Trees and Locally Free Modules

or

from decomposability to non-deconstructibility via infinite dimensional tilting theory

ICRA XV

Bielefeld, August 13, 2012

Jan Trlifaj (Univerzita Karlova, Praha)

- 4 週 ト - 4 三 ト - 4 三 ト

(ICRA XV)

3

イロン イヨン イヨン イヨン

Definition

A class of (right *R*-) modules C is decomposable, provided there exists a cardinal κ such that each module in C is a direct sum of $< \kappa$ -generated modules from C.

Definition

A class of (right *R*-) modules C is decomposable, provided there exists a cardinal κ such that each module in C is a direct sum of $< \kappa$ -generated modules from C.

Some classic examples

Definition

A class of (right *R*-) modules C is decomposable, provided there exists a cardinal κ such that each module in C is a direct sum of $< \kappa$ -generated modules from C.

Some classic examples

- [Kaplansky'58] The class P₀ is decomposable (and κ = ℵ₁ is sufficient for all R).
- [Faith-Walker'67] The class \mathcal{I}_0 of all injective modules is decomposable, iff R is right noetherian.
- [Gruson-Jensen'73, Huisgen-Zimmermann'79]
 Mod-R is decomposable, iff R is right pure-semisimple (κ = ℵ₀ is sufficient in this case).

- 4 同 6 4 日 6 4 日 6

(ICRA XV)

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

Let C be a class of modules. A module M is a transfinite extension of the modules in C, provided that there exists an increasing sequence $(M_{\alpha} \mid \alpha \leq \sigma)$ consisting of submodules of M such that $M_0 = 0$, $M_{\sigma} = M$, and

- $M_{lpha} = igcup_{eta < lpha} M_{eta}$ for each limit ordinal $lpha \leq \sigma$, and
- for each $\alpha < \sigma$, $M_{\alpha+1}/M_{\alpha}$ is isomorphic to an element of C.

(B)

Definition

Let C be a class of modules. A module M is a transfinite extension of the modules in C, provided that there exists an increasing sequence $(M_{\alpha} \mid \alpha \leq \sigma)$ consisting of submodules of M such that $M_0 = 0$, $M_{\sigma} = M$, and

- $M_{lpha} = igcup_{eta < lpha} M_{eta}$ for each limit ordinal $lpha \leq \sigma$, and
- for each $\alpha < \sigma$, $M_{\alpha+1}/M_{\alpha}$ is isomorphic to an element of \mathcal{C} .

Notation: $M \in \text{Trans}(\mathcal{C}).$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

___ ▶

Definition

Let C be a class of modules. A module M is a transfinite extension of the modules in C, provided that there exists an increasing sequence $(M_{\alpha} \mid \alpha \leq \sigma)$ consisting of submodules of M such that $M_0 = 0$, $M_{\sigma} = M$, and

- $M_{lpha} = igcup_{eta < lpha} M_{eta}$ for each limit ordinal $lpha \leq \sigma$, and
- for each $\alpha < \sigma$, $M_{\alpha+1}/M_{\alpha}$ is isomorphic to an element of \mathcal{C} .

Notation: $M \in \text{Trans}(\mathcal{C})$. A class \mathcal{A} is closed under transfinite extensions, if $\text{Trans}(\mathcal{A}) \subseteq \mathcal{A}$.

A B > A B >

< 🗇 🕨

Definition

Let C be a class of modules. A module M is a transfinite extension of the modules in C, provided that there exists an increasing sequence $(M_{\alpha} \mid \alpha \leq \sigma)$ consisting of submodules of M such that $M_0 = 0$, $M_{\sigma} = M$, and

- $M_{lpha} = igcup_{eta < lpha} M_{eta}$ for each limit ordinal $lpha \leq \sigma$, and
- for each $\alpha < \sigma$, $M_{\alpha+1}/M_{\alpha}$ is isomorphic to an element of \mathcal{C} .

