Graded maximal Cohen-Macaulay modules over noncommutative graded Gorenstein isolated singularities

Kenta Ueyama

Shizuoka University, Japan

ICRA XV, Bielefeld, August 2012

Throughout this talk,

- k: an algebraically closed field of characteristic 0.
- A : a finitely generated noetherian connected graded k-algebra, ie,

 $A = k \langle x_1, \ldots, x_n \rangle / I$ where I: homogeneous, deg $x_i \in \mathbb{N}^+$.

grmod A : the category of f.g. graded right A-modules. tors A : the full subcategory of grmod A consisting of f.d. modules. tails $A := \operatorname{grmod} A/\operatorname{tors} A$. tails A is called the noncommutative projective scheme associated to A (cf. [Artin-Zhang]).

Theorem 1 (Serre's theorem)

If $A = k[x_1, \ldots, x_n]/I$, deg $x_i = 1$, then tails $A \cong \operatorname{coh}(\operatorname{Proj} A)$.

Preliminaries Notations Results Noncommutative graded Gorenstein isolated singularities

Noncommutative graded Gorenstein isolated singularities

Definition 2

A is a graded isolated singularity $\stackrel{\text{def}}{\longleftrightarrow}$ homological dimension of tails A is finite, ie,

 $\sup\{i \mid \mathsf{Ext}^i_{\mathsf{tails}\,\mathcal{A}}(\mathcal{M},\mathcal{N}) \neq 0 \text{ for some } \mathcal{M}, \mathcal{N} \in \mathsf{tails}\,\mathcal{A}\} < \infty.$

If $A = k[x_1, ..., x_n]/I$, deg $x_i = 1$, then hdim(tails A) $< \infty \Leftrightarrow A_{(p)}$ is regular for any homogeneous prime ideal $p \neq m$.

Definition 3

A is AS-Gorenstein (AS-regular) of dim d and G-param $\ell \stackrel{\text{def}}{\iff}$

$$\bullet \ \ \mathrm{id}_A \, A = \mathrm{id}_{A^{\mathrm{op}}} \, A = d < \infty \ (\mathrm{gldim} \, A = d < \infty), \ \mathrm{and}$$

2
$$\operatorname{Ext}_{\mathcal{A}}^{i}(k, \mathcal{A}) \cong \operatorname{Ext}_{\mathcal{A}^{\operatorname{op}}}^{i}(k, \mathcal{A}) \cong \begin{cases} k(\ell) & \text{if } i = d, \\ 0 & \text{if } i \neq d. \end{cases}$$

The aim of this talk

To study AS-Gorenstein isolated singularities!

Let A be an AS-Gorenstein algebra of dimension d.

- $\operatorname{H}^{i}_{\mathfrak{m}}(M) := \lim_{n \to \infty} \operatorname{Ext}^{i}_{A}(A/A_{\geq n}, M).$
- $\underline{CM}^{gr}(A)$: the stable category of $CM^{gr}(A)$. $(\underline{CM}^{gr}(A)$ is a triangulated category w.r.t. $M[-1] = \Omega M$.)

Motivating Theorem (cf. [lyama-Takahashi])

Let R be a noetherian commutative graded local Gorenstein ring. Assume that R is an isolated singularity. Then $\underline{CM}^{gr}(R)$ has the Serre functor. Let A be an AS-Gorenstein algebra of dimension d and G-param ℓ .

$$\omega_{\mathcal{A}} := \mathsf{H}^{d}_{\mathfrak{m}}(\mathcal{A})^{*} \cong \mathcal{A}_{\nu}(-\ell) \quad \exists \nu \in \mathsf{GrAut}\,\mathcal{A}$$

where A_{ν} is a graded A-A bimodule with action $b * x * a = bx\nu(a)$. ω_A is called the canonical module of A.

Then the autoequivalence $- \otimes_A \omega_A$: grmod $A \rightarrow$ grmod A induces an autoequivalence

$$-\otimes_A \omega_A : \underline{CM}^{gr}(A) \to \underline{CM}^{gr}(A).$$

Theorem 4

Let A be an AS-Gorenstein algebra of dimension $d \ge 2$. TFAE.

