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Problem: kG is wild in most cases, e.g. if G =Z, X Zp and p > 2.

~» Study modules that satisfy additional properties.

Approach: Study mod kG via algebraic families of restrictions to
k[T]/(TP) C kG ~> mod k[T]/(TP) is completely understood.

We confine our investigations to elementary abelian p-groups.
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k denotes an algebraically closed field of char(k) = p > 0.

E, = (Zp)" is an elementary abelian p-group of rank r > 2.

There is an isomorphism kE, = k[X1,..., X;]/(X],..., XP).
KE, is generated by elements x; := X; + (le, . ,X,p).

l:=(Xy,...,X) C k[X1,...,X] is the ideal generated by
polynomials of degree 1.
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Full subcategories

o Define P :={x € kE/|Fa € k"\O: x = agx1 + -+ a,x }.
@ x € P together with M € mod kE, yields a linear operator

xy:M— M m— x.m

Let M € mod(kE,). We say that
© M has constant rank if rk(xp) = rk(ypm) for all x, y € B.

@ M satisfies the equal images property if im(xy) = im(yp) for all
X,y €°B.

@ M satisfies the equal kernels property if ker(xps) = ker(ypn) for all
X,y €B.

o CR(kE,), EIP(kE,) and EKP(KE,) are the corresponding full
subcategories of mod(kE,).
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Generalized W-modules

@ For n € N,d < min{n, p}, define
MU = 1710 = (X, X (X, X

o For x € B, we have ker(xM,(:L) = |1/,

() _ (I\/I,Er))* is a module with the equal images property.

A r
n, d

° Wﬁ} = W, 4 was defined by Carlson-Friedlander-Suslin
~+ every object in EIP(kE>) is a quotient of some W, 4

° ° ° ° Wi 3
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@ The indecomposable objects of Loewy length 2 are of the form W, ».
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Generalized Beilinson algebras

@ For n < p let B(n,r) be the generalized Beilinson algebra, the path
algebra of the quiver

(0) (1) (n—2)
i 71 R
e VR ~ X
o : 1 : 2 - n=2 . n-1
(0) (1) (n—2)
Yr Yr Yr
with relations ’ygiﬂ)’ygi) - vf*”fé"

@ There is a faithful exact functor § : mod B(n, r) — mod(kE,) with

n—1 n—1
S M) = P M and xj.m = 7}’).m
i=0 i=0

for all m € M;.
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e EKP(n,r) = {M € mod B(n, r)| Hom(X,, M) = 0 Va},
o CR(n,r) = {M &€ mod B(n, r)|3c : dimy Ext'(X,, M) = ¢ Va}.
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Torsion classes

@ We can employ techniques from AR-theory (AR-formula ...)

Theorem

The category EIP(n, r) is the torsion class T of a torsion pair (T, F) in
mod B(n, r) such that

e EKP(n,r) C F

@ T is closed under the Auslander-Reiten translate T

@ T contains all preinjective modules.

In particular, there are no non-trivial maps EIP(n, r) — EKP(n, r).
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The r-Kronecker

@ B(2,r) is the path algebra of the r-Kronecker

@ The essential image of § : mod B(2, r) — mod kE, consists of the
kE,-modules of Loewy length at most 2.

@ The Auslander-Reiten quiver I', of B(2,r) consists of
e a preprojective component P C EKP(2,r),
e a preinjective component Z C EIP(2,r),

e r =2: homogenous tubes T, with add 7, N CR(2,2) = 0.
o r > 2: ZAs-components (wild case)
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Regular equal images modules

Let C be a regular component of I',, r > 2. Then EIP(2,r) N C and
EKP(2,r) N C are non-empty disjoint cones. The size of the gap
W(C) € Ny between these cones is an invariant of C.
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Let r > 2.

(i) For each n € N, there exists a regular component C of I', such that
W(C) > n.

(i) IfW(C) = 0, then every object in C has constant rank.

(iii) IfW(C) =1, then either C C CR(2, r) or apart from the cones

EIP(2,r) N C and EKP(2,r) NC, there are no other objects of
constant rank in C.

Examples:

@ The component C, containing W,Eg, n > 3, satisfies W(C,) = 0.
@ The component Cy, A € k"\0, containing the representation

A
N
k . k  satisfies W(Cy) = 1.
N
by