Notation: $M \in \text{Trans}(\mathcal{C})$. A class \mathcal{A} is closed under transfinite extensions, if $\text{Trans}(\mathcal{A}) \subseteq \mathcal{A}$.

Definition (Eklof)

A class of modules \mathcal{A} is deconstructible, provided there is a cardinal κ such that $\mathcal{A} = \text{Trans}(\mathcal{A}_{\kappa})$, where \mathcal{A}_{κ} denotes the class of all $< \kappa$ -presented modules from \mathcal{A} .

<ロ> (日) (日) (日) (日) (日)

3

(本語)と 本語 と 本語 と

All decomposable classes are deconstructible (but not vice versa).

• • = • • = •

All decomposable classes are deconstructible (but not vice versa).

Enochs et al.'01

For each $n < \omega$, the classes \mathcal{P}_n , \mathcal{I}_n , and \mathcal{F}_n of all modules of projective, injective, and flat dimension $\leq n$ are deconstructible.

< 回 > < 回 > < 回 >

All decomposable classes are deconstructible (but not vice versa).

Enochs et al.'01

For each $n < \omega$, the classes \mathcal{P}_n , \mathcal{I}_n , and \mathcal{F}_n of all modules of projective, injective, and flat dimension $\leq n$ are deconstructible.

Eklof-T.'01, Šťovíček-T.'09

For each set of modules S, the class $^{\perp}(S^{\perp})$ is deconstructible. Here, $S^{\perp} = \text{KerExt}_{R}^{1}(S, -)$, and $^{\perp}\mathcal{B} = \text{KerExt}_{R}^{1}(-, \mathcal{B})$.

- 4 週 ト - 4 ヨ ト - 4 ヨ ト -

All decomposable classes are deconstructible (but not vice versa).

Enochs et al.'01

For each $n < \omega$, the classes \mathcal{P}_n , \mathcal{I}_n , and \mathcal{F}_n of all modules of projective, injective, and flat dimension $\leq n$ are deconstructible.

Eklof-T.'01, Šťovíček-T.'09

For each set of modules S, the class $^{\perp}(S^{\perp})$ is deconstructible. Here, $S^{\perp} = \text{KerExt}_{R}^{1}(S, -)$, and $^{\perp}\mathcal{B} = \text{KerExt}_{R}^{1}(-, \mathcal{B})$.

The ubiquity of approximations [Saorín-Šťovíček'11], [Enochs'12]

All deconstructible classes are precovering; the ones closed under products are also preenveloping.

(日) (同) (三) (三) (三)

(ICRA XV)

3

• • = • • = •

Eklof-Shelah'03

It is consistent with ZFC that the class of all Whitehead groups (= $^{\perp}\{\mathbb{Z}\}$) is not deconstructible.

Eklof-Shelah'03

It is consistent with ZFC that the class of all Whitehead groups (= $^{\perp}\{\mathbb{Z}\}$) is not deconstructible.

Herbera-T.'12

Assume that R is not right perfect. Then the class of all flat Mittag-Leffler modules is not deconstructible.

Eklof-Shelah'03

It is consistent with ZFC that the class of all Whitehead groups (= $^{\perp}\{\mathbb{Z}\}$) is not deconstructible.

Herbera-T.'12

Assume that R is not right perfect. Then the class of all flat Mittag-Leffler modules is not deconstructible.

A module M is flat Mittag-Leffler provided the functor $M \otimes_R -$ is exact, and for each system of left R-modules $(N_i | i \in I)$, the canonical map $M \otimes_R \prod_{i \in I} N_i \to \prod_{i \in I} M \otimes_R N_i$ is monic.

(日)

(ICRA XV)

æ

ヘロト 人間 ト 人 ヨト 人 ヨトー

Let R be a ring and \mathcal{F} be a class of modules.

- 4 同 ト 4 三 ト 4 三 ト

Let R be a ring and \mathcal{F} be a class of modules.

Definition

A module M is locally \mathcal{F} -free, if M possesses a subset \mathcal{S} consisting of countable direct sums of modules from \mathcal{F} , such that

- each countable subset of M is contained in an element of S, and
- $\bullet~0\in \mathcal{S},$ and \mathcal{S} is closed under unions of countable chains.

