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Definition of derived Hall algebras

k: finite field, q = |k|
C: a k-additive finitary, Krull-Schmidt triangulated category
with (left) homologically finite condition, i.e., ∀X,Y ∈ C,
{X,Y } := |

∏
i>0 |Hom(X[i], Y )|(−1)i | <∞.

Example: derived categories; counter-example: the cluster
category.
Set H(C) =

⊕
[X];X∈C Qu[X] with the multiplication defined by

u[X] ∗ u[Y ] =
∑
[L]

FLXY u[L],

where

FLXY =
|Hom(L, Y )X[1]|
|AutY |

· {L, Y }
{Y, Y }

=
|Hom(X,L)Y |
|AutX|

· {X,L}
{X,X}

.
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The associativity of derived Hall algebras

Theorem (Toën, Xiao-Xu)

H(C) is an associative algebra with the unit u[0].

To prove u[Z] ∗ (u[X] ∗ u[Y ]) = (u[Z] ∗ u[X]) ∗ u[Y ] is equivalent to
prove ∑

[L]

FLXY F
M
ZL =

∑
[L′]

FL
′

ZXF
M
L′Y .
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LHS =
1

|AutX| · {X,X}
∑
[L]

∑
[L′]

|Hom(M ⊕X,L)
Y,Z[1]
L′[1] |

|AutL|
·{M ⊕X,L}
{L,L}

RHS =
1

|AutX| · {X,X}
∑
[L′]

∑
[L]

|Hom(L′,M ⊕X)
Y,Z[1]
L |

|AutL′|
·{L

′,M ⊕X}
{L′, L′}

The relation between objects is encoded in the following diagram:
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Z

l′

��

Z

l

��
L′

f ′ //

m′

��

M
g′ //

m

��

Y
h′ // L′[1]

m′[1]
��

X
f //

n′

��

L
g //

n

��

Y
h // X[1]

Z[1] Z[1]

(1)

⇐⇒ a distinguished triangle

L′
( f ′ −m′ )

// M ⊕X

 m
f


// L

θ
// L′[1] (2)
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The triangle induces two sets

Hom(M ⊕X,L)
Y,Z[1]
L′[1] := {(m, f) ∈ Hom(M ⊕X,L) |

Cone(f) ' Y,Cone(m) ' Z[1] and Cone(m, f) ' L′[1]}

and

Hom(L′,M ⊕X)
Y,Z[1]
L := {(f ′,−m′) ∈ Hom(L′,M ⊕X) |

Cone(f ′) ' Y,Cone(m′) ' Z[1] and Cone(f ′,−m′) ' L}

The symmetry-I: The orbit spaces of Hom(M ⊕X,L)
Y,Z[1]
L′[1] and

Hom(L′,M ⊕X)
Y,Z[1]
L under the action of AutL and AutL′

coincide.
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More explicitly, the symmetry is the identity:

|Hom(M ⊕X,L)
Y,Z[1]
L′[1] |

|AutL|
{M ⊕X,L}
{L′, L}{L,L}

=
|Hom(L′,M ⊕X)

Y,Z[1]
L |

|AutL′|
{L′,M ⊕X}
{L′, L}{L′, L′}

.

=⇒ LHS=RHS.
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The derived Riedtmann-Peng formula

Assume C is (left) homologically finite over a finite field k.

Theorem

For any X,Y and L in C, we have

|Hom(Y,X[1])L[1]|
|AutX|

· {Y,X[1]}
{X,X}

=
|Hom(L, Y )X[1]|
|AutL|

· {L, Y }
{L,L}

and

|Hom(Y [−1], X)L|
|AutY |

· {Y [−1], X}
{Y, Y }

=
|Hom(X,L)Y |
|AutL|

· {X,L}
{L,L}

.
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Example

Assume that C = Db(A) for a small Hom-finite abelian category A
and X,Y and L ∈ A. Then one can obtain

Hom(Y,X[1])L[1] = Ext1(Y,X)L, {Y,X[1]} = |HomA(Y,X)|−1,

gLXY =
|Hom(L, Y )X[1]|
|AutY |

= {L′ ⊆ L ∈ L′ ∼= X,L/L′ ∼= Y }

and
{X,X} = {L,L} = {L, Y } = 0.

