Pullback of finite dimensional algebras

Heily Wagner

Universidade de São Paulo - Brazil

This work is a part of the author's PhD thesis under supervision of Prof. Flávio Ulhoa Coelho Supported by CNPg

August 2012

Pullback of finite dimensional algebras

Universidade de São Paulo

(日) (同) (三) (三)

nac

Notation

- k an algebraically closed field
- ► A = kQ_A/I_A where Q_A is a finite quiver and I_A is an admissible ideal of kQ_A
- e_A the identity element of A
- indA the category whose objects are isomorphism classes of indecomposable right A-modules

・ロト ・同ト ・ヨト ・ヨト

Pullback of algebras

Let *A*, *B* and *C* be algebras. Given two epimorphisms $f_A: A \rightarrow B$ and $f_C: C \rightarrow B$ the **pullback** of f_A and f_C is the subalgebra of $A \times C$ defined by

$$R = \{(a, c) \in A \times C \mid f_A(a) = f_C(c)\}$$

Pullback of finite dimensional algebras

Universidade de São Paulo

(ロ) (同) (ヨ) (ヨ)

Purpose

Let A, B and C be algebras and $f_A: A \rightarrow B$ and $f_C: C \rightarrow B$ be epimorphisms. Let R be the pullback of f_A and f_C . We want to find relations between properties of A, B and C and properties of R.

- (1) bounded quiver
- (2) category of modules
- (3) classes of algebras (hereditary, shod, quasitilted, etc)

- 4 同 6 4 日 6 4 日 6

The case in question

•
$$A = kQ_A/I_A$$
 and $C = kQ_C/I_C$

• Q_B full and convex subquiver of Q_A and Q_C

$$I_A \cap kQ_B = I_C \cap kQ_B := I_B$$

(日) (同) (三) (三)

nac

The case in question

•
$$A = kQ_A/I_A$$
 and $C = kQ_C/I_C$

• Q_B full and convex subquiver of Q_A and Q_C

$$I_A \cap kQ_B = I_C \cap kQ_B := I_B$$

- B := kQ_B/I_B ≅ e_BAe_B ≅ e_BCe_B is a common quotient of A and C
- $f_A: a \mapsto e_B a e_B$ and $f_C: c \mapsto e_B c e_B$ are epimorphisms

ъ.

The case in question

•
$$A = kQ_A/I_A$$
 and $C = kQ_C/I_C$

• Q_B full and convex subquiver of Q_A and Q_C

$$I_A \cap kQ_B = I_C \cap kQ_B := I_B$$

- B := kQ_B/I_B ≅ e_BAe_B ≅ e_BCe_B is a common quotient of A and C
- ▶ f_A : $a \mapsto e_B a e_B$ and f_C : $c \mapsto e_B c e_B$ are epimorphisms
- The pullback is $R = \{(a, c) \in A \times C \mid e_B a e_B = e_B c e_B\}$

ъ.

The bounded quiver

Theorem (Igusa-Platzeck-Todorov-Zacharia - 1987)

Let R be the pullback of $f_A: A \twoheadrightarrow B$ and $f_C: C \twoheadrightarrow B$. Let

- $Q_R = Q_A \coprod_{Q_B} Q_C$ be the pushout of the inclusion $Q_B \to Q_A$ and $Q_B \to Q_C$.
- I_R be the ideal of kQ_R generated by I_A, I_C and the paths linking (Q_A)₀ \ (Q_B)₀ and (Q_C)₀ \ (Q_B)₀.

Then $R \cong kQ_R/I_R$.

・ロト ・同ト ・ヨト ・ヨト

$$Q_{A} = \begin{array}{c} 5\\ \gamma\\ \gamma\\ 4 \xrightarrow{\gamma}\\ \delta \end{array}, Q_{B} = 2 \xrightarrow{\alpha} 1 \text{ and } Q_{C} = \beta \\ 3 \end{array}$$
The pullback: $Q_{R} = 4 \xrightarrow{\delta} 2 \xrightarrow{\alpha} 1$

$$\begin{array}{c} 5\\ \gamma\\ \gamma\\ \beta\\ \beta\\ 3 \end{array}$$

Pullback of finite dimensional algebras

Universidade de São Paulo

-

<ロ> <同> <同> < 同> < 同>

$$Q_{A} = \begin{array}{c} 5\\ \gamma\\ \gamma\\ 4 \xrightarrow{\gamma}\\ \delta \end{array}, Q_{B} = 2 \xrightarrow{\alpha} 1 \text{ and } Q_{C} = \beta \\ 3 \end{array}$$
The pullback: $Q_{R} = 4 \xrightarrow{\gamma}\\ \delta\\ \beta \\ \beta \\ 3 \end{array}$