Let R be a ring and \mathcal{F} be a class of modules.

Definition

A module M is locally \mathcal{F} -free, if M possesses a subset \mathcal{S} consisting of countable direct sums of modules from \mathcal{F} , such that

- each countable subset of M is contained in an element of S, and
- $\bullet~0\in \mathcal{S},$ and \mathcal{S} is closed under unions of countable chains.

Note: If M is countably generated and locally \mathcal{F} -free, then M is a countable direct sum of modules from \mathcal{F} .

(ICRA XV)

3

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

A module M is \aleph_1 -projective provided it is locally \mathcal{F} -free, where \mathcal{F} = the class of all countably presented projective modules.

< 回 > < 三 > < 三 >

A module M is \aleph_1 -projective provided it is locally \mathcal{F} -free, where \mathcal{F} = the class of all countably presented projective modules.

For instance, if $R = \mathbb{Z}$, then an abelian group A is \aleph_1 -projective, iff all countable subgroups of A are free.

A module M is \aleph_1 -projective provided it is locally \mathcal{F} -free, where \mathcal{F} = the class of all countably presented projective modules.

For instance, if $R = \mathbb{Z}$, then an abelian group A is \aleph_1 -projective, iff all countable subgroups of A are free.

In particular, the Baer-Specker group \mathbb{Z}^κ is $\aleph_1\text{-projective}$ for each $\kappa,$ but not free.

A module M is \aleph_1 -projective provided it is locally \mathcal{F} -free, where \mathcal{F} = the class of all countably presented projective modules.

For instance, if $R = \mathbb{Z}$, then an abelian group A is \aleph_1 -projective, iff all countable subgroups of A are free.

In particular, the Baer-Specker group \mathbb{Z}^κ is $\aleph_1\text{-projective}$ for each $\kappa,$ but not free.

```
Theorem (Herbera-T.'12)
```

flat Mittag-Leffler = \aleph_1 -projective.

- 4 目 ト - 4 日 ト - 4 日 ト

3

イロン イヨン イヨン イヨン

Let κ be an infinite cardinal, and T_{κ} be the set of all finite sequences of ordinals $< \kappa$, so

$$T_{\kappa} = \{ \tau : \mathbf{n} \to \kappa \mid \mathbf{n} < \omega \}.$$

Let κ be an infinite cardinal, and T_{κ} be the set of all finite sequences of ordinals $< \kappa$, so

$$T_{\kappa} = \{\tau : \mathbf{n} \to \kappa \mid \mathbf{n} < \omega\}.$$

Partially ordered by inclusion, T_{κ} is a tree, called the tree on κ .

Let κ be an infinite cardinal, and T_{κ} be the set of all finite sequences of ordinals $< \kappa$, so

$$T_{\kappa} = \{\tau : \mathbf{n} \to \kappa \mid \mathbf{n} < \omega\}.$$

Partially ordered by inclusion, T_{κ} is a tree, called the tree on κ .

Let $Br(T_{\kappa})$ denote the set of all branches of T_{κ} . Each $\nu \in Br(T_{\kappa})$ can be identified with an ω -sequence of ordinals $< \kappa$, so

$$\mathsf{Br}(T_{\kappa}) = \{\nu : \omega \to \kappa\}.$$

Let κ be an infinite cardinal, and T_{κ} be the set of all finite sequences of ordinals $< \kappa$, so

$$T_{\kappa} = \{\tau : \mathbf{n} \to \kappa \mid \mathbf{n} < \omega\}.$$

Partially ordered by inclusion, T_{κ} is a tree, called the tree on κ .

Let $Br(T_{\kappa})$ denote the set of all branches of T_{κ} . Each $\nu \in Br(T_{\kappa})$ can be identified with an ω -sequence of ordinals $< \kappa$, so

$$\mathsf{Br}(T_{\kappa}) = \{\nu : \omega \to \kappa\}.$$

So card $T_{\kappa} = \kappa$, and card $Br(T_{\kappa}) = \kappa^{\omega}$.