Under the assumption, the theorem is reduced to the
Riedtmann-Peng formula

|Ext1(Y,X)L|
|HomA(Y,X)|

= gLXY · |AutX| · |AutY | · |AutL|−1.
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Two versions of derived Hall algebras

Version-I (Toën, Xiao-Xu)
Version-II (Kontsevich-Soibelman)
Set HM(C) =

⊕
[X];X∈C Qv[X] with the multiplication defined by

v[X] ∗ v[Y ] = {Y,X[1]} ·
∑
[L]

|Hom(Y,X[1])L[1]|v[L]

= {Y [−1], X} ·
∑
[L]

|Hom(Y [−1], X)L|v[L]
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Fact: The derived Riedtmann-Peng formula gives the proof

Theorem

The map Φ : HM(C)→ H(C) by Φ(v[X]) = |AutX| · {X,X} · u[X]

for any X ∈ C is an algebraic isomorphism between HM(C) and
H(C).
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Z

l′

��

Z

l

��
L′

f ′ //

m′

��

M
g′ //

m

��

Y
h′ // L′[1]

m′[1]
��

X
f //

n′

��

L
g //

n

��

Y
h // X[1]

Z[1] Z[1]

(3)
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=⇒

L′
( f ′ −m′ )

// M ⊕X

 m
f


// L

θ
// L′[1]

The symmetry-I compares

L′
( f ′ −m′ )

// M ⊕X and M ⊕X

 m
f


// L

The diagram induces a new symmetry comparing

L′
f ′ // M

m // L and L′
m′

// X
f // L
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The symmetry-II:

Fix α ∈ Ext1(Y,X)L, then ∃ a map
f∗ : Ext1(L,Z)M → Ext1(X,Z)L′ with the cardinality of fibre

|Hom(Y,Z[1])| · {X ⊕ Y, Z[1]} · {L,Z[1]}−1;

Fix α′ ∈ Hom(X,Z[1])L′[1], then ∃ a map

(m′)∗ : Ext1(Y,L′)M → Ext1(Y,X)L with the cardinality of
fibre

|Hom(Y,Z[1])| · {Y,X[1]⊕ Z[1]} · {Y,L′[1]}−1;

|f−1∗ (0)| · {Y,X[1]} · {L,Z[1]} =
|(m′)−1∗ (0)| · {X,Z[1]} · {Y, L′[1]}.

The symmetry-I
derived R.-P. formula−−−−−−−−−−−−−−−−→The symmetry-II=⇒ The

associativity of Kontsevich-Soibelman’s Hall algebras over finite
field.
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Ind-constructible set

Throughout, fix the complex field C. A ind-constructible set is a
countable union of non-intersecting constructible sets.
Canonical example:

A be a finite dimensional algebra over C;

Indecomposable projective: Pi, i = 1, · · · , l;
The projective dimension vector of ⊕li=1P

ai
i is (ai)

l
i=1.

Consider the affine variety PD dominated by the sequence of
projective dimension vector D = (dk)k∈Z with finitely-many

nonzero term and dk = (a
(k)
i )li=1. Then

⊔
D PD is a

ind-constructible set.
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Motivic functions

X a constructible stack. Mot(X ) the abelian group generated by
isomorphism classes [π : S → X ] of morphisms to X satisfying:

[(S1
⊔
S2)→ X ] = [S1 → X ] + [S2 → X ]

[π1 : S1 → X ] = [π2 : S2 → X ] if ∃ Zariski fibrations
fi : Si → S, i = 1, 2 and h : S → X with πi = h ◦ fi.

Mot(X ) is naturally the Mot(Spec(C))-module. Denote by L the
identity element in Mot(Spec(C)) and Mot(X )[L−1] the
localization of Mot(X ).
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Motivic Hall algebras following Kontsevich-Soibelman

C: a (left) homological-finite triangulated category.
Assumption: Objects in C form an ind-constructible set
Obj(C) =

⊔
i∈I Xi for countable constructible stacks Xi with the

action of an affine algebraic group Gi. The quotient stack of Xi by
Gi is [Xi/Gi]. Define

MH(C) =
⊕
i∈I

Mot([Xi/Gi])(L−1)

with the multiplication

[π1 : S1 → Obj(C)] · [π2 : S2 → Obj(C)] = [π :Wn → Obj(C)]L−n

where

Wn = {(s1, s2, α) | si ∈ Si, α ∈ HomC(π2(s2), π1(s1)[1]),

dimC{π2(s2), π1(s1)[1]} = n.}
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Motivic Hall algebras following Kontsevich-Soibelman

The map π sends (s1, s2, α) to Cone(α)[−1].

