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History: AR-theory for complexes

1 (2005) Bautista et al. studied the existence of almost split
sequences in some subcategories of the category of
complexes of fixed size.

2 Let R be a commutative noetherian ring which is complete
and local and Λ be a finitely generated R-algebra.

• (2006) Krause and Le extended the Auslander-Reiten
formula to complexes of Λ-modules.
Moreover, they showed that for any compact object
X ∈ K(InjΛ), there exists an almost split triangle

tX −→ Y
g−→ X 

• (2009) The same results were proved by Le in the
homotopy category of projective Λ-modules K(PrjΛ).
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Motivation

Let Λ be an artin k-algebra where k is a commutative artin
ring.

Question

When does the category of complexes of finitely generated left
Λ-modules, C(modΛ), have almost split sequence?
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Projective and Injective Complexes

In what follows, Hom(X,Y) denote the abelian group of chain
maps from X to Y.

A complex P is projective if the functor Hom(P, ) is exact.

This is equivalent to say that P is exact and
ZnP = Ker(Pn −→ Pn−1) is projective, for all n ∈ Z.

So, for any projective module P , the complex

· · · −→ 0 −→ P −→ P −→ 0 −→ · · ·

is projective. It is known that any projective complex can be
written az a coproduct of such complexes.
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Projective and Injective Complexes

Dually, a complex I is injective if the contravariant functor
Hom( , I) is exact.
Again it is known that I is injective if and only if it is exact and
ZnI is injective, for all n ∈ Z.

Therefore, if I is an injective module, the complex

· · · −→ 0 −→ I −→ I −→ 0 −→ · · ·

is injective.

Furthermore, up to isomorphism, any injective complex is a
direct product of such complexes.
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Projective and Injective Complexes

These facts imply that C(modΛ) is an abelian category with
enough projective and enough injective objects.

Every object in C(modΛ) admits a projective cover.
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Projective and Injective Complexes

Let P(X,Y) denote the subgroup of morphisms belong to
Hom(X,Y) such that factor through a projective complex.

We take Hom(X,Y) = Hom(X,Y)/P(X,Y).

C(modΛ) denotes the category with the same objects as
C(modΛ) and morphism sets Hom(X,Y).

Dually, we have C(modΛ).
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Functors and Notations

Let us fix some notations:

For a finitely generated Λ-module, the“ Hom”functor

HomΛ( ,M) : C(modΛ) −→ C(modΛop)

X 7−→ HomΛ(X,M)

i-th degree =⇒ HomΛ(X−i,M)
i-th differential =⇒ HomΛ(∂−i+1,M).
We denote HomΛ( ,Λ) by ( )∗.

When I is the injective envelop I = E(k/J(k)),
we denote Homk( , I) by D( ).
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Transpose

Let X ∈ C(modΛ) and

Q
q−→ P −→ X −→ 0

be a minimal projective presentation of X. Applying the functor
( )∗, we obtain a map q∗ : P∗ −→ Q∗ in C(modΛop).

We set TrX := Σ−1Cokerq∗, where Σ−1 is the shifting functor
to the right.

In fact, Tr : C(modΛ) −→ C(modΛop)
is an additive functor.
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Aslander-Reiten Translation

We denote by τ the composite functor

τ : C(modΛ)
Tr−→ C(modΛop)

D−→ C(modΛ)

And τ− denotes the composite functor

τ− : C(modΛ)
D−→ C(modΛop)

Tr−→ C(modΛ).
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Proposition

On C(modΛ)

{ Non-projective with local endomorphism}

l τ
{ Non-injective with local endomorphism}.
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Proposition

{ Non-projective with local endomorphism of C(GprjΛ)}

l τ
{ Non-injective with local endomorphism of C(GinjΛ)}.
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Almost split sequence

Let us recall that
a morphism β : Y −→ Z is called right almost split if is not a
retraction and

Y′

}} ��
Y

β // Z

Dually, a morphism α : X −→ Y is left almost split if α is not a
section and

X
α //

��

Y

}}
Y′
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Almost split sequence

Definition

An almost split sequence of complexes is an exact sequence

0 −→ X
f−→ Y

g−→ Z −→ 0

in C(modΛ) where f is left almost split and g is right almost
split.
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Proposition

Let 0 −→ Y
g−→W

f−→ Z −→ 0 be an exact sequence in
C(modΛ). The following are equivalent:

• Every chain map X −→ Z factors through f .