Notation: $\ell(\tau)$ denotes the length of τ for each $\tau \in T_{\kappa}$.

イロト 人間ト イヨト イヨト

The countable patterns

(ICRA XV)

3

イロト イヨト イヨト イヨト

The countable patterns

Bass modules Let R be a ring, and \mathcal{F} be a class of modules.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The countable patterns

Bass modules

Let R be a ring, and \mathcal{F} be a class of modules.

 $\lim_{\omega \to \infty} \mathcal{F} \text{ denotes the class of all the modules } N \text{ that are countable direct}$ limits of the modules from \mathcal{F} . W.I.o.g., N is the direct limit of a chain

$$F_0 \stackrel{g_0}{\rightarrow} F_1 \stackrel{g_1}{\rightarrow} \ldots \stackrel{g_{i-1}}{\rightarrow} F_i \stackrel{g_i}{\rightarrow} F_{i+1} \stackrel{g_{i+1}}{\rightarrow} \ldots$$

with $F_i \in \mathcal{F}$ and $g_i \in \operatorname{Hom}_R(F_i, F_{i+1})$ for all $i < \omega$.

The countable patterns

Bass modules

Let R be a ring, and \mathcal{F} be a class of modules.

 $\lim_{\omega \to \infty} \mathcal{F} \text{ denotes the class of all the modules } N \text{ that are countable direct} \\ \text{limits of the modules from } \mathcal{F}. \text{ W.l.o.g., } N \text{ is the direct limit of a chain}$

$$F_0 \stackrel{g_0}{\rightarrow} F_1 \stackrel{g_1}{\rightarrow} \dots \stackrel{g_{i-1}}{\rightarrow} F_i \stackrel{g_i}{\rightarrow} F_{i+1} \stackrel{g_{i+1}}{\rightarrow} \dots$$

with $F_i \in \mathcal{F}$ and $g_i \in \operatorname{Hom}_R(F_i, F_{i+1})$ for all $i < \omega$.

Example

Let \mathcal{F} be the class of all countably generated projective modules. Then $\lim_{\to \omega} \mathcal{F}$ is the class of all countably presented flat modules.

< ロ > < 同 > < 回 > < 回 > < 回 > <

(ICRA XV)

3

- 4 週 ト - 4 三 ト - 4 三 ト

Let $D = \bigoplus_{\tau \in T_{\kappa}} F_{\ell(\tau)}$, and $P = \prod_{\tau \in T_{\kappa}} F_{\ell(\tau)}$. We are going to construct a module $D \subseteq L \subseteq P$ as follows:

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $D = \bigoplus_{\tau \in T_{\kappa}} F_{\ell(\tau)}$, and $P = \prod_{\tau \in T_{\kappa}} F_{\ell(\tau)}$. We are going to construct a module $D \subseteq L \subseteq P$ as follows:

For $\nu \in Br(T_{\kappa})$, $i < \omega$, and $x \in F_i$, we define $x_{\nu i} \in P$ by

 $\pi_{\nu\restriction i}(x_{\nu i})=x,$

$$\pi_{\nu \mid j}(x_{\nu i}) = g_{j-1} \dots g_i(x)$$
 for each $i < j < \omega$,

 $\pi_{\tau}(x_{\nu i}) = 0$ otherwise,

where $\pi_{\tau} \in \operatorname{Hom}_{R}(P, F_{\ell(\tau)})$ denotes the τ th projection for each $\tau \in T_{\kappa}$.

