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Preliminaries

NI EES

Throughout this talk,
k : an algebraically closed field of characteristic 0.
A : a finitely generated noetherian connected graded k-algebra, ie,

A= k(x1,...,xn)/] where [ :homogeneous,degx; € NT.

grmod A : the category of f.g. graded right A-modules.

tors A : the full subcategory of grmod A consisting of f.d. modules.
tails A := grmod A/tors A.

tails A is called the noncommutative projective scheme associated
to A (cf. [Artin-Zhang]).

Theorem 1 (Serre's theorem)
If A= kix1,...,xn]/l,degx; =1, then tails A = coh (Proj A).
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Noncommutative graded Gorenstein isolated singularities

A is a graded isolated singularity gt homological dimension of
tails A is finite, ie,

sup{/ | Extl s a(M, N) # 0 for some M, N € tails A} < oo.

If A= k[x1,...,x]/l,degx; = 1, then hdim(tails A) < co & A,
is regular for any homogeneous prime ideal p % m.

Definition 3

A is AS-Gorenstein (AS-regular) of dim d and G-param ¢ &
Q idaA=idar A=d < 0 (gldimA =d < ), and

k(¢) ifi=d,

0 if i #d.

Q Extly(k, A) = Extiyos(k, A) 2 {
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The aim of this talk

To study AS-Gorenstein isolated singularities!
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Serre functors

Let A be an AS-Gorenstein algebra of dimension d.
Q@ HI (M) :=lim,_o Exta(A/Asp, M).
@ CM#(A):= {M c grmod A | H. (M) = 0 Vi # d}.
© CM?®'(A): the stable category of CM8"(A).
(CM®&"(A) is a triangulated category w.r.t. M[—1] = QM.)

Motivating Theorem (cf. [lyama-Takahashi])

Let R be a noetherian commutative graded local Gorenstein ring.
Assume that R is an isolated singularity. Then CM®'(R) has the
Serre functor.
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Let A be an AS-Gorenstein algebra of dimension d and G-param /.
wa = HI(A)* 2 A,(—0) Fv e GrAutA

where A, is a graded A-A bimodule with action b* x * a = bxv(a).
w4 is called the canonical module of A.

Then the autoequivalence — ® 4 wp : grmod A — grmod A induces
an autoequivalence

— ®awa : CME(A) — CME'(A).

Theorem 4

Let A be an AS-Gorenstein algebra of dimension d > 2. TFAE.
© A is a graded isolated singularity.
@ CM®'(A) has the Serre functor — @4 wa[d — 1].
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Proposition 5

Let A be an AS-regular algebra of dimension 2, and let G be a
finite subgroup of GrAut A such that hdeto =1 for all o € G.
Then the fixed subring A® is CM-representation-finite. Moreover,
AC is an AS-Gorenstein isolated singularity.

Example
Let

A=ki{x,y)/(xy +yx), degx=degy =1,

10
isolated singularity. Hence CM&"(A®) has the Serre functor.

and let G = <<0 1>> < GrAut A. Then A® is an AS-Gorenstein
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Definition 6

Let A be an AS-Gorenstein algebra. X € CM&(A) is called an
n-cluster tilting module if

add{X(s)|s € Z} = {M € CME"(A) | Exty(M,X) =0 (0 < i < n)}
= {M € CM®"(A) | Extiy(X,M) =0 (0 < i < n)}.

A is CM-representation-finite < A has a 1-cluster tilting module.

The existence of n-cluster tilting module is a generalization of the
notion of CM-representation finiteness.
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Motivating Theorem (cf. [lyama-Takahashi])

Let S = k[x1,...,xq],deg x; = 1, G a finite subgroup of SLy4(k),
and S€ the fixed subring of S. Then

@ S G X Endge(S) as graded algebras.

@ Assume that S€ is an isolated singularity. Then
S € CM#(5%) is a (d — 1)-cluster tilting module.
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Theorem 7

Let A= k(x1,...,xn)/l be an AS-regular domain of dimension
d > 2 and G-param (, deg x; = 1. Take r € N such that r | /.

&

where £ is a primitive r-th root of unity. Then
Q@ Ax G = End,c(A) as graded algebras.

Q@ AC is an AS-Gorenstein isolated singularity, and
A € CME(A®) is a (d — 1)-cluster tilting module.
© gldimEnd46(A) = d.

& 0 0
9 § >§GrAutA

)
0 -~ 0 ¢

We can obtain examples of cluster tilting modules over non-orders.
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Example
Let A=

k(x,y)/(axy? + Byxy + ay®x + x>, ayx® + Bxyx + ax®y + vy?),
degx =degy =1

where «, 3,7 € k are generic scalars. Then A is an AS-regular
algebra of dimension 3 and G-param 4. Let

6~ {(5 7)) <cms

where ¢ is a primitive 4-th root of unity. Then A is an
AS-Gorenstein isolated singularity, and A € CM&"(A®) is a
2-cluster tilting module. Moreover, we have gldim End 46 (A) = 3.
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