# Module categories for elementary abelian p-groups and generalized Beilinson algebras

Julia Worch

University of Kiel

August 14, 2012

**General objective:** 

**General objective:** Understand  $mod k\mathcal{G}$ ,

**General objective:** Understand mod  $k\mathcal{G}$ , where  $\mathcal{G}$  is a finite group (scheme)

**General objective:** Understand mod  $k\mathcal{G}$ , where  $\mathcal{G}$  is a finite group (scheme) and k is a field of characteristic p > 0.

**General objective:** Understand mod  $k\mathcal{G}$ , where  $\mathcal{G}$  is a finite group (scheme) and k is a field of characteristic p > 0.

**Problem:** 

**General objective:** Understand mod  $k\mathcal{G}$ , where  $\mathcal{G}$  is a finite group (scheme) and k is a field of characteristic p > 0.

**Problem:** kG is wild in most cases

**General objective:** Understand mod  $k\mathcal{G}$ , where  $\mathcal{G}$  is a finite group (scheme) and k is a field of characteristic p > 0.

**Problem:**  $k\mathcal{G}$  is wild in most cases, e.g. if  $\mathcal{G} = \mathbb{Z}_p \times \mathbb{Z}_p$  and p > 2.

**General objective:** Understand mod  $k\mathcal{G}$ , where  $\mathcal{G}$  is a finite group (scheme) and k is a field of characteristic p > 0.

**Problem:**  $k\mathcal{G}$  is wild in most cases, e.g. if  $\mathcal{G} = \mathbb{Z}_p \times \mathbb{Z}_p$  and p > 2.

→ Study modules that satisfy additional properties.

**General objective:** Understand mod  $k\mathcal{G}$ , where  $\mathcal{G}$  is a finite group (scheme) and k is a field of characteristic p > 0.

**Problem:**  $k\mathcal{G}$  is wild in most cases, e.g. if  $\mathcal{G} = \mathbb{Z}_p \times \mathbb{Z}_p$  and p > 2.

 $\rightsquigarrow$  Study modules that satisfy additional properties.

#### Approach:

**General objective:** Understand mod  $k\mathcal{G}$ , where  $\mathcal{G}$  is a finite group (scheme) and k is a field of characteristic p > 0.

**Problem:**  $k\mathcal{G}$  is wild in most cases, e.g. if  $\mathcal{G} = \mathbb{Z}_p \times \mathbb{Z}_p$  and p > 2.

 $\rightsquigarrow$  Study modules that satisfy additional properties.

**Approach:** Study mod  $k\mathcal{G}$  via algebraic families of restrictions to  $k[T]/(T^p)\subseteq k\mathcal{G}$ 

**General objective:** Understand mod  $k\mathcal{G}$ , where  $\mathcal{G}$  is a finite group (scheme) and k is a field of characteristic p > 0.

**Problem:**  $k\mathcal{G}$  is wild in most cases, e.g. if  $\mathcal{G} = \mathbb{Z}_p \times \mathbb{Z}_p$  and p > 2.

 $\rightsquigarrow$  Study modules that satisfy additional properties.

**Approach:** Study mod  $k\mathcal{G}$  via algebraic families of restrictions to  $k[T]/(T^p) \subseteq k\mathcal{G} \leadsto \text{mod } k[T]/(T^p)$  is completely understood.

**General objective:** Understand mod  $k\mathcal{G}$ , where  $\mathcal{G}$  is a finite group (scheme) and k is a field of characteristic p > 0.

**Problem:**  $k\mathcal{G}$  is wild in most cases, e.g. if  $\mathcal{G} = \mathbb{Z}_p \times \mathbb{Z}_p$  and p > 2.

 $\rightsquigarrow$  Study modules that satisfy additional properties.

**Approach:** Study mod  $k\mathcal{G}$  via algebraic families of restrictions to  $k[T]/(T^p) \subseteq k\mathcal{G} \leadsto \text{mod } k[T]/(T^p)$  is completely understood.

We confine our investigations to elementary abelian p-groups.



• k denotes an algebraically closed field of char(k) = p > 0.

- k denotes an algebraically closed field of char(k) = p > 0.
- $E_r = (\mathbb{Z}_p)^r$  is an elementary abelian p-group of rank  $r \geq 2$ .

- k denotes an algebraically closed field of char(k) = p > 0.
- $E_r = (\mathbb{Z}_p)^r$  is an elementary abelian *p*-group of rank  $r \geq 2$ .

• There is an isomorphism  $kE_r \cong k[X_1, \dots, X_r]/(X_1^p, \dots, X_r^p)$ .

- k denotes an algebraically closed field of char(k) = p > 0.
- $E_r = (\mathbb{Z}_p)^r$  is an elementary abelian *p*-group of rank  $r \geq 2$ .

- There is an isomorphism  $kE_r \cong k[X_1, \dots, X_r]/(X_1^p, \dots, X_r^p)$ .
- $kE_r$  is generated by elements  $x_i := X_i + (X_1^p, \dots, X_r^p)$ .

- k denotes an algebraically closed field of char(k) = p > 0.
- $E_r = (\mathbb{Z}_p)^r$  is an elementary abelian *p*-group of rank  $r \geq 2$ .

- There is an isomorphism  $kE_r \cong k[X_1, \dots, X_r]/(X_1^p, \dots, X_r^p)$ .
- $kE_r$  is generated by elements  $x_i := X_i + (X_1^p, \dots, X_r^p)$ .
- $I := (X_1, \dots, X_r) \subseteq k[X_1, \dots, X_r]$  is the ideal generated by polynomials of degree 1.

• Define  $\mathfrak{P} := \{x \in kE_r | \exists \alpha \in k^r \backslash 0 : x = \alpha_1 x_1 + \dots + \alpha_r x_r \}$ .

- Define  $\mathfrak{P} := \{x \in kE_r | \exists \alpha \in k^r \backslash 0 : x = \alpha_1 x_1 + \dots + \alpha_r x_r \}$ .
- ullet  $x\in \mathfrak{P}$  together with  $M\in \operatorname{mod} kE_r$

- Define  $\mathfrak{P} := \{x \in kE_r | \exists \alpha \in k^r \setminus 0 : x = \alpha_1 x_1 + \dots + \alpha_r x_r \}$ .
- ullet  $x\in \mathfrak{P}$  together with  $M\in \operatorname{mod} kE_r$  yields a linear operator

$$x_M: M \to M, m \mapsto x.m$$

- Define  $\mathfrak{P} := \{x \in kE_r | \exists \alpha \in k^r \backslash 0 : x = \alpha_1 x_1 + \dots + \alpha_r x_r \}$ .
- ullet  $x\in \mathfrak{P}$  together with  $M\in \operatorname{mod} kE_r$  yields a linear operator

$$x_M: M \to M, m \mapsto x.m$$

#### **Definition**

- Define  $\mathfrak{P} := \{x \in kE_r | \exists \alpha \in k^r \backslash 0 : x = \alpha_1 x_1 + \dots + \alpha_r x_r \}$ .
- ullet  $x\in \mathfrak{P}$  together with  $M\in \operatorname{mod} kE_r$  yields a linear operator

$$x_M: M \to M, m \mapsto x.m$$

#### **Definition**

Let  $M \in \text{mod}(kE_r)$ .