Theorem

With the above multiplication,MH(C) becomes an associative
algebra.

Inspired by [Kontsevich-Soibelman] and [Xiao-Xu], the proof is a
motivic version of The symmetry-II.
By definition, the theorem is easily reduced to the case that Si is
just a point. Set v[E] = [π : pt→ Obj(C)] with π(pt) = E.
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Motivic Hall algebras-Proof

Set {X,Y } = L
∑

i>0(−1)idimCHom(X[i],Y ) and
dimC{X,Y } =

∑
i>0(−1)idimCHom(X[i], Y ).

v[X] ∗ v[Y ] = {Y,X[1]}[Hom(Y,X[1])→ Obj(C)]

=def {Y,X[1]} ·
∫
α∈Hom(Y,X[1])[L[1]]

v[L].

Then, v[Z] ∗ (v[X] ∗ v[Y ]) is∫
β∈Hom(L,Z[1])[M [1]]

∫
α∈Hom(Y,X[1])[L[1]]

{Y,X[1]}{L,Z[1]}v[M ].

Jie Xiao (joint with F. Xu) Tsinghua University Hall algebras of triangulated categories



Derived Hall algebras
The derived Riedtmann-Peng formula

Motivic Hall algebras

Motivic Hall algebras-Proof

In the same way, (v[Z] ∗ v[X]) ∗ v[Y ] is∫
β′∈Hom(Y,L′[1])[M [1]]

∫
α′∈Hom(X,Z[1])[L′[1]]

{X,Z[1]}{Y, L′[1]}v[M ].
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Motivic Hall algebras-Proof

The relation between v[Z] ∗ (v[X] ∗ v[Y ]) and (v[Z] ∗ v[X]) ∗ v[Y ] is
illustrated by

Z

l′

��

Z

l

��
L′

f ′ //

m′

��

M
g′ //

m

��

Y
h′ // L′[1]

m′[1]
��

X
f //

n′

��

L
g //

n

��

Y
h // X[1]

Z[1] Z[1]

Jie Xiao (joint with F. Xu) Tsinghua University Hall algebras of triangulated categories



Derived Hall algebras
The derived Riedtmann-Peng formula

Motivic Hall algebras

Motivic Hall algebras-Proof

v[Z] ∗ (v[X] ∗ v[Y ]) = (v[Z] ∗ v[X]) ∗ v[Y ]⇐⇒ The motivic version of
The symmetry-II as follows:

Fix α ∈ Hom(Y,X[1])L[1], by the above diagram, there is a
constructible bundle Hom(L,Z[1])M [1] → Hom(X,Z[1])L′[1]

with fibre dimension

dimHom(Y,Z[1]) + dim{X ⊕ Y,Z[1]} − dim{L,Z[1]}

This follows the action of the functor Hom(−, Z[1]) on the
triangle

α : X → L→ Y → X[1]

Combine the dimensions of coefficients, the sum of
dimensions is

dim{Y,X[1]}+ dim{X,Z[1]}+ dim{Y,Z[1]}.
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Motivic Hall algebras-Proof

Fix α′ ∈ Hom(X,Z[1])L′[1], by the above diagram, there is a
constructible bundle Hom(Y,L′[1])M [1] → Hom(Y,X[1])L[1]
with fibre dimension

dimHom(Y,Z[1]) + dim{Y,X[1]⊕ Z[1]} − dim{Y,L′[1]}

This follows the action of the functor Hom(Y,−) on the
triangle

α : Z → L′ → X → Z[1]

Combine the dimensions of coefficients, the sum of
dimensions is also

dim{Y,X[1]}+ dim{X,Z[1]}+ dim{Y,Z[1]}.
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