• Every chain map Y −→ τX factors through g.
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Existence theorem

Theorem

1 Let X ∈ C(modΛ) be a complex of Λ-modules with local

endomorphism ring and 0 −→ τX
f−→ Y

g−→ X −→ 0 be
a non-trivial extension which vanishes on the radical
radEnd(X)op. Then it is an almost split sequence.

2 Let X ∈ C(modΛ) be a complex of Λ-modules with local

endomorphism ring and 0 −→ X
f−→ Y

g−→ τ−X −→ 0 be
a non-trivial extension which vanishes on the radical
radEnd(X). Then it is an almost split sequence.
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Examples

Example

Let n ∈ N and X ∈ C(modΛ) be non-projective complex such
that, for all i ∈ Z, Xi is indecomposable, di 6= 0 and l(Xi) ≤ n.

=⇒ End(X) is local and ∃ 0 −→ τX
f−→ Y

g−→ X −→ 0 a.s.s
in C(modΛ).

Especially, this happens when X is a complex of
indecomposable projective or injective modules with di 6= 0.
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Examples

Also, the class of compact complexes of K(InjΛ) and K(PrjΛ)
can be considered as examples of unbounded complexes which
admit almost split sequence.
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Almost Split Triangle

The corresponding Auslander-Reiten theory for triangulated
categories has been developed by Happle.

Definition (Happle)

A triangle X
f−→ Y

g−→ Z in a triangulated category T is
called an almost split triangle, if f is left almost split and g is
right almost split.

Given a triangulated category T , we write T c for the full
subcategory of compact objects in T .

20 / 27
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Theorem (Krause)

Let T be a triangulated category which is compactly generated.
Let Z ∈ T c and Γ = EndT (Z) is local.

=⇒∃ a.s.t Σ−1tZ
α−→ Y

β−→ X
γ−→ tZ,

such that

HomΓ(HomT (Z,Γ), I) ∼= HomT (Γ, tZ),

which I = E(Γ/radΓ).
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Theorem

1 (Krause and Le) Let Z ∈ Kc(InjΛ) which is
indecomposable.

=⇒ ∃ a.s.t Σ−1tZ
α−→ Y

β−→ X
γ−→ tZ in K(InjΛ).

2 (Le) Let Z ∈ Kc(PrjΛ) which is indecomposable.

=⇒ ∃ a.s.t Σ−1tZ
α−→ Y

β−→ X
γ−→ tZ in K(PrjΛ).
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Homotopically minimal

Definition

A complex X is called homotopically minimal if
ϕ ∈ HomC(modΛ)(X,X) is an isomorphism provided that ϕ is
an isomorphism in K(modΛ).

It was proved that every complex in C(PrjΛ) or C(InjΛ) has a
decomposition X = X′

∐
X′′, such that X′ is homotopically

minimal which is unique up to isomorphism and X′′ is null
homotopic.
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Homotopically minimal

Definition

A complex X is called homotopically minimal if
ϕ ∈ HomC(modΛ)(X,X) is an isomorphism provided that ϕ is
an isomorphism in K(modΛ).

It was proved that every complex in C(PrjΛ) or C(InjΛ) has a
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∐
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Theorem

1 Let X ∈ C(prjΛ) be a homotopically minimal complex
with local endomorphism ring.

Let 0 −→ τX
f−→ Y

g−→ X −→ 0 be a.s.s in C(modΛ).

=⇒ τX
f−→ Y

g−→ X is a.s.t in K(modΛ).

2 Let X ∈ C(injΛ) be a homotopically minimal complex
with local endomorphism ring.

Let 0 −→ X
f−→ Y

g−→ τ−X −→ 0 be a.s.s in C(modΛ).

=⇒ X
f−→ Y

g−→ τ−X is a.s.t in K(modΛ).
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2 Let X ∈ C(injΛ) be a homotopically minimal complex
with local endomorphism ring.

Let 0 −→ X
f−→ Y

g−→ τ−X −→ 0 be a.s.s in C(modΛ).
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Theorem

1 For any X ∈ Kc(PrjΛ) with local endomorphism,

=⇒ ∃ a.s.t τX
f−→ Y

g−→ X in K(modΛ).

2 For any X ∈ Kc(InjΛ) with local endomorphism,

=⇒ ∃ a.s.t X
f−→ Y

g−→ τ−X in K(modΛ).
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Theorem

The translation τ provides a one-to-one correspondence
between the class of objects of Kc(PrjΛ) with local
endomorphism ring and the class of objects of Kc(InjΛ) with
the same property.
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