- Define  $\mathfrak{P} := \{x \in kE_r | \exists \alpha \in k^r \backslash 0 : x = \alpha_1 x_1 + \dots + \alpha_r x_r \}$ .
- ullet  $x\in \mathfrak{P}$  together with  $M\in \operatorname{mod} kE_r$  yields a linear operator

$$x_M: M \to M, m \mapsto x.m$$

#### **Definition**

Let  $M \in \text{mod}(kE_r)$ . We say that

M has constant rank

- Define  $\mathfrak{P} := \{x \in kE_r | \exists \alpha \in k^r \backslash 0 : x = \alpha_1 x_1 + \dots + \alpha_r x_r \}$ .
- ullet  $x\in \mathfrak{P}$  together with  $M\in \operatorname{mod} kE_r$  yields a linear operator

$$x_M: M \to M, m \mapsto x.m$$

#### **Definition**

Let  $M \in \text{mod}(kE_r)$ . We say that

**1** M has constant rank if  $rk(x_M) = rk(y_M)$  for all  $x, y \in \mathfrak{P}$ .

- Define  $\mathfrak{P} := \{x \in kE_r | \exists \alpha \in k^r \backslash 0 : x = \alpha_1 x_1 + \dots + \alpha_r x_r \}$ .
- ullet  $x\in \mathfrak{P}$  together with  $M\in \operatorname{mod} kE_r$  yields a linear operator

$$x_M: M \to M, m \mapsto x.m$$

#### **Definition**

- **1** M has constant rank if  $rk(x_M) = rk(y_M)$  for all  $x, y \in \mathfrak{P}$ .
- M satisfies the equal images property

- Define  $\mathfrak{P} := \{x \in kE_r | \exists \alpha \in k^r \backslash 0 : x = \alpha_1 x_1 + \dots + \alpha_r x_r \}$ .
- ullet  $x\in \mathfrak{P}$  together with  $M\in \operatorname{mod} kE_r$  yields a linear operator

$$x_M: M \to M, m \mapsto x.m$$

#### **Definition**

- **1** M has constant rank if  $rk(x_M) = rk(y_M)$  for all  $x, y \in \mathfrak{P}$ .
- ② M satisfies the equal images property if  $im(x_M) = im(y_M)$  for all  $x, y \in \mathfrak{P}$ .

- Define  $\mathfrak{P} := \{x \in kE_r | \exists \alpha \in k^r \backslash 0 : x = \alpha_1 x_1 + \dots + \alpha_r x_r \}$ .
- $x \in \mathfrak{P}$  together with  $M \in \operatorname{mod} kE_r$  yields a linear operator

$$x_M: M \to M, m \mapsto x.m$$

#### Definition

- **1** M has constant rank if  $rk(x_M) = rk(y_M)$  for all  $x, y \in \mathfrak{P}$ .
- ② M satisfies the equal images property if  $im(x_M) = im(y_M)$  for all  $x, y \in \mathfrak{P}$ .
- M satisfies the equal kernels property

- Define  $\mathfrak{P} := \{x \in kE_r | \exists \alpha \in k^r \backslash 0 : x = \alpha_1 x_1 + \dots + \alpha_r x_r \}$ .
- $x \in \mathfrak{P}$  together with  $M \in \operatorname{mod} kE_r$  yields a linear operator

$$x_M: M \to M, m \mapsto x.m$$

#### **Definition**

- **1** M has constant rank if  $rk(x_M) = rk(y_M)$  for all  $x, y \in \mathfrak{P}$ .
- ② M satisfies the equal images property if  $im(x_M) = im(y_M)$  for all  $x, y \in \mathfrak{P}$ .
- **3** *M* satisfies the equal kernels property if  $\ker(x_M) = \ker(y_M)$  for all  $x, y \in \mathfrak{P}$ .

- Define  $\mathfrak{P} := \{x \in kE_r | \exists \alpha \in k^r \setminus 0 : x = \alpha_1 x_1 + \dots + \alpha_r x_r \}$ .
- $x \in \mathfrak{P}$  together with  $M \in \operatorname{mod} kE_r$  yields a linear operator

$$x_M: M \to M, m \mapsto x.m$$

#### Definition

- **1** M has constant rank if  $rk(x_M) = rk(y_M)$  for all  $x, y \in \mathfrak{P}$ .
- ② M satisfies the equal images property if  $im(x_M) = im(y_M)$  for all  $x, y \in \mathfrak{P}$ .
- **3** *M* satisfies the equal kernels property if  $\ker(x_M) = \ker(y_M)$  for all  $x, y \in \mathfrak{P}$ .
  - $CR(kE_r)$ ,  $EIP(kE_r)$  and  $EKP(kE_r)$  are the corresponding full subcategories of  $mod(kE_r)$ .



## Generalized W-modules

#### Generalized W-modules

• For  $n \in \mathbb{N}$ ,  $d \leq \min\{n, p\}$ ,

$$M_{n,d}^{(r)}:=I^{n-d}/I^n$$

$$M_{n,d}^{(r)} := I^{n-d}/I^n = (X_1, \dots, X_r)^{n-d}/(X_1, \dots, X_r)^n$$

• For  $n \in \mathbb{N}$ ,  $d \leq \min\{n, p\}$ , define

$$M_{n,d}^{(r)} := I^{n-d}/I^n = (X_1, \dots, X_r)^{n-d}/(X_1, \dots, X_r)^n$$

 $\bullet \ \, \text{For} \, \, x \in \mathfrak{P}, \, \text{we have } \ker(x_{M_{n,d}^{(r)}}) = I^{n-1}/I^n.$ 

• For  $n \in \mathbb{N}$ ,  $d \leq \min\{n, p\}$ , define

$$M_{n,d}^{(r)} := I^{n-d}/I^n = (X_1, \dots, X_r)^{n-d}/(X_1, \dots, X_r)^n$$

 $\bullet \ \, \text{For} \, \, x \in \mathfrak{P}, \, \text{we have } \ker(x_{M_{n,d}^{(r)}}) = I^{n-1}/I^n.$ 

$$\rightsquigarrow W_{n,d}^{(r)} = (M_{n,d}^{(r)})^*$$

$$M_{n,d}^{(r)} := I^{n-d}/I^n = (X_1, \dots, X_r)^{n-d}/(X_1, \dots, X_r)^n$$

- $\bullet \ \, \text{For} \, \, x \in \mathfrak{P}, \, \text{we have } \ker(x_{M_{n,d}^{(r)}}) = I^{n-1}/I^n.$ 
  - $W_{n,d}^{(r)} = (M_{n,d}^{(r)})^*$  is a module with the equal images property.

$$M_{n,d}^{(r)} := I^{n-d}/I^n = (X_1, \dots, X_r)^{n-d}/(X_1, \dots, X_r)^n$$

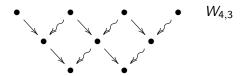
- For  $x \in \mathfrak{P}$ , we have  $\ker(x_{M_{n,d}^{(r)}}) = I^{n-1}/I^n$ .  $\rightsquigarrow W_{n,d}^{(r)} = (M_{n,d}^{(r)})^*$  is a module with the equal images property.
- $W_{n,d}^{(2)} = W_{n,d}$  was defined by Carlson-Friedlander-Suslin

$$M_{n,d}^{(r)} := I^{n-d}/I^n = (X_1, \dots, X_r)^{n-d}/(X_1, \dots, X_r)^n$$

- For  $x \in \mathfrak{P}$ , we have  $\ker(x_{M_{n,d}^{(r)}}) = I^{n-1}/I^n$ .  $\rightsquigarrow W_{n,d}^{(r)} = (M_{n,d}^{(r)})^*$  is a module with the equal images property.
- $W_{n,d}^{(2)} = W_{n,d}$  was defined by Carlson-Friedlander-Suslin  $\rightsquigarrow$  every object in EIP( $kE_2$ ) is a quotient of some  $W_{n,d}$

$$M_{n,d}^{(r)} := I^{n-d}/I^n = (X_1, \dots, X_r)^{n-d}/(X_1, \dots, X_r)^n$$

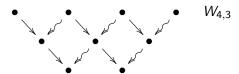
- For  $x \in \mathfrak{P}$ , we have  $\ker(x_{M_{n,d}^{(r)}}) = I^{n-1}/I^n$ .  $\leadsto W_{n,d}^{(r)} = (M_{n,d}^{(r)})^*$  is a module with the equal images property.
- $W_{n,d}^{(2)} = W_{n,d}$  was defined by Carlson-Friedlander-Suslin  $\rightsquigarrow$  every object in EIP( $kE_2$ ) is a quotient of some  $W_{n,d}$