イロト イポト イヨト イヨト

Let $D = \bigoplus_{\tau \in T_{\kappa}} F_{\ell(\tau)}$, and $P = \prod_{\tau \in T_{\kappa}} F_{\ell(\tau)}$. We are going to construct a module $D \subseteq L \subseteq P$ as follows:

For $\nu \in Br(T_{\kappa})$, $i < \omega$, and $x \in F_i$, we define $x_{\nu i} \in P$ by $\pi_{\nu \upharpoonright i}(x_{\nu i}) = x$, $\pi_{\nu \upharpoonright j}(x_{\nu i}) = g_{j-1} \dots g_i(x)$ for each $i < j < \omega$,

 $\pi_{\tau}(x_{\nu i}) = 0$ otherwise,

where $\pi_{\tau} \in \operatorname{Hom}_{R}(P, F_{\ell(\tau)})$ denotes the τ th projection for each $\tau \in T_{\kappa}$.

Let $Y_{\nu i} = \{x_{\nu i} \mid x \in F_i\}$. Then $Y_{\nu i}$ is a submodule of P isomorphic to F_i .

イロト イポト イヨト イヨト 二日

3

イロン イヨン イヨン イヨン

Put
$$X_{\nu i} = \sum_{j \leq i} Y_{\nu j}$$
. Then $X_{\nu i} \subseteq X_{\nu, i+1}$ for each $i < \omega$.
Let $X_{\nu} = \bigcup_{i < \omega} X_{\nu i}$, and $L = \sum_{\nu \in \text{Br}(\mathcal{T}_{\kappa})} X_{\nu}$.

3

イロト イヨト イヨト イヨト

Put
$$X_{\nu i} = \sum_{j \leq i} Y_{\nu j}$$
. Then $X_{\nu i} \subseteq X_{\nu, i+1}$ for each $i < \omega$.
Let $X_{\nu} = \bigcup_{i < \omega} X_{\nu i}$, and $L = \sum_{\nu \in \mathsf{Br}(\mathcal{T}_{\kappa})} X_{\nu}$.

Lemma

$$L/D \cong N^{(Br(\tau_{\kappa}))}$$
, and L is locally \mathcal{F} -free.

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Put
$$X_{\nu i} = \sum_{j \leq i} Y_{\nu j}$$
. Then $X_{\nu i} \subseteq X_{\nu, i+1}$ for each $i < \omega$.
Let $X_{\nu} = \bigcup_{i < \omega} X_{\nu i}$, and $L = \sum_{\nu \in Br(\mathcal{T}_{\kappa})} X_{\nu}$.

Lemma

$$L/D \cong N^{(Br(T_{\kappa}))}$$
, and L is locally \mathcal{F} -free.

Lemma (Griffith's trick)

Let *M* be a module such that $Ext_R^1(A, M) = 0$ for each locally \mathcal{F} -free module *A*. Then $Ext_R^1(N, M) = 0$ for each module $N \in \lim_{\to \infty} \mathcal{F}$.

- 4 聞 と 4 直 と 4 画 と

Non-deconstructibility for locally \mathcal{F} -free modules

3

イロト イポト イヨト イヨト

Non-deconstructibility for locally \mathcal{F} -free modules

- \mathcal{F} a class of modules,
- \mathcal{L} the class of all locally \mathcal{F} -free modules,
- \mathcal{D} the class of all direct summands of the modules M that fit into an exact sequence

$$0 \to F' \to M \to C' \to 0,$$

where F' is a free module and C' is a countable direct sum of modules from \mathcal{F} .

Non-deconstructibility for locally \mathcal{F} -free modules

- \mathcal{F} a class of modules,
- \mathcal{L} the class of all locally \mathcal{F} -free modules,
- \mathcal{D} the class of all direct summands of the modules M that fit into an exact sequence

$$0 \rightarrow F' \rightarrow M \rightarrow C' \rightarrow 0,$$

where F' is a free module and C' is a countable direct sum of modules from \mathcal{F} .

Theorem

Assume that \mathcal{L} is closed under transfinite extensions, but there exists a countably presented module $C \in (\varinjlim_{\omega} \mathcal{F}) \setminus \mathcal{D}$. Then \mathcal{L} is not deconstructible.