- A is a graded isolated singularity.
- **2** <u>CM</u>^{gr}(A) has the Serre functor $\otimes_A \omega_A[d-1]$.

Proposition 5

Let A be an AS-regular algebra of dimension 2, and let G be a finite subgroup of GrAut A such that hdet $\sigma = 1$ for all $\sigma \in G$. Then the fixed subring A^G is CM-representation-finite. Moreover, A^G is an AS-Gorenstein isolated singularity.

Example

Let

$$A = k \langle x, y \rangle / (xy + yx), \quad \deg x = \deg y = 1,$$

and let $G = \left\langle \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\rangle \leq \text{GrAut } A$. Then A^G is an AS-Gorenstein isolated singularity. Hence $\underline{CM}^{\text{gr}}(A^G)$ has the Serre functor.

Definition 6

Let A be an AS-Gorenstein algebra. $X \in CM^{gr}(A)$ is called an *n*-cluster tilting module if

$$\mathsf{Add}\{X(s)|s \in \mathbb{Z}\} = \{M \in \mathsf{CM}^{\mathsf{gr}}(A) \mid \mathsf{Ext}^i_A(M,X) = 0 \ (0 < i < n)\} \ = \{M \in \mathsf{CM}^{\mathsf{gr}}(A) \mid \mathsf{Ext}^i_A(X,M) = 0 \ (0 < i < n)\}.$$

A is CM-representation-finite \Leftrightarrow A has a 1-cluster tilting module.

The existence of n-cluster tilting module is a generalization of the notion of CM-representation finiteness.

Motivating Theorem (cf. [lyama-Takahashi])

Let $S = k[x_1, ..., x_d]$, deg $x_i = 1$, G a finite subgroup of $SL_d(k)$, and S^G the fixed subring of S. Then

- $S * G \cong \operatorname{End}_{S^G}(S)$ as graded algebras.
- Assume that S^G is an isolated singularity. Then $S \in CM^{gr}(S^G)$ is a (d-1)-cluster tilting module.

Preliminaries Serre functors Results cluster tilting modules

Theorem 7

Let $A = k \langle x_1, ..., x_n \rangle / I$ be an AS-regular domain of dimension $d \ge 2$ and G-param ℓ , deg $x_i = 1$. Take $r \in \mathbb{N}^+$ such that $r \mid \ell$.

$$G = \left\langle \begin{pmatrix} \xi & 0 & \cdots & 0 \\ 0 & \xi & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \xi \end{pmatrix} \right\rangle \leq \operatorname{GrAut} A$$

where ξ is a primitive r-th root of unity. Then

- $A * G \cong \operatorname{End}_{A^G}(A)$ as graded algebras.
- A^G is an AS-Gorenstein isolated singularity, and $A \in CM^{gr}(A^G)$ is a (d-1)-cluster tilting module.

• gldim
$$\operatorname{End}_{A^G}(A) = d$$
.

We can obtain examples of cluster tilting modules over non-orders.

Example

Let A =

$$\begin{split} k\langle x,y\rangle/(\alpha xy^2+\beta yxy+\alpha y^2x+\gamma x^3,\alpha yx^2+\beta xyx+\alpha x^2y+\gamma y^3),\\ \deg x=\deg y=1 \end{split}$$

where $\alpha, \beta, \gamma \in k$ are generic scalars. Then A is an AS-regular algebra of dimension 3 and G-param 4. Let

$$G = \left\langle \begin{pmatrix} \xi & 0 \\ 0 & \xi \end{pmatrix} \right\rangle \leq \operatorname{GrAut} A$$

where ξ is a primitive 4-th root of unity. Then A^G is an AS-Gorenstein isolated singularity, and $A \in CM^{gr}(A^G)$ is a 2-cluster tilting module. Moreover, we have gldim $End_{A^G}(A) = 3$.