• For  $n \in \mathbb{N}$ ,  $d \leq \min\{n, p\}$ , define

$$M_{n,d}^{(r)} := I^{n-d}/I^n = (X_1, \dots, X_r)^{n-d}/(X_1, \dots, X_r)^n$$

- For  $x \in \mathfrak{P}$ , we have  $\ker(x_{M_{n,d}^{(r)}}) = I^{n-1}/I^n$ .  $\rightsquigarrow W_{n,d}^{(r)} = (M_{n,d}^{(r)})^*$  is a module with the equal images property.
- $W_{n,d}^{(2)} = W_{n,d}$  was defined by Carlson-Friedlander-Suslin  $\rightsquigarrow$  every object in EIP( $kE_2$ ) is a quotient of some  $W_{n,d}$



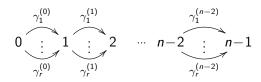
• The indecomposable objects of Loewy length 2 are of the form  $W_{n,2}$ .



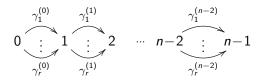
• For  $n \le p$  let B(n, r) be the generalized Beilinson algebra,

• For  $n \le p$  let B(n, r) be the generalized Beilinson algebra, the path algebra of the quiver

• For  $n \le p$  let B(n, r) be the generalized Beilinson algebra, the path algebra of the quiver

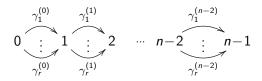


• For  $n \le p$  let B(n, r) be the generalized Beilinson algebra, the path algebra of the quiver



with relations  $\gamma_s^{(i+1)}\gamma_t^{(i)}-\gamma_t^{(i+1)}\gamma_s^{(i)}$ 

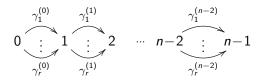
• For  $n \le p$  let B(n, r) be the generalized Beilinson algebra, the path algebra of the quiver



with relations  $\gamma_s^{(i+1)} \gamma_t^{(i)} - \gamma_t^{(i+1)} \gamma_s^{(i)}$ 

• There is a faithful exact functor  $\mathfrak{F}: \mathsf{mod}\, B(n,r) o \mathsf{mod}(k E_r)$ 

• For  $n \le p$  let B(n, r) be the generalized Beilinson algebra, the path algebra of the quiver

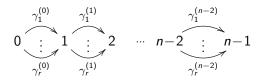


with relations  $\gamma_{\rm s}^{(i+1)}\gamma_{\rm t}^{(i)}-\gamma_{\rm t}^{(i+1)}\gamma_{\rm s}^{(i)}$ 

• There is a faithful exact functor  $\mathfrak{F}: \operatorname{\mathsf{mod}} B(n,r) \to \operatorname{\mathsf{mod}}(kE_r)$  with

$$\mathfrak{F}(\bigoplus_{i=0}^{n-1}M_i)=\bigoplus_{i=0}^{n-1}M_i$$

• For  $n \le p$  let B(n, r) be the generalized Beilinson algebra, the path algebra of the quiver



with relations  $\gamma_s^{(i+1)} \gamma_t^{(i)} - \gamma_t^{(i+1)} \gamma_s^{(i)}$ 

• There is a faithful exact functor  $\mathfrak{F}: \operatorname{\mathsf{mod}} B(n,r) \to \operatorname{\mathsf{mod}}(kE_r)$  with

$$\mathfrak{F}(igoplus_{i=0}^{n-1}M_i)=igoplus_{i=0}^{n-1}M_i \text{ and } x_j.m=\gamma_j^{(i)}.m$$

for all  $m \in M_i$ .



Given  $M = \bigoplus_{j=0}^{n-1} M_j \in \operatorname{mod} B(n,r)$ 

Given  $M = \bigoplus_{j=0}^{n-1} M_j \in \text{mod } B(n,r)$ ,  $\alpha \in k^r \setminus 0$ ,

Given  $M = \bigoplus_{j=0}^{n-1} M_j \in \text{mod } B(n,r), \ \alpha \in k^r \setminus 0, \ 0 \le i \le n-2,$ 

Given  $M = \bigoplus_{j=0}^{n-1} M_j \in \text{mod } B(n,r)$ ,  $\alpha \in k^r \setminus 0$ ,  $0 \le i \le n-2$ , there is a linear operator

Given  $M = \bigoplus_{j=0}^{n-1} M_j \in \text{mod } B(n,r)$ ,  $\alpha \in k^r \setminus 0$ ,  $0 \le i \le n-2$ , there is a linear operator

$$\alpha_M(i):M_i\to M_{i+1}$$

Given  $M = \bigoplus_{j=0}^{n-1} M_j \in \text{mod } B(n,r)$ ,  $\alpha \in k^r \setminus 0$ ,  $0 \le i \le n-2$ , there is a linear operator

$$\alpha_{M}(i): M_{i} \to M_{i+1}, \ m \mapsto (\alpha_{1}\gamma_{1}^{(i)} + \cdots + \alpha_{r}\gamma_{r}^{(i)}).m$$

Given  $M = \bigoplus_{j=0}^{n-1} M_j \in \text{mod } B(n,r)$ ,  $\alpha \in k^r \setminus 0$ ,  $0 \le i \le n-2$ , there is a linear operator

$$\alpha_M(i): M_i \to M_{i+1}, \ m \mapsto (\alpha_1 \gamma_1^{(i)} + \cdots + \alpha_r \gamma_r^{(i)}).m$$

#### Definition

Given  $M = \bigoplus_{j=0}^{n-1} M_j \in \text{mod } B(n,r)$ ,  $\alpha \in k^r \setminus 0$ ,  $0 \le i \le n-2$ , there is a linear operator

$$\alpha_M(i): M_i \to M_{i+1}, \ m \mapsto (\alpha_1 \gamma_1^{(i)} + \cdots + \alpha_r \gamma_r^{(i)}).m$$

#### Definition

Given  $M = \bigoplus_{j=0}^{n-1} M_j \in \text{mod } B(n,r)$ ,  $\alpha \in k^r \setminus 0$ ,  $0 \le i \le n-2$ , there is a linear operator

$$\alpha_{M}(i): M_{i} \to M_{i+1}, \ m \mapsto (\alpha_{1}\gamma_{1}^{(i)} + \cdots + \alpha_{r}\gamma_{r}^{(i)}).m$$

#### **Definition**

Define full subcategories of mod B(n, r) via

• EIP(*n*, *r*)

Given  $M = \bigoplus_{j=0}^{n-1} M_j \in \text{mod } B(n,r)$ ,  $\alpha \in k^r \setminus 0$ ,  $0 \le i \le n-2$ , there is a linear operator

$$\alpha_M(i): M_i \to M_{i+1}, \ m \mapsto (\alpha_1 \gamma_1^{(i)} + \cdots + \alpha_r \gamma_r^{(i)}).m$$