イロト 人間ト イヨト イヨト

(ICRA XV)

3

イロト イヨト イヨト イヨト

Definition

T is a tilting module provided that

- T has finite projective dimension,
- $\operatorname{Ext}_{R}^{i}(T, T^{(\kappa)}) = 0$ for each cardinal κ , and
- there exists an exact sequence $0 \rightarrow R \rightarrow T_0 \rightarrow \cdots \rightarrow T_r \rightarrow 0$ such that $r < \omega$, and for each i < r, T_i is a direct summand of a (possibly infinite) direct sum of copies of T.

Definition

T is a tilting module provided that

- T has finite projective dimension,
- $\operatorname{Ext}_{R}^{i}(T, T^{(\kappa)}) = 0$ for each cardinal κ , and
- there exists an exact sequence $0 \rightarrow R \rightarrow T_0 \rightarrow \cdots \rightarrow T_r \rightarrow 0$ such that $r < \omega$, and for each i < r, T_i is a direct summand of a (possibly infinite) direct sum of copies of T.

 $\{T\}^{\perp_{\infty}} = \bigcap_{1 < i} \operatorname{KerExt}_{R}^{i}(T, -)$ is the tilting class induced by T.

Definition

T is a tilting module provided that

- T has finite projective dimension,
- $\operatorname{Ext}_{R}^{i}(T, T^{(\kappa)}) = 0$ for each cardinal κ , and
- there exists an exact sequence $0 \rightarrow R \rightarrow T_0 \rightarrow \cdots \rightarrow T_r \rightarrow 0$ such that $r < \omega$, and for each i < r, T_i is a direct summand of a (possibly infinite) direct sum of copies of T.

 $\{T\}^{\perp_{\infty}} = \bigcap_{1 < i} \operatorname{KerExt}_{R}^{i}(T, -)$ is the tilting class induced by T. Two tilting modules are equivalent, if they induce the same tilting class.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Definition

${\mathcal T}$ is a tilting module provided that

- T has finite projective dimension,
- $\operatorname{Ext}^{i}_{R}(T, T^{(\kappa)}) = 0$ for each cardinal κ , and
- there exists an exact sequence $0 \rightarrow R \rightarrow T_0 \rightarrow \cdots \rightarrow T_r \rightarrow 0$ such that $r < \omega$, and for each i < r, T_i is a direct summand of a (possibly infinite) direct sum of copies of T.

 $\{T\}^{\perp_{\infty}} = \bigcap_{1 < i} \operatorname{KerExt}_{R}^{i}(T, -)$ is the tilting class induced by T. Two tilting modules are equivalent, if they induce the same tilting class.

A characterization of tilting classes

The tilting classes are exactly the classes of the form S^{\perp} , where S is a set of strongly finitely presented modules of bounded projective dimension.

イロト 不得下 イヨト イヨト 二日

Non-deconstructibility via tilting

3

<ロ> (日) (日) (日) (日) (日)

Non-deconstructibility via tilting

Corollary

Let T be a tilting module which is a direct sum of countably presented modules, $T = \bigoplus_{i \in I} T_i$. Let \mathcal{F}_T be a representative set of $\{T_i \mid i \in I\}$. Assume $\varinjlim_{\omega} \mathcal{F}_T \nsubseteq \mathcal{D}_T$. Then \mathcal{L}_T is not deconstructible.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Non-deconstructibility via tilting

Corollary

Let T be a tilting module which is a direct sum of countably presented modules, $T = \bigoplus_{i \in I} T_i$. Let \mathcal{F}_T be a representative set of $\{T_i \mid i \in I\}$. Assume $\varinjlim_{\omega} \mathcal{F}_T \nsubseteq \mathcal{D}_T$. Then \mathcal{L}_T is not deconstructible.

Warning: The tilting module T above cannot be \sum -pure-injective.

