojective modules.

Then p™ is a tilting class (and M € p™, iff M has no non-zero finitely
generated preprojective direct summands).
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Non-deconstructibility over tame hereditary algebras

e R a tame hereditary artin algebra of infinite representation type,
e p a representative set of all indecomposable preprojective modules.

Then p™ is a tilting class (and M € p™, iff M has no non-zero finitely
generated preprojective direct summands).

The tilting module L inducing p™ is called the Lukas tilting module.
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Non-deconstructibility over tame hereditary algebras

e R a tame hereditary artin algebra of infinite representation type,
e p a representative set of all indecomposable preprojective modules.

Then p™ is a tilting class (and M € p™, iff M has no non-zero finitely
generated preprojective direct summands).

The tilting module L inducing p* is called the Lukas tilting module. (L is
countably generated, but has no finite dimensional direct summands.)
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Non-deconstructibility over tame hereditary algebras

e R a tame hereditary artin algebra of infinite representation type,
e p a representative set of all indecomposable preprojective modules.

Then p™ is a tilting class (and M € p™, iff M has no non-zero finitely
generated preprojective direct summands).

The tilting module L inducing p* is called the Lukas tilting module. (L is
countably generated, but has no finite dimensional direct summands.)

Corollary (Slavik-T.)

If R is countable, then the generic module G € (lim F,)\D.. Thus the
class L, is not deconstructible.
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