#### **Definition**

• 
$$\mathsf{EIP}(n,r) := \{ M \in \mathsf{mod}\, B(n,r) |$$

Given  $M = \bigoplus_{j=0}^{n-1} M_j \in \text{mod } B(n,r)$ ,  $\alpha \in k^r \setminus 0$ ,  $0 \le i \le n-2$ , there is a linear operator

$$\alpha_M(i): M_i \to M_{i+1}, \ m \mapsto (\alpha_1 \gamma_1^{(i)} + \cdots + \alpha_r \gamma_r^{(i)}).m$$

#### Definition

Define full subcategories of mod B(n, r) via

•  $\mathsf{EIP}(n,r) := \{ M \in \mathsf{mod} \ B(n,r) | \alpha_M(i) \text{ is surjective } \forall i, \alpha \},$ 



Given  $M = \bigoplus_{j=0}^{n-1} M_j \in \text{mod } B(n,r)$ ,  $\alpha \in k^r \setminus 0$ ,  $0 \le i \le n-2$ , there is a linear operator

$$\alpha_M(i): M_i \to M_{i+1}, \ m \mapsto (\alpha_1 \gamma_1^{(i)} + \cdots + \alpha_r \gamma_r^{(i)}).m$$

#### **Definition**

- $\mathsf{EIP}(n,r) := \{ M \in \mathsf{mod}\, B(n,r) | \alpha_M(i) \text{ is surjective } \forall i,\alpha \}$ ,
- EKP(n,r)

Given  $M = \bigoplus_{j=0}^{n-1} M_j \in \text{mod } B(n,r)$ ,  $\alpha \in k^r \setminus 0$ ,  $0 \le i \le n-2$ , there is a linear operator

$$\alpha_M(i): M_i \to M_{i+1}, \ m \mapsto (\alpha_1 \gamma_1^{(i)} + \cdots + \alpha_r \gamma_r^{(i)}).m$$

#### **Definition**

- $\mathsf{EIP}(n,r) := \{ M \in \mathsf{mod}\, B(n,r) | \alpha_M(i) \text{ is surjective } \forall i,\alpha \}$  ,
- $\mathsf{EKP}(n,r) := \{ M \in \mathsf{mod}\, B(n,r) |$

Given  $M = \bigoplus_{j=0}^{n-1} M_j \in \text{mod } B(n,r)$ ,  $\alpha \in k^r \setminus 0$ ,  $0 \le i \le n-2$ , there is a linear operator

$$\alpha_M(i): M_i \to M_{i+1}, \ m \mapsto (\alpha_1 \gamma_1^{(i)} + \cdots + \alpha_r \gamma_r^{(i)}).m$$

#### **Definition**

- $\mathsf{EIP}(n,r) := \{ M \in \mathsf{mod}\, B(n,r) | \alpha_M(i) \text{ is surjective } \forall i,\alpha \}$ ,
- $\mathsf{EKP}(n,r) := \{ M \in \mathsf{mod}\, B(n,r) | \alpha_M(i) \text{ is injective } \forall i,\alpha \}$ ,

Given  $M = \bigoplus_{j=0}^{n-1} M_j \in \text{mod } B(n,r)$ ,  $\alpha \in k^r \setminus 0$ ,  $0 \le i \le n-2$ , there is a linear operator

$$\alpha_M(i): M_i \to M_{i+1}, \ m \mapsto (\alpha_1 \gamma_1^{(i)} + \cdots + \alpha_r \gamma_r^{(i)}).m$$

#### **Definition**

- $\mathsf{EIP}(n,r) := \{ M \in \mathsf{mod}\, B(n,r) | \alpha_M(i) \text{ is surjective } \forall i,\alpha \}$ ,
- $\mathsf{EKP}(n,r) := \{ M \in \mathsf{mod}\, B(n,r) | \alpha_M(i) \text{ is injective } \forall i,\alpha \}$ ,
- CR(n,r)

Given  $M = \bigoplus_{j=0}^{n-1} M_j \in \text{mod } B(n,r)$ ,  $\alpha \in k^r \setminus 0$ ,  $0 \le i \le n-2$ , there is a linear operator

$$\alpha_M(i): M_i \to M_{i+1}, \ m \mapsto (\alpha_1 \gamma_1^{(i)} + \cdots + \alpha_r \gamma_r^{(i)}).m$$

#### **Definition**

- $\mathsf{EIP}(n,r) := \{ M \in \mathsf{mod}\, B(n,r) | \alpha_M(i) \text{ is surjective } \forall i,\alpha \}$ ,
- $\mathsf{EKP}(n,r) := \{ M \in \mathsf{mod}\, B(n,r) | \alpha_M(i) \text{ is injective } \forall i,\alpha \}$ ,
- $\bullet \ \mathsf{CR}(n,r) := \{ M \in \mathsf{mod} \ B(n,r) |$

Given  $M = \bigoplus_{j=0}^{n-1} M_j \in \text{mod } B(n,r)$ ,  $\alpha \in k^r \setminus 0$ ,  $0 \le i \le n-2$ , there is a linear operator

$$\alpha_M(i): M_i \to M_{i+1}, \ m \mapsto (\alpha_1 \gamma_1^{(i)} + \cdots + \alpha_r \gamma_r^{(i)}).m$$

#### **Definition**

- $\mathsf{EIP}(n,r) := \{ M \in \mathsf{mod}\, B(n,r) | \alpha_M(i) \text{ is surjective } \forall i,\alpha \}$ ,
- $\mathsf{EKP}(n,r) := \{ M \in \mathsf{mod}\, B(n,r) | \alpha_M(i) \text{ is injective } \forall i,\alpha \}$ ,
- $CR(n,r) := \{M \in \text{mod } B(n,r) | \exists c :$

Given  $M = \bigoplus_{j=0}^{n-1} M_j \in \text{mod } B(n,r)$ ,  $\alpha \in k^r \setminus 0$ ,  $0 \le i \le n-2$ , there is a linear operator

$$\alpha_M(i): M_i \to M_{i+1}, \ m \mapsto (\alpha_1 \gamma_1^{(i)} + \cdots + \alpha_r \gamma_r^{(i)}).m$$

#### **Definition**

- $\mathsf{EIP}(n,r) := \{ M \in \mathsf{mod}\, B(n,r) | \alpha_M(i) \text{ is surjective } \forall i,\alpha \}$ ,
- $\mathsf{EKP}(n,r) := \{ M \in \mathsf{mod}\, B(n,r) | \alpha_M(i) \text{ is injective } \forall i,\alpha \}$ ,
- $CR(n,r) := \{M \in \text{mod } B(n,r) | \exists c : \sum_{i=0}^{n-2} \text{rk}(\alpha_M(i)) = c \ \forall \alpha \}.$

Given  $M = \bigoplus_{j=0}^{n-1} M_j \in \text{mod } B(n,r)$ ,  $\alpha \in k^r \setminus 0$ ,  $0 \le i \le n-2$ , there is a linear operator

$$\alpha_{M}(i): M_{i} \to M_{i+1}, \ m \mapsto (\alpha_{1}\gamma_{1}^{(i)} + \cdots + \alpha_{r}\gamma_{r}^{(i)}).m$$

#### Definition

Define full subcategories of mod B(n, r) via

- $\mathsf{EIP}(n,r) := \{ M \in \mathsf{mod}\, B(n,r) | \alpha_M(i) \text{ is surjective } \forall i,\alpha \}$ ,
- $\mathsf{EKP}(n,r) := \{ M \in \mathsf{mod}\, B(n,r) | \alpha_M(i) \text{ is injective } \forall i,\alpha \}$ ,
- $CR(n,r) := \{M \in \text{mod } B(n,r) | \exists c : \sum_{i=0}^{n-2} \text{rk}(\alpha_M(i)) = c \ \forall \alpha \}.$