イロト イポト イヨト イヨト

æ

- 4 同 6 4 日 6 4 日 6

• R a non-right perfect ring, so there is a strictly decreasing chain of principal left ideals

$$Ra_0 \supseteq \cdots \supseteq Ra_n \dots a_0 \supseteq Ra_{n+1}a_n \dots a_o \supseteq \dots$$

- 4 目 ト - 4 日 ト

• R a non-right perfect ring, so there is a strictly decreasing chain of principal left ideals

$$Ra_0 \supseteq \cdots \supseteq Ra_n \dots a_0 \supseteq Ra_{n+1}a_n \dots a_o \supseteq \dots$$

• The Bass module N is the direct limit of the chain

$$R \xrightarrow{a_0.} R \xrightarrow{a_1.} \ldots \xrightarrow{a_{i-1}.} R \xrightarrow{a_{i}.} R \xrightarrow{a_{i+1}.} \ldots$$

< 回 > < 回 > < 回 >

• R a non-right perfect ring, so there is a strictly decreasing chain of principal left ideals

$$Ra_0 \supseteq \cdots \supseteq Ra_n \dots a_0 \supseteq Ra_{n+1}a_n \dots a_o \supseteq \dots$$

• The Bass module N is the direct limit of the chain

$$R \xrightarrow{a_0.} R \xrightarrow{a_1.} \ldots \xrightarrow{a_{i-1}.} R \xrightarrow{a_i.} R \xrightarrow{a_{i+1}.} \ldots$$

• $T = \bigoplus_{i \in I} T_i$, where $\{T_i \mid i \in I\}$ is a representative set of all countably generated projective modules.

• R a non-right perfect ring, so there is a strictly decreasing chain of principal left ideals

$$Ra_0 \supseteq \cdots \supseteq Ra_n \dots a_0 \supseteq Ra_{n+1}a_n \dots a_o \supseteq \dots$$

• The Bass module N is the direct limit of the chain

$$R \xrightarrow{a_{0}} R \xrightarrow{a_{1}} \dots \xrightarrow{a_{i-1}} R \xrightarrow{a_{i}} R \xrightarrow{a_{i+1}} \dots$$

• $T = \bigoplus_{i \in I} T_i$, where $\{T_i \mid i \in I\}$ is a representative set of all countably generated projective modules.

Then $N \in (\varinjlim_{\omega} \mathcal{F}_{\mathcal{T}}) \setminus \mathcal{D}_{\mathcal{T}}$, and $\mathcal{L}_{\mathcal{T}} =$ the class of all \aleph_1 -projective modules, so we recover

イロト 不得下 イヨト イヨト 二日

• R a non-right perfect ring, so there is a strictly decreasing chain of principal left ideals

$$Ra_0 \supseteq \cdots \supseteq Ra_n \dots a_0 \supseteq Ra_{n+1}a_n \dots a_o \supseteq \dots$$

• The Bass module N is the direct limit of the chain

$$R \xrightarrow{a_0} R \xrightarrow{a_1} \dots \xrightarrow{a_{i-1}} R \xrightarrow{a_i} R \xrightarrow{a_{i+1}} \dots$$

• $T = \bigoplus_{i \in I} T_i$, where $\{T_i \mid i \in I\}$ is a representative set of all countably generated projective modules.

Then $N \in (\varinjlim_{\omega} \mathcal{F}_{\mathcal{T}}) \setminus \mathcal{D}_{\mathcal{T}}$, and $\mathcal{L}_{\mathcal{T}} =$ the class of all \aleph_1 -projective modules, so we recover

Corollary (Herbera-T.'12)

The class of all flat Mittag-Leffler modules is not deconstructible.

イロト 不得 トイヨト イヨト

(ICRA XV)

< 回 > < 回 > < 回 >

Let R be a Dedekind domain with the quotient field $Q \neq R$, and P be any subset of mspec(R).

(人間) トイヨト イヨト

Let R be a Dedekind domain with the quotient field $Q \neq R$, and P be any subset of mspec(R).

Lemma (Bazzoni-Eklof-T.'05)

The module $T_P = \bigcap_{p \in P} R_p \oplus \bigoplus_{q \in mspec(R) \setminus P} E(R/q)$ is tilting, and each tilting module is equivalent to one like this.