Pullback of finite dimensional algebras

Universidade de São Paulo

-

<ロ> <同> <同> < 同> < 同>

$$Q_{A} = \begin{array}{c} 5\\ \uparrow^{\gamma}\\ 4 \xrightarrow{\sim} 5 \\ 2 \xrightarrow{\sim} 1 \end{array}, Q_{B} = \begin{array}{c} 2 \xrightarrow{\alpha} 1 \text{ and } Q_{C} = \begin{array}{c} 2\\ \beta \\ 3 \end{array}$$
The pullback: $Q_{R} = \begin{array}{c} 4 \xrightarrow{\sim} 5\\ \uparrow^{\gamma}\\ \gamma\\ 3 \end{array}$

Pullback of finite dimensional algebras

Universidade de São Paulo

-

<ロ> <同> <同> < 同> < 同>

Question

Is the same result true for the Auslander-Reiten quiver? That is, $\Gamma_R = \Gamma_A \coprod_{\Gamma_B} \Gamma_C$?

Remark:

• $(\Gamma_R)_0$: objects of ind R

Pullback of finite dimensional algebras

Universidade de São Paulo

nac

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Pullba	ack of algebras	The bounded quiver	The oriented pullback	Classes of algebras
Qu	lestion			
	Is the same residues is, $\Gamma_R = \Gamma_A \coprod_R$		Auslander-Reiten quiv	ver? That

Remark:

• $(\Gamma_R)_0$: objects of ind R

 $\operatorname{ind} R = \operatorname{ind} A \cup \operatorname{ind} C$?

Pullback of finite dimensional algebras

Universidade de São Paulo

nac

< ロ > < 同 > < 回 > < 回 >

Pullback of algebras	The bounded quiver	The oriented pullback	Classes of algebras

In the last example, the module $I(2) = {}^{4}2^{3}$ is neither an *A*-module nor a *C*-module.

$$Q_{R} = 4 \xrightarrow[\delta]{} 2 \xrightarrow[\beta]{} 1$$

In this case $\operatorname{ind} R \neq \operatorname{ind} A \cup \operatorname{ind} C$

Universidade de São Paulo

(日) (同) (日) (日)

Definition

Let *R* be the pullback of $f_A: A \rightarrow B$ and $f_C: C \rightarrow B$. We say that *R* is an **oriented pullback** if its bounded quiver satisfies

► there is no path from (Q_B)₀ to (Q_C)₀ \ (Q_B)₀ and neither from (Q_A)₀ \ (Q_B)₀ to (Q_C)₀

(ロ) (同) (三) (三)

The oriented pullback

・ロマ 山下 ・山下・ 山下・ ・日・

Pullback of finite dimensional algebras

Universidade de São Paulo

The oriented pullback

In this case,

- $P(x) \cong P_A(x)$ for any $x \in (Q_A)_0$
- $P(x) \cong P_C(x)$ for any $x \in (Q_C)_0 \setminus (Q_B)_0$
- $I(x) \cong I_C(x)$ for any $x \in (Q_C)_0$
- $I(x) \cong I_A(x)$ for any $x \in (Q_A)_0 \setminus (Q_B)_0$

- 4 同 1 4 三 1 4 三 1

Special kinds of oriented pullback

Condition *(IPTZ87)

- (1) $Q_B: \bullet \leftarrow \bullet \leftarrow \cdots \leftarrow \bullet$, with no relations;
- (2) for each arrow α : x → y in (Q_B)₁ and each path φ: z → y from z ∈ (Q_C)₀ \ (Q_B)₀ to y there is a path ψ: z → x from z to x such that ψα - φ ∈ I_C.

Theorem (IPTZ87)

Let *R* be the pullback of $f_A: A \twoheadrightarrow B$ and $f_C: C \twoheadrightarrow B$ such that Q_R satisfies Condition *. Then

 $\operatorname{ind} R = \operatorname{ind} A \cup \operatorname{ind} C$

Pullback of finite dimensional algebras

Universidade de São Paulo

SOA

Definition

Let *R* be the pullback of $f_A: A \rightarrow B$ and $f_C: C \rightarrow B$. We say that *R* is a **Dynkin oriented pullback** if it is an oriented pullback and its bounded quiver satisfies the following conditions:

- 1. *B* is an hereditary algebra and each connected component is of Dynkin type with an unique sink;
- 2. for each arrow $\alpha : x \to y$ in $(Q_B)_1$ and each path $\phi : z \rightsquigarrow y$ from $z \in (Q_C)_0 \setminus (Q_B)_0$ to y then there is a path $\psi : z \rightsquigarrow x$ from z to x such that $\psi \alpha - \phi \in I_C$.