#### Remark:

• For  $\mathcal{X} \in \{\mathsf{EIP}, \mathsf{EKP}, \mathsf{CR}\}$ 



Given  $M = \bigoplus_{j=0}^{n-1} M_j \in \text{mod } B(n,r)$ ,  $\alpha \in k^r \setminus 0$ ,  $0 \le i \le n-2$ , there is a linear operator

$$\alpha_{M}(i): M_{i} \to M_{i+1}, \ m \mapsto (\alpha_{1}\gamma_{1}^{(i)} + \cdots + \alpha_{r}\gamma_{r}^{(i)}).m$$

#### Definition

Define full subcategories of mod B(n, r) via

- $\mathsf{EIP}(n,r) := \{ M \in \mathsf{mod}\, B(n,r) | \alpha_M(i) \text{ is surjective } \forall i,\alpha \}$ ,
- $\mathsf{EKP}(n,r) := \{ M \in \mathsf{mod}\, B(n,r) | \alpha_M(i) \text{ is injective } \forall i,\alpha \}$ ,
- $CR(n,r) := \{M \in \text{mod } B(n,r) | \exists c : \sum_{i=0}^{n-2} \text{rk}(\alpha_M(i)) = c \ \forall \alpha \}.$

#### Remark:

• For  $\mathcal{X} \in \{\mathsf{EIP}, \mathsf{EKP}, \mathsf{CR}\}$ , we have  $\mathfrak{F}(\mathcal{X}(n,r)) \subseteq \mathcal{X}(kE_r)$ .



Given  $M = \bigoplus_{j=0}^{n-1} M_j \in \text{mod } B(n,r)$ ,  $\alpha \in k^r \setminus 0$ ,  $0 \le i \le n-2$ , there is a linear operator

$$\alpha_{M}(i): M_{i} \to M_{i+1}, \ m \mapsto (\alpha_{1}\gamma_{1}^{(i)} + \cdots + \alpha_{r}\gamma_{r}^{(i)}).m$$

#### Definition

Define full subcategories of mod B(n, r) via

- $\mathsf{EIP}(n,r) := \{ M \in \mathsf{mod}\, B(n,r) | \alpha_M(i) \text{ is surjective } \forall i,\alpha \}$ ,
- $\mathsf{EKP}(n,r) := \{ M \in \mathsf{mod}\, B(n,r) | \alpha_M(i) \text{ is injective } \forall i,\alpha \}$ ,
- $\mathsf{CR}(n,r) := \{ M \in \mathsf{mod}\ B(n,r) | \exists c : \sum_{i=0}^{n-2} \mathsf{rk}(\alpha_M(i)) = c \ \forall \alpha \}.$

#### Remark:

- For  $\mathcal{X} \in \{\mathsf{EIP}, \mathsf{EKP}, \mathsf{CR}\}$ , we have  $\mathfrak{F}(\mathcal{X}(n,r)) \subseteq \mathcal{X}(kE_r)$ .
- The restriction of  $\mathfrak{F}$  to  $\mathsf{EIP}(n,r)$



Given  $M = \bigoplus_{j=0}^{n-1} M_j \in \text{mod } B(n,r)$ ,  $\alpha \in k^r \setminus 0$ ,  $0 \le i \le n-2$ , there is a linear operator

$$\alpha_{M}(i): M_{i} \to M_{i+1}, \ m \mapsto (\alpha_{1}\gamma_{1}^{(i)} + \cdots + \alpha_{r}\gamma_{r}^{(i)}).m$$

#### Definition

Define full subcategories of mod B(n, r) via

- $\mathsf{EIP}(n,r) := \{ M \in \mathsf{mod}\, B(n,r) | \alpha_M(i) \text{ is surjective } \forall i,\alpha \}$ ,
- $\mathsf{EKP}(n,r) := \{ M \in \mathsf{mod}\, B(n,r) | \alpha_M(i) \text{ is injective } \forall i,\alpha \}$ ,
- $CR(n,r) := \{M \in \text{mod } B(n,r) | \exists c : \sum_{i=0}^{n-2} \text{rk}(\alpha_M(i)) = c \ \forall \alpha \}.$

#### Remark:

- For  $\mathcal{X} \in \{\mathsf{EIP}, \mathsf{EKP}, \mathsf{CR}\}$ , we have  $\mathfrak{F}(\mathcal{X}(n,r)) \subseteq \mathcal{X}(kE_r)$ .
- The restriction of  $\mathfrak{F}$  to  $\mathsf{EIP}(n,r)$  reflects isomorphisms.



• We define a family  $(X_{\alpha})_{\alpha \in k^r \setminus 0}$ 

ullet We define a family  $(X_{\alpha})_{\alpha \in k^r \setminus 0}$  of pairwise non-isomorphic

• We define a family  $(X_{\alpha})_{\alpha \in k^r \setminus 0}$  of pairwise non-isomorphic indecomposable B(n, r)-modules with

- We define a family  $(X_{\alpha})_{\alpha \in k^r \setminus 0}$  of pairwise non-isomorphic indecomposable B(n, r)-modules with
  - $\operatorname{pd}(X_{\alpha}) = 1$

- We define a family  $(X_{\alpha})_{\alpha \in k^r \setminus 0}$  of pairwise non-isomorphic indecomposable B(n, r)-modules with
  - $pd(X_{\alpha}) = 1$
  - $\operatorname{End}(X_{\alpha}) = k$

- We define a family  $(X_{\alpha})_{\alpha \in k^r \setminus 0}$  of pairwise non-isomorphic indecomposable B(n, r)-modules with
  - $pd(X_{\alpha}) = 1$
  - $\operatorname{End}(X_{\alpha}) = k$
  - $X_{\alpha}$  does not possess a submodule in EIP(n, r).

- We define a family  $(X_{\alpha})_{\alpha \in k^r \setminus 0}$  of pairwise non-isomorphic indecomposable B(n, r)-modules with
  - $pd(X_{\alpha}) = 1$
  - End $(X_{\alpha}) = k$
  - $X_{\alpha}$  does not possess a submodule in EIP(n, r).

### Lemma

- We define a family  $(X_{\alpha})_{\alpha \in k^r \setminus 0}$  of pairwise non-isomorphic indecomposable B(n, r)-modules with
  - $pd(X_{\alpha}) = 1$
  - End $(X_{\alpha}) = k$
  - $X_{\alpha}$  does not possess a submodule in EIP(n, r).

#### Lemma

- We define a family  $(X_{\alpha})_{\alpha \in k^r \setminus 0}$  of pairwise non-isomorphic indecomposable B(n, r)-modules with
  - $pd(X_{\alpha}) = 1$
  - $\operatorname{End}(X_{\alpha}) = k$
  - $X_{\alpha}$  does not possess a submodule in EIP(n, r).

### Lemma

#### We have

•  $EIP(n,r) = \{M \in \text{mod } B(n,r) |$ 

- We define a family  $(X_{\alpha})_{\alpha \in k^r \setminus 0}$  of pairwise non-isomorphic indecomposable B(n, r)-modules with
  - $pd(X_{\alpha}) = 1$
  - End $(X_{\alpha}) = k$
  - $X_{\alpha}$  does not possess a submodule in EIP(n, r).

### Lemma

#### We have

•  $\mathsf{EIP}(n,r) = \left\{ M \in \mathsf{mod}\, B(n,r) | \, \mathsf{Ext}^1(X_{\alpha},M) = 0 \,\, \forall \alpha \right\},$ 



- We define a family  $(X_{\alpha})_{\alpha \in k^r \setminus 0}$  of pairwise non-isomorphic indecomposable B(n, r)-modules with
  - $pd(X_{\alpha}) = 1$
  - $\operatorname{End}(X_{\alpha}) = k$
  - $X_{\alpha}$  does not possess a submodule in EIP(n, r).

