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Preliminaries

Throughout this talk,
k : an algebraically closed field of characteristic 0.
A : a finitely generated noetherian connected graded k-algebra, ie,

A = k〈x1, . . . , xn〉/I where I : homogeneous, deg xi ∈ N+.

grmod A : the category of f.g. graded right A-modules.
torsA : the full subcategory of grmod A consisting of f.d. modules.
tailsA := grmod A/torsA.
tailsA is called the noncommutative projective scheme associated
to A (cf. [Artin-Zhang]).

.

Theorem 1 (Serre’s theorem)

.

.

.

. ..

.

.

If A = k[x1, . . . , xn]/I , deg xi = 1, then tailsA ∼= coh (Proj A).
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Definition 2

.

.

.

. ..

.

.

A is a graded isolated singularity
def⇐⇒ homological dimension of

tailsA is finite, ie,

sup{i | Extitails A(M,N ) 6= 0 for some M,N ∈ tailsA} < ∞.

.

.

. ..

.

.

If A = k[x1, . . . , xn]/I , deg xi = 1, then hdim(tailsA) < ∞ ⇔ A(p)

is regular for any homogeneous prime ideal p 6= m.

.

Definition 3

.

.

.

. ..

.

.

A is AS-Gorenstein (AS-regular) of dim d and G-param `
def⇐⇒

.

.

.

1 idA A = idAop A = d < ∞ (gldimA = d < ∞), and

.

.

.

2 ExtiA(k, A) ∼= ExtiAop(k, A) ∼=
{

k(`) if i = d ,

0 if i 6= d .
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The aim of this talk

.

.

.

. ..

. .

To study AS-Gorenstein isolated singularities!
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.

Serre functors

Let A be an AS-Gorenstein algebra of dimension d .

.

.
.

1 Hi
m(M) := limn→∞ ExtiA(A/A≥n, M).

.

.

.

2 CMgr(A) := {M ∈ grmod A | Hi
m(M) = 0 ∀i 6= d}.

.

.

.

3 CMgr(A): the stable category of CMgr(A).
(CMgr(A) is a triangulated category w.r.t. M[−1] = ΩM.)

.

Motivating Theorem (cf. [Iyama-Takahashi])

.

.

.

. ..

.

.

Let R be a noetherian commutative graded local Gorenstein ring.
Assume that R is an isolated singularity. Then CMgr(R) has the
Serre functor.
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Let A be an AS-Gorenstein algebra of dimension d and G-param `.

ωA := Hd
m(A)∗ ∼= Aν(−`) ∃ν ∈ GrAutA

where Aν is a graded A-A bimodule with action b ∗ x ∗ a = bxν(a).
ωA is called the canonical module of A.
Then the autoequivalence −⊗A ωA : grmod A → grmod A induces
an autoequivalence

−⊗A ωA : CMgr(A) → CMgr(A).

.

Theorem 4

.

.

.

. ..

.

.

Let A be an AS-Gorenstein algebra of dimension d ≥ 2. TFAE.

.

.

.

1 A is a graded isolated singularity.

.

.

.

2 CMgr(A) has the Serre functor −⊗A ωA[d − 1].
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Let A be an AS-regular algebra of dimension 2, and let G be a
finite subgroup of GrAutA such that hdetσ = 1 for all σ ∈ G.
Then the fixed subring AG is CM-representation-finite. Moreover,
AG is an AS-Gorenstein isolated singularity.

.

Example

.

.

.

. ..

.

.

Let

A = k〈x , y〉/(xy + yx), deg x = deg y = 1,

and let G =

〈(
0 1
1 0

)〉
≤ GrAutA. Then AG is an AS-Gorenstein

isolated singularity. Hence CMgr(AG ) has the Serre functor.
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cluster tilting modules

.

Definition 6

.

.

.

. ..

.

.

Let A be an AS-Gorenstein algebra. X ∈ CMgr(A) is called an
n-cluster tilting module if

add{X (s)|s ∈ Z} = {M ∈ CMgr(A) | ExtiA(M, X ) = 0 (0 < i < n)}
= {M ∈ CMgr(A) | ExtiA(X , M) = 0 (0 < i < n)}.

A is CM-representation-finite ⇔ A has a 1-cluster tilting module.

.

.

. ..

.

.

The existence of n-cluster tilting module is a generalization of the
notion of CM-representation finiteness.
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Motivating Theorem (cf. [Iyama-Takahashi])

.

.

.

. ..

.

.

Let S = k[x1, . . . , xd ], deg xi = 1, G a finite subgroup of SLd(k),
and SG the fixed subring of S . Then

.

.

.

1 S ∗ G ∼= EndSG (S) as graded algebras.

.

.

.

2 Assume that SG is an isolated singularity. Then
S ∈ CMgr(SG ) is a (d − 1)-cluster tilting module.
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Theorem 7

.

.

.

. ..

.

.

Let A = k〈x1, . . . , xn〉/I be an AS-regular domain of dimension
d ≥ 2 and G-param `, deg xi = 1. Take r ∈ N+ such that r | `.

G =

〈
ξ 0 · · · 0

0 ξ
. . .

...
...

. . .
. . . 0

0 · · · 0 ξ


〉

≤ GrAutA

where ξ is a primitive r -th root of unity. Then

.

.

.

1 A ∗ G ∼= EndAG (A) as graded algebras.

.

.

.

2 AG is an AS-Gorenstein isolated singularity, and
A ∈ CMgr(AG ) is a (d − 1)-cluster tilting module.

.

.

.

3 gldim EndAG (A) = d.

We can obtain examples of cluster tilting modules over non-orders.
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Example

.

.

.

. ..

.

.

Let A =

k〈x , y〉/(αxy2 + βyxy + αy2x + γx3, αyx2 + βxyx + αx2y + γy3),

deg x = deg y = 1

where α, β, γ ∈ k are generic scalars. Then A is an AS-regular
algebra of dimension 3 and G-param 4. Let

G =

〈(
ξ 0
0 ξ

)〉
≤ GrAutA

where ξ is a primitive 4-th root of unity. Then AG is an
AS-Gorenstein isolated singularity, and A ∈ CMgr(AG ) is a
2-cluster tilting module. Moreover, we have gldimEndAG (A) = 3.
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