Theorem 1

Let R be the Dynkin oriented pullback of $A \twoheadrightarrow B$ and $C \twoheadrightarrow B$. Then

$\operatorname{ind} R = \operatorname{ind} A \cup \operatorname{ind} C$

きょうかい 加 ふかく 山 きょうしょう

Pullback of finite dimensional algebras

Universidade de São Paulo

Example - condition *

$$Q_A = \begin{array}{c} 1 \leftarrow 3 \\ \downarrow \\ 2 \end{array} \quad Q_B = \begin{array}{c} 3 \\ \downarrow \\ 2 \end{array} \quad Q_C = \begin{array}{c} 3 \leftarrow 4 \\ \downarrow \\ 2 \end{array}$$

 $1 \stackrel{\overline{}}{\underbrace{}_{2} ^{-} 4$

The pullback R is

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > nac

Pullback of finite dimensional algebras

Universidade de São Paulo

-

Universidade de São Paulo

Sac

- Λ is **shod** \Leftrightarrow pd $M \leq 1$ or id $M \leq 1$ for any $M \in \text{ind}\Lambda$
- Λ is **quasitilted** $\Leftrightarrow \Lambda$ is shod and gl.dim $\Lambda \leq 2$

Pullback of finite dimensional algebras

Universidade de São Paulo

・ロト ・ 同ト ・ ヨト ・ ヨト

nac

Lemma

Let R be the oriented pullback of $A \twoheadrightarrow B$ and $C \twoheadrightarrow B$. Then

- if $M \in \operatorname{ind} A$ then $\operatorname{pd} M = \operatorname{pd}_A M$
- if $M \in \operatorname{ind} C$ then $\operatorname{id} M = \operatorname{id}_C M$

Lemma

Let *R* be the oriented pullback of $A \twoheadrightarrow B$ and $C \twoheadrightarrow B$ such that *A* and *C* are hereditary algebras. If $indR = indA \cup indC$ then *R* is a *shod* algebra.

Pullback of finite dimensional algebras

Universidade de São Paulo

(日本)

Lemma (Wiseman - 1985)

Let *R* be the oriented pullback of $A \rightarrow B$ and $C \rightarrow B$. Then gl.dim $R \leq \max{\text{gl.dim}A, \text{gl.dim}C} + pd_AB$

Lemma

Let *R* be the oriented pullback of $A \twoheadrightarrow B$ and $C \twoheadrightarrow B$ such that *A* and *C* are hereditary algebras. Then gl.dim $R \leq 2$.

Pullback of finite dimensional algebras

Universidade de São Paulo

SOA

(4月) (日) (日)

Theorem 2

Let *R* be the oriented pullback of $A \twoheadrightarrow B$ and $C \twoheadrightarrow B$ such that *A* and *C* are hereditary algebras. If $indR = indA \cup indC$ then *R* is a *quasitilted* algebra.

Pullback of finite dimensional algebras

Universidade de São Paulo

- 4 同 2 4 日 2 4 日 3

Theorem 2

Let R be the oriented pullback of $A \twoheadrightarrow B$ and $C \twoheadrightarrow B$ such that A and C are hereditary algebras. If $indR = indA \cup indC$ then R is a *quasitilted* algebra.

Corollary

Let *R* be the Dynkin oriented pullback of $A \rightarrow B$ and $C \rightarrow B$ such that *A* and *C* are hereditary algebras. Then *R* is a *quasitilted* algebra.

Pullback of finite dimensional algebras

Universidade de São Paulo

SOA

(日本)

M **convex**: given *M'* and *M''* indecomposable in add*M*: $M' \to X_1 \to X_2 \to \cdots \to X_t \to M'' \Rightarrow X_i \in \operatorname{add} M \ \forall i = 1, ..., t.$

Theorem 4

Let *R* be the oriented pullback of $A \rightarrow B$ and $C \rightarrow B$ such that DA' is a convex *R*-module. If *A* and *C* are hereditary algebras then *R* is a tilted algebra.

Conjectures

Conjecture

Let R be the oriented pullback of $A \twoheadrightarrow B$ and $C \twoheadrightarrow B$. If A is hereditary then DA' is a convex R-module.

Consequence

Let R be the oriented pullback of $A \twoheadrightarrow B$ and $C \twoheadrightarrow B$. If A and C are hereditary algebras then R is a tilted algebra.

Pullback of finite dimensional algebras

Universidade de São Paulo

(日本)

References

- K. Igusa, M. I. Platzeck, G. Todorov, D. Zacharia, Auslander algebras of finite representation type, Comm. Algebra 15(1-2): 377-424, 1987.
- A. N. Wiseman. Projective modules over pullback rings, Math. Proc. Cambridge Philos. Soc., 97(3): 399-406, 1985.

- 4 同 1 4 三 1 4 三 1

Thank you!

Pullback of finite dimensional algebras

Universidade de São Paulo