### Lemma

- $\mathsf{EIP}(n,r) = \left\{ M \in \mathsf{mod}\, B(n,r) | \, \mathsf{Ext}^1(X_{\alpha},M) = 0 \,\, \forall \alpha \right\},$
- $\mathsf{EKP}(n,r) = \{M \in \mathsf{mod}\ B(n,r)|$

- We define a family  $(X_{\alpha})_{\alpha \in k^r \setminus 0}$  of pairwise non-isomorphic indecomposable B(n, r)-modules with
  - $pd(X_{\alpha}) = 1$
  - End $(X_{\alpha}) = k$
  - $X_{\alpha}$  does not possess a submodule in EIP(n, r).

### Lemma

- $\mathsf{EIP}(n,r) = \left\{ M \in \mathsf{mod}\, B(n,r) | \, \mathsf{Ext}^1(X_{\alpha},M) = 0 \,\, \forall \alpha \right\},$
- $\mathsf{EKP}(n,r) = \{ M \in \mathsf{mod} \ B(n,r) | \ \mathsf{Hom}(X_{\alpha},M) = 0 \ \forall \alpha \},$

- We define a family  $(X_{\alpha})_{\alpha \in k^r \setminus 0}$  of pairwise non-isomorphic indecomposable B(n, r)-modules with
  - $pd(X_{\alpha}) = 1$
  - End $(X_{\alpha}) = k$
  - $X_{\alpha}$  does not possess a submodule in EIP(n, r).

### Lemma

- $\mathsf{EIP}(n,r) = \left\{ M \in \mathsf{mod}\, B(n,r) | \, \mathsf{Ext}^1(X_{\alpha},M) = 0 \,\, \forall \alpha \right\},$
- $\mathsf{EKP}(n,r) = \{ M \in \mathsf{mod} \ B(n,r) | \ \mathsf{Hom}(X_{\alpha},M) = 0 \ \forall \alpha \},$
- $CR(n,r) = \{M \in \text{mod } B(n,r) |$

- We define a family  $(X_{\alpha})_{\alpha \in k^r \setminus 0}$  of pairwise non-isomorphic indecomposable B(n, r)-modules with
  - $pd(X_{\alpha}) = 1$
  - End $(X_{\alpha}) = k$
  - $X_{\alpha}$  does not possess a submodule in EIP(n, r).

#### Lemma

- $\mathsf{EIP}(n,r) = \left\{ M \in \mathsf{mod}\, B(n,r) | \, \mathsf{Ext}^1(X_{\alpha},M) = 0 \,\, \forall \alpha \right\},$
- $\mathsf{EKP}(n,r) = \{ M \in \mathsf{mod} \ B(n,r) | \ \mathsf{Hom}(X_{\alpha},M) = 0 \ \forall \alpha \},$
- $CR(n,r) = \{M \in \text{mod } B(n,r) | \exists c :$

- We define a family  $(X_{\alpha})_{\alpha \in k^r \setminus 0}$  of pairwise non-isomorphic indecomposable B(n, r)-modules with
  - $pd(X_{\alpha}) = 1$
  - End $(X_{\alpha}) = k$
  - $X_{\alpha}$  does not possess a submodule in EIP(n, r).

### Lemma

- $\mathsf{EIP}(n,r) = \left\{ M \in \mathsf{mod}\, B(n,r) | \, \mathsf{Ext}^1(X_{\alpha},M) = 0 \,\, \forall \alpha \right\},$
- $\mathsf{EKP}(n,r) = \{ M \in \mathsf{mod}\, B(n,r) | \mathsf{Hom}(X_{\alpha}, M) = 0 \,\, \forall \alpha \} \,,$
- $CR(n,r) = \{M \in \text{mod } B(n,r) | \exists c : \dim_k Ext^1(X_\alpha, M) = c \ \forall \alpha \}.$

• We can employ techniques from AR-theory

• We can employ techniques from AR-theory (AR-formula ...)

• We can employ techniques from AR-theory (AR-formula ...)

```
Theorem
```

• We can employ techniques from AR-theory (AR-formula ...)

### Theorem

The category EIP(n, r)

• We can employ techniques from AR-theory (AR-formula ...)

### Theorem

The category EIP(n, r) is the torsion class T

• We can employ techniques from AR-theory (AR-formula ...)

## Theorem

The category  ${\sf EIP}(n,r)$  is the torsion class  ${\cal T}$  of a torsion pair  $({\cal T},{\cal F})$  in  ${\sf mod}\ B(n,r)$ 

• We can employ techniques from AR-theory (AR-formula ...)

## **Theorem**

The category EIP(n,r) is the torsion class  $\mathcal T$  of a torsion pair  $(\mathcal T,\mathcal F)$  in  $\operatorname{mod} B(n,r)$  such that

• We can employ techniques from AR-theory (AR-formula ...)

## **Theorem**

The category EIP(n,r) is the torsion class  $\mathcal T$  of a torsion pair  $(\mathcal T,\mathcal F)$  in  $\operatorname{mod} B(n,r)$  such that

•  $\mathsf{EKP}(n,r) \subset \mathcal{F}$ 

• We can employ techniques from AR-theory (AR-formula ...)

### Theorem

The category EIP(n,r) is the torsion class  $\mathcal T$  of a torsion pair  $(\mathcal T,\mathcal F)$  in  $\operatorname{mod} B(n,r)$  such that

- $\mathsf{EKP}(n,r) \subset \mathcal{F}$
- ullet  ${\cal T}$  is closed under the Auslander-Reiten translate au

• We can employ techniques from AR-theory (AR-formula ...)

### Theorem

The category EIP(n,r) is the torsion class  $\mathcal T$  of a torsion pair  $(\mathcal T,\mathcal F)$  in  $\operatorname{mod} B(n,r)$  such that

- EKP $(n,r) \subset \mathcal{F}$
- ullet  ${\cal T}$  is closed under the Auslander-Reiten translate au
- T contains all preinjective modules.

• We can employ techniques from AR-theory (AR-formula ...)

### Theorem

The category EIP(n,r) is the torsion class  $\mathcal T$  of a torsion pair  $(\mathcal T,\mathcal F)$  in  $\operatorname{mod} B(n,r)$  such that

- $\mathsf{EKP}(n,r) \subset \mathcal{F}$
- ullet  ${\cal T}$  is closed under the Auslander-Reiten translate au
- T contains all preinjective modules.

In particular,

• We can employ techniques from AR-theory (AR-formula ...)

### Theorem

The category EIP(n,r) is the torsion class  $\mathcal T$  of a torsion pair  $(\mathcal T,\mathcal F)$  in  $\operatorname{mod} B(n,r)$  such that

- EKP $(n,r) \subset \mathcal{F}$
- ullet  ${\cal T}$  is closed under the Auslander-Reiten translate au
- T contains all preinjective modules.

In particular, there are no non-trivial maps  $EIP(n, r) \rightarrow EKP(n, r)$ .

# The r-Kronecker

### The *r*-Kronecker

• B(2, r) is the path algebra of the r-Kronecker

### The *r*-Kronecker

• B(2, r) is the path algebra of the r-Kronecker



• B(2, r) is the path algebra of the r-Kronecker



ullet The essential image of  ${\mathfrak F}:\operatorname{\mathsf{mod}} B(2,r) o \operatorname{\mathsf{mod}} k E_r$ 

• B(2, r) is the path algebra of the r-Kronecker



• The essential image of  $\mathfrak{F}: \operatorname{mod} B(2,r) \to \operatorname{mod} kE_r$  consists of the  $kE_r$ -modules of Loewy length at most 2.