Let R be a Dedekind domain with the quotient field $Q \neq R$, and P be any subset of mspec(R).

Lemma (Bazzoni-Eklof-T.'05)

The module $T_P = \bigcap_{p \in P} R_p \oplus \bigoplus_{q \in mspec(R) \setminus P} E(R/q)$ is tilting, and each tilting module is equivalent to one like this.

Corollary (Slávik-T.)

Assume that $P \neq \emptyset$ and mspec(R) \ P is countable. Then the class \mathcal{L}_{T_P} is not deconstructible.

Let R be a Dedekind domain with the quotient field $Q \neq R$, and P be any subset of mspec(R).

Lemma (Bazzoni-Eklof-T.'05)

The module $T_P = \bigcap_{p \in P} R_p \oplus \bigoplus_{q \in mspec(R) \setminus P} E(R/q)$ is tilting, and each tilting module is equivalent to one like this.

Corollary (Slávik-T.)

Assume that $P \neq \emptyset$ and mspec(R) \ P is countable. Then the class \mathcal{L}_{T_P} is not deconstructible.

• For P = mspec(R), we recover the flat Mittag-Leffler case in this setting.

3

イロン イヨン イヨン イヨン

Let R be a Dedekind domain with the quotient field $Q \neq R$, and P be any subset of mspec(R).

Lemma (Bazzoni-Eklof-T.'05)

The module $T_P = \bigcap_{p \in P} R_p \oplus \bigoplus_{q \in mspec(R) \setminus P} E(R/q)$ is tilting, and each tilting module is equivalent to one like this.

Corollary (Slávik-T.)

Assume that $P \neq \emptyset$ and mspec(R) \ P is countable. Then the class \mathcal{L}_{T_P} is not deconstructible.

• For P = mspec(R), we recover the flat Mittag-Leffler case in this setting.

• Warning: for $P = \emptyset$, we have $T_P = Q \oplus \bigoplus_{q \in mspec(R)} E(R/q)$, and $\mathcal{L}_{T_P} = \mathcal{I}_0$ is deconstructible.

3

・ロト ・聞ト ・ヨト ・ヨト

・ 同 ト ・ ヨ ト ・ ヨ ト

- *R* a tame hereditary artin algebra of infinite representation type,
- p a representative set of all indecomposable preprojective modules.

- R a tame hereditary artin algebra of infinite representation type,
- p a representative set of all indecomposable preprojective modules.

Then p^{\perp} is a tilting class (and $M \in p^{\perp}$, iff M has no non-zero finitely generated preprojective direct summands).

- R a tame hereditary artin algebra of infinite representation type,
- *p* a representative set of all indecomposable preprojective modules.

Then p^{\perp} is a tilting class (and $M \in p^{\perp}$, iff M has no non-zero finitely generated preprojective direct summands).

The tilting module L inducing p^{\perp} is called the Lukas tilting module.

- 4 回 ト 4 ヨ ト - 4 ヨ ト -

- *R* a tame hereditary artin algebra of infinite representation type,
- *p* a representative set of all indecomposable preprojective modules.

Then p^{\perp} is a tilting class (and $M \in p^{\perp}$, iff M has no non-zero finitely generated preprojective direct summands).

The tilting module L inducing p^{\perp} is called the Lukas tilting module. (L is countably generated, but has no finite dimensional direct summands.)

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- R a tame hereditary artin algebra of infinite representation type,
- *p* a representative set of all indecomposable preprojective modules.

Then p^{\perp} is a tilting class (and $M \in p^{\perp}$, iff M has no non-zero finitely generated preprojective direct summands).

The tilting module L inducing p^{\perp} is called the Lukas tilting module. (L is countably generated, but has no finite dimensional direct summands.)

Corollary (Slávik-T.)

If R is countable, then the generic module $G \in (\varinjlim_{\omega} \mathcal{F}_L) \setminus \mathcal{D}_L$. Thus the class \mathcal{L}_L is not deconstructible.

イロト 不得下 イヨト イヨト 二日