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Some groups in this direction

Finite dimensional tilting theory is well-known.

Let us look at the infinite dimensional titling theory.
There are several groups in this area:

(1) Italy [Angeleri-Huegel, Bazzoni, Colpi, Mantese, Pavarin, Tonolo, ...]

(2) Spain [Herbera, Nicolas, Sanchez, Saorin, ...]

(3) Czech [Stovicek, Trifaj, ...]

(4) Germany [Koenig and his group, ...]

(5) · · ·
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Main aim

Some developments on infinitely generated tilting
modules in terms of derived module categories.
But restrict to [3] and [4]

[1 ] Proc. London Math. Soc. 104(2012) 959-996.

[2 ] arXiv:1107.0444 [Stratifications of derived categories from tilting

modules over tame hereditary algebras.]

[3 ] arXiv:1203.5168v2 [Homological ring epimorphisms and

recollements from exact pairs, I.]
[4 ] arXiv:1206.0522 [ Ringel modules and homological subcategories]

These are joint works with Hongxing Chen.
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Notations

A : ring with 1
A-Mod: cat. of all left R-modules
add(M): summands of f. dir. sums of M
Add(M): summands of dir. sums of M
D(A): derived cat. of A (or A-Mod)
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Definition of tilting modules

Definition
n-tilting module AT :

(1) pdA(T)≤ n: P• −→ T → 0,

(2) ExtiA(T,T(I)) = 0 for all i > 0 and all set I,

(3) exact seq.: 0→ AA→ T0 → ··· → Tn → 0, Tj ∈ Add(T).

good if Ti ∈ add(T).
classical if good and f.g.

Define B := EndA(T)
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Classical tilting and der. equivalences

Happel Theorem

Theorem

AT : classical n-tilting, =⇒ D(A)'D(B).

Note:

Derived invaraints

No new triangulated categories
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Classical tilting and der. equivalences

Natural question:

Is Happel Theorem still true?

AT : inf. g. tilting =⇒ D(A)'D(B)?
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Bazzoni’s Answer

Theorem (Bazzoni, Bazzoni-Mantese-Tonolo)

AT : n-tilting =⇒ D(A): subcategory or quotient of
D(B).

In fact: D(B)/Ker(T⊗L
B−) ' D(A)

Note:

New triangulated categories

No derived invariants
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Happel Theorem for general tilting modules

What should be
the corresp. Happel Theorem
for inf. g. tilt. mod.s?
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Definition of homological ring epimorphisms

Definition

A ring epimorphism λ : R→ S is called
homological if TorR

j (S,S) = 0 for j > 0.

Or equivalently, the restriction functor
D(λ∗) : D(S)→D(R) is fully faithful.

Reference: Geigle-Lenzing: J. Algebra 144(1991)273-343.
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For n=1 case

Theorem

AT : good tilt., proj.dim ≤ 1, =⇒∃ homolog. ring
epi. B→ C and recollement:

D(C) // D(B)
j! //

ee

yy

D(A)
ee

yy

T : classical, ⇒ C = 0, Happel Theorem.

j! := T⊗L
B −,Ker(j!)'D(C).

C: universal localization of B.
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Recollements instead of derived equivalences

n = 1 indicates:

For inf. g. tilt. mod.s, Happel Theorem should be a
recollement of der. module categories.

Immediate question:

Is the above theorem true for n-tilting mod.s ?
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General case

This is a difficult question!

It is related to questions:
(1) When is a universal localization homological?
(2) When is a full triangulated subcategory T of
D(B) realisable as a der. module cat.?

Question (1) is a very general, old question. Question (2) may be new,

but also very general. We shall consider a special case which is related

to inf. g. tilting modules.
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Definition of exact pairs of ring homomorphisms

λ : R−→ S, µ : R−→ T are ring hom.s.

The pair (λ,µ) is called exact if

0→ R→ S⊕T

(
λ⊗1
−1⊗µ

)
−→ S⊗R T → 0

is exact as R-R-bimodules.
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• The coproduct StR T :

R

µ
��

λ // S

ρ

��
T

ϕ // StR T.

• Define a universal localization (due to Schofield):

θ : B :=
(

S S⊗R T
0 T

)
−→

(
StR T StR T
StR T StR T

)
=: C,

(
s1 s2⊗ t2
0 t1

)
7→

(
(s1)ρ (s2)ρ(t2)ϕ

0 (t1)ϕ

)
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This θ is related to inf. g. tilting modules. So our
question is:

When is θ homological?

Remark. If θ: homolog., then ∃ a recollement

D(StR T) // D(B) //
ff

xx

D(R)
ee

yy
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Condition for homological univ. localizations

Theorem

Given an exact pair (λ,µ) with λ homolog. ⇒
TFAE:

(1) θ is homological ring epi.

(2) TorR
j (T,S) = 0 for all j > 0.
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Homological subcategories

Definition

A full triang. subcat. T of D(B) is called
homological if ∃ a homological ring epi λ : B→ C
such that the restriction is a triangle equivalence
from D(C) to T .

When is Ker(T⊗L
B−) homological in D(B)?
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Condition for homological subcategories

Theorem

T : good n-tilting A-module, B := EndA(T).

TFAE:

(1) Ker(T⊗L
B−): homological,

(2) Hi(HomA(P•,A)⊗A T) = 0 for i≥ 2.

P•: proj. resol. of T .
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consequences

Corollary

A: comm., AT : good n-tilt. mod. s.t.
HomA(Ti+1,Ti) = 0 for 1≤ i≤ n−1 =⇒
Ker(T⊗L

B−) is homolog. if and only if
proj.dim(AT)≤ 1.
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Counterexample

For n≥ 2, there is an n-tilting A-module T such
that Ker(T⊗L

B−) is not homological. Thus there
is no homol. ring epi B→ C such that the
following recollement exists:

D(C) // D(B)
j! //

cc

{{

D(A)
cc

{{

j! := T⊗L
B−
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open question

Open questions:

(1) What should be the replacement of Happel
Theorem for inf. g. tilt. modules?
(2) Find more conditions for T , such that
Ker(T⊗L

B−) is homological.


	Main purpose of this talk
	Happel-CPS-Rickard-Keller Theorem for classical tilting modules
	Modern tilting theory
	Exact pairs
	Homological subcategories
	Counterexamples and open questions