- The essential image of  $\mathfrak{F}: \operatorname{mod} B(2,r) \to \operatorname{mod} kE_r$  consists of the  $kE_r$ -modules of Loewy length at most 2.
- The Auslander-Reiten quiver  $\Gamma_r$  of B(2,r) consists of



- The essential image of  $\mathfrak{F}: \operatorname{mod} B(2,r) \to \operatorname{mod} kE_r$  consists of the  $kE_r$ -modules of Loewy length at most 2.
- The Auslander-Reiten quiver  $\Gamma_r$  of B(2, r) consists of
  - ullet a preprojective component  ${\cal P}$



- The essential image of  $\mathfrak{F}: \operatorname{mod} B(2,r) \to \operatorname{mod} kE_r$  consists of the  $kE_r$ -modules of Loewy length at most 2.
- The Auslander-Reiten quiver  $\Gamma_r$  of B(2, r) consists of
  - ullet a preprojective component  $\mathcal{P}\subseteq\mathsf{EKP}(2,r)$ ,



- The essential image of  $\mathfrak{F}: \operatorname{mod} B(2,r) \to \operatorname{mod} kE_r$  consists of the  $kE_r$ -modules of Loewy length at most 2.
- The Auslander-Reiten quiver  $\Gamma_r$  of B(2, r) consists of
  - ullet a preprojective component  $\mathcal{P}\subseteq\mathsf{EKP}(2,r)$ ,
  - ullet a preinjective component  ${\mathcal I}$



- The essential image of  $\mathfrak{F}: \operatorname{mod} B(2,r) \to \operatorname{mod} kE_r$  consists of the  $kE_r$ -modules of Loewy length at most 2.
- The Auslander-Reiten quiver  $\Gamma_r$  of B(2, r) consists of
  - ullet a preprojective component  $\mathcal{P}\subseteq\mathsf{EKP}(2,r)$ ,
  - a preinjective component  $\mathcal{I} \subseteq \mathsf{EIP}(2,r)$ ,



- The essential image of  $\mathfrak{F}: \operatorname{mod} B(2,r) \to \operatorname{mod} kE_r$  consists of the  $kE_r$ -modules of Loewy length at most 2.
- The Auslander-Reiten quiver  $\Gamma_r$  of B(2, r) consists of
  - ullet a preprojective component  $\mathcal{P}\subseteq\mathsf{EKP}(2,r)$ ,
  - a preinjective component  $\mathcal{I} \subseteq \mathsf{EIP}(2,r)$ ,
  - r=2: homogenous tubes  $\mathcal{T}_{\lambda}$



- The essential image of  $\mathfrak{F}: \operatorname{mod} B(2,r) \to \operatorname{mod} kE_r$  consists of the  $kE_r$ -modules of Loewy length at most 2.
- The Auslander-Reiten quiver  $\Gamma_r$  of B(2, r) consists of
  - a preprojective component  $\mathcal{P} \subseteq \mathsf{EKP}(2,r)$ ,
  - a preinjective component  $\mathcal{I} \subseteq \mathsf{EIP}(2,r)$ ,
  - r=2: homogenous tubes  $\mathcal{T}_{\lambda}$  with add  $\mathcal{T}_{\lambda} \cap CR(2,2)=0$ .



- The essential image of  $\mathfrak{F}: \operatorname{mod} B(2,r) \to \operatorname{mod} kE_r$  consists of the  $kE_r$ -modules of Loewy length at most 2.
- The Auslander-Reiten quiver  $\Gamma_r$  of B(2, r) consists of
  - a preprojective component  $\mathcal{P} \subseteq \mathsf{EKP}(2,r)$ ,
  - a preinjective component  $\mathcal{I} \subseteq \mathsf{EIP}(2,r)$ ,
  - r=2: homogenous tubes  $\mathcal{T}_{\lambda}$  with add  $\mathcal{T}_{\lambda} \cap CR(2,2)=0$ .
  - r > 2:  $\mathbb{Z}A_{\infty}$ -components



- The essential image of  $\mathfrak{F}: \operatorname{mod} B(2,r) \to \operatorname{mod} kE_r$  consists of the  $kE_r$ -modules of Loewy length at most 2.
- The Auslander-Reiten quiver  $\Gamma_r$  of B(2, r) consists of
  - a preprojective component  $\mathcal{P} \subseteq \mathsf{EKP}(2,r)$ ,
  - a preinjective component  $\mathcal{I} \subseteq \mathsf{EIP}(2,r)$ ,
  - r=2: homogenous tubes  $\mathcal{T}_{\lambda}$  with add  $\mathcal{T}_{\lambda} \cap CR(2,2)=0$ .
  - r > 2:  $\mathbb{Z}A_{\infty}$ -components (wild case)



#### Theorem

Let  $\mathcal C$  be a regular component of  $\Gamma_r$ ,

#### Theorem

Let C be a regular component of  $\Gamma_r$ , r > 2.

#### Theorem

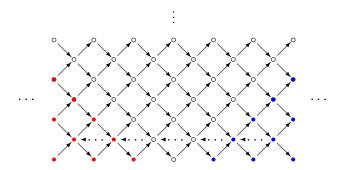
Let C be a regular component of  $\Gamma_r$ , r>2. Then  $\mathsf{EIP}(2,r)\cap \mathcal{C}$  and  $\mathsf{EKP}(2,r)\cap \mathcal{C}$ 

#### Theorem

Let  $\mathcal C$  be a regular component of  $\Gamma_r$ , r>2. Then  $\mathsf{EIP}(2,r)\cap \mathcal C$  and  $\mathsf{EKP}(2,r)\cap \mathcal C$  are non-empty disjoint cones.

#### Theorem

Let  $\mathcal{C}$  be a regular component of  $\Gamma_r$ , r>2. Then  $\mathsf{EIP}(2,r)\cap\mathcal{C}$  and  $\mathsf{EKP}(2,r)\cap\mathcal{C}$  are non-empty disjoint cones. The size of the gap  $\mathcal{W}(\mathcal{C})\in\mathbb{N}_0$  between these cones is an invariant of  $\mathcal{C}$ .





## Theorem

### Theorem

Let r > 2.

(i) For each  $n\in\mathbb{N},$  there exists a regular component  $\mathcal C$  of  $\Gamma_r$ 

### Theorem

Let r > 2.

(i) For each  $n \in \mathbb{N}$ , there exists a regular component  $\mathcal C$  of  $\Gamma_r$  such that  $\mathcal W(\mathcal C) > n$ .

### Theorem

- (i) For each  $n \in \mathbb{N}$ , there exists a regular component  $\mathcal C$  of  $\Gamma_r$  such that  $\mathcal W(\mathcal C) > n.$
- (ii) If  $\mathcal{W}(\mathcal{C}) = 0$ ,

#### Theorem

- (i) For each  $n \in \mathbb{N}$ , there exists a regular component  $\mathcal C$  of  $\Gamma_r$  such that  $\mathcal W(\mathcal C) > n$ .
- (ii) If  $\mathcal{W}(\mathcal{C})=0$ , then every object in  $\mathcal{C}$  has constant rank.

#### Theorem

- (i) For each  $n \in \mathbb{N}$ , there exists a regular component  $\mathcal C$  of  $\Gamma_r$  such that  $\mathcal W(\mathcal C) > n.$
- (ii) If W(C) = 0, then every object in C has constant rank.
- (iii) If W(C) = 1,

#### Theorem

- (i) For each  $n \in \mathbb{N}$ , there exists a regular component  $\mathcal C$  of  $\Gamma_r$  such that  $\mathcal W(\mathcal C) > n$ .
- (ii) If W(C) = 0, then every object in C has constant rank.
- (iii) If  $\mathcal{W}(\mathcal{C})=1$ , then either  $\mathcal{C}\subset\mathsf{CR}(2,r)$

#### Theorem

- (i) For each  $n \in \mathbb{N}$ , there exists a regular component  $\mathcal C$  of  $\Gamma_r$  such that  $\mathcal W(\mathcal C) > n$ .
- (ii) If W(C) = 0, then every object in C has constant rank.
- (iii) If  $\mathcal{W}(\mathcal{C}) = 1$ , then either  $\mathcal{C} \subset \mathsf{CR}(2,r)$  or apart from the cones  $\mathsf{EIP}(2,r) \cap \mathcal{C}$  and  $\mathsf{EKP}(2,r) \cap \mathcal{C}$ ,

#### Theorem

- (i) For each  $n \in \mathbb{N}$ , there exists a regular component  $\mathcal C$  of  $\Gamma_r$  such that  $\mathcal W(\mathcal C) > n$ .
- (ii) If W(C) = 0, then every object in C has constant rank.
- (iii) If W(C) = 1, then either  $C \subset CR(2, r)$  or apart from the cones  $EIP(2, r) \cap C$  and  $EKP(2, r) \cap C$ , there are no other objects of constant rank in C.

#### Theorem

Let r > 2.

- (i) For each  $n \in \mathbb{N}$ , there exists a regular component  $\mathcal C$  of  $\Gamma_r$  such that  $\mathcal W(\mathcal C) > n$ .
- (ii) If W(C) = 0, then every object in C has constant rank.
- (iii) If W(C) = 1, then either  $C \subset CR(2, r)$  or apart from the cones  $EIP(2, r) \cap C$  and  $EKP(2, r) \cap C$ , there are no other objects of constant rank in C.

#### Theorem

Let r > 2.

- (i) For each  $n \in \mathbb{N}$ , there exists a regular component  $\mathcal C$  of  $\Gamma_r$  such that  $\mathcal W(\mathcal C) > n$ .
- (ii) If W(C) = 0, then every object in C has constant rank.
- (iii) If W(C) = 1, then either  $C \subset CR(2, r)$  or apart from the cones  $EIP(2, r) \cap C$  and  $EKP(2, r) \cap C$ , there are no other objects of constant rank in C.

### **Examples:**

• The component  $C_n$  containing  $W_{n,2}^{(r)}$ 

#### Theorem

Let r > 2.

- (i) For each  $n \in \mathbb{N}$ , there exists a regular component  $\mathcal C$  of  $\Gamma_r$  such that  $\mathcal W(\mathcal C) > n$ .
- (ii) If W(C) = 0, then every object in C has constant rank.
- (iii) If W(C) = 1, then either  $C \subset CR(2, r)$  or apart from the cones  $EIP(2, r) \cap C$  and  $EKP(2, r) \cap C$ , there are no other objects of constant rank in C.

### **Examples:**

• The component  $C_n$  containing  $W_{n,2}^{(r)}, n \geq 3$ ,

#### Theorem

Let r > 2.

- (i) For each  $n \in \mathbb{N}$ , there exists a regular component  $\mathcal C$  of  $\Gamma_r$  such that  $\mathcal W(\mathcal C) > n$ .
- (ii) If W(C) = 0, then every object in C has constant rank.
- (iii) If W(C) = 1, then either  $C \subset CR(2, r)$  or apart from the cones  $EIP(2, r) \cap C$  and  $EKP(2, r) \cap C$ , there are no other objects of constant rank in C.

### **Examples:**

• The component  $C_n$  containing  $W_{n,2}^{(r)}, n \geq 3$ , satisfies  $W(C_n) = 0$ .



#### Theorem

Let r > 2.

- (i) For each  $n \in \mathbb{N}$ , there exists a regular component  $\mathcal C$  of  $\Gamma_r$  such that  $\mathcal W(\mathcal C) > n$ .
- (ii) If W(C) = 0, then every object in C has constant rank.
- (iii) If W(C) = 1, then either  $C \subset CR(2, r)$  or apart from the cones  $EIP(2, r) \cap C$  and  $EKP(2, r) \cap C$ , there are no other objects of constant rank in C.

- The component  $C_n$  containing  $W_{n,2}^{(r)}$ ,  $n \geq 3$ , satisfies  $W(C_n) = 0$ .
- ullet The component  $\mathcal{C}_{\lambda}$

#### Theorem

Let r > 2.

- (i) For each  $n \in \mathbb{N}$ , there exists a regular component  $\mathcal C$  of  $\Gamma_r$  such that  $\mathcal W(\mathcal C) > n$ .
- (ii) If W(C) = 0, then every object in C has constant rank.
- (iii) If W(C) = 1, then either  $C \subset CR(2, r)$  or apart from the cones  $EIP(2, r) \cap C$  and  $EKP(2, r) \cap C$ , there are no other objects of constant rank in C.

- The component  $C_n$  containing  $W_{n,2}^{(r)}$ ,  $n \geq 3$ , satisfies  $W(C_n) = 0$ .
- The component  $\mathcal{C}_{\lambda}, \lambda \in k^r \backslash 0$ ,

#### Theorem

Let r > 2.

- (i) For each  $n \in \mathbb{N}$ , there exists a regular component  $\mathcal{C}$  of  $\Gamma_r$  such that  $\mathcal{W}(\mathcal{C}) > n$ .
- (ii) If W(C) = 0, then every object in C has constant rank.
- (iii) If W(C) = 1, then either  $C \subset CR(2, r)$  or apart from the cones  $EIP(2, r) \cap C$  and  $EKP(2, r) \cap C$ , there are no other objects of constant rank in C.

- The component  $C_n$  containing  $W_{n,2}^{(r)}, n \geq 3$ , satisfies  $W(C_n) = 0$ .
- The component  $C_{\lambda}$ ,  $\lambda \in k^r \setminus 0$ , containing the representation

#### Theorem

Let r > 2.

- (i) For each  $n \in \mathbb{N}$ , there exists a regular component  $\mathcal{C}$  of  $\Gamma_r$  such that  $\mathcal{W}(\mathcal{C}) > n$ .
- (ii) If W(C) = 0, then every object in C has constant rank.
- (iii) If W(C) = 1, then either  $C \subset CR(2, r)$  or apart from the cones  $EIP(2, r) \cap C$  and  $EKP(2, r) \cap C$ , there are no other objects of constant rank in C.

- The component  $C_n$  containing  $W_{n,2}^{(r)}$ ,  $n \geq 3$ , satisfies  $W(C_n) = 0$ .
- The component  $C_{\lambda}$ ,  $\lambda \in k^r \setminus 0$ , containing the representation



#### Theorem

Let r > 2.

- (i) For each  $n \in \mathbb{N}$ , there exists a regular component  $\mathcal C$  of  $\Gamma_r$  such that  $\mathcal W(\mathcal C) > n$ .
- (ii) If W(C) = 0, then every object in C has constant rank.
- (iii) If W(C) = 1, then either  $C \subset CR(2, r)$  or apart from the cones  $EIP(2, r) \cap C$  and  $EKP(2, r) \cap C$ , there are no other objects of constant rank in C.

- The component  $C_n$  containing  $W_{n,2}^{(r)}$ ,  $n \ge 3$ , satisfies  $W(C_n) = 0$ .
- The component  $C_{\lambda}$ ,  $\lambda \in k^r \setminus 0$ , containing the representation

