MORITA ALGEBRAS AND THE DOUBLE CENTRALIZER PROPERTY OF A BIMODULE

Kunio Yamagata

Tokyo University of Agriculture and Technology

This is a part of joint work with Otto Kerner ([2], [3]).

All algebras and modules are finite dimensional over a field K, A^{op} is the opposite algebra of an algebra A, $D = \operatorname{Hom}_{K}(-, K)$.

Let A be an algebra and M a right A-module. For an automorphism $\sigma \in \text{Aut}(A)$, M_{σ} denotes the right A-module such that $M_{\sigma} = M$ as K-spaces and $m \cdot a = m\sigma(a)$ for all $m \in M$, $a \in A$. Similarly, σN is defined for a left A-module N.

• An algebra A is a *Frobenius algebra* if and only if $D(A) \cong A$ as left A-modules, or equivalently, as right A-modules.

• An algebra A is symmetric if and only if $D(A) \cong A$ as A-bimodules.

• An automorphism σ of A is called a *Nakayama automorphism* if and only if $D(A)_{\sigma} \cong A$ as A-bimodules, which is uniquely determined up to inner automorphism, and denoted by ν_A . Thus,

- a Frobenius algebra A is symmetric if and only if ν_A is an inner automorphism. • For a right A-module M and $a \in A$, the right multiplication map $r_a : M \to M$ is defined by $r_a(m) = ma$ for all $m \in M$, and left multiplication map $l_a : N \to N$ is defined for a left A-module N by $l_a(n) = an$ for all $n \in N$.

The aim of this talk is to give a new characterization of the Morita algebra by using the bimodule introduced by M. Fang and S. König.

1. Morita theorem

In 1958, K. Morita [4] studied generalizations of quasi-Frobenius rings, and characterized the endomorphism rings of finitely generated faithful modules over a quasi-Frobenius ring (= self-injective, left and right Artinian ring). In case A is an algebra, the characterization is stated as follows.

Theorem 1.1 (K. Morita). For an algebra A, the following conditions are equivalent:

(1) $A \cong \operatorname{End}_B(M)$ for a faithful right module M over a self-injective algebra B.

(2) $A \cong \operatorname{End}_B(N)^{op}$ for a faithful left module N over a self-injective algebra B.

(3) There is an idempotent e of A such that $_AAe$ and eA_A are faithful injective A-modules and the mapping $l: A \to \operatorname{End}_{eAe}(Ae): a \mapsto l_a$, is bijective.

(4) There is an idempotent e of A such that ${}_{A}Ae$ and eA_{A} are faithful injective A-modules and the mapping $r: A \to \operatorname{End}_{eAe}(eA)^{op}: a \mapsto r_{a}$, is bijective.

1

Definition. An algebra A is called a *Morita algebra* (over a self-injective algebra B) if it satisfies the equivalent conditions in Theorem 1.1

Recently M. Fang and S. König [1] studied Morita algebras and proved

Theorem 1.2 (M. Fang and S. König). An algebra A is a Morita algebra over a symmetric algebra if and only if $\operatorname{Hom}_A({}_AD(A), {}_AA) \cong A$ as A-bimodules.

2. Main theorems

Lemma 2.3. For an algebra A, $\operatorname{Hom}_A({}_AD(A), {}_AA)$ and $\operatorname{Hom}_A(D(A), {}_AA)$ are isomorphic as A-bimodules.

In view of Lemma 2.3 we identify $\operatorname{Hom}_A({}_AD(A), {}_AA)$ and $\operatorname{Hom}_A(D(A), {}_AA)$, and simply denote them by V. The main theorem is stated as follows.

Theorem 2.4. For an algebra A, the following conditions are equivalent:

- (1) A is a Morita algebra over a self-injective algebra.
- (2) The canonical mapping $l: A \to \text{End}(V_A), a \mapsto l_a$, is bijective.
- (3) The canonical mapping $r: A \to \operatorname{End}(_AV)^{op}, a \mapsto r_a$, is bijective.
- (4) The A-bimodule V has the double centralizer property.

The following lemma suggests that faithfulness of V ensures the existence of an idempotent e in the Morita theorem. Notice that the A-bimodule V satisfying (2) or (3) of Theorem 2.4 is faithful as a left or right A-module, respectively.

Lemma 2.5. For an algebra A, the following conditions are equivalent:

- (1) $_{A}V$ is faithful.
- (2) V_A is faithful.
- (3) There is an idempotent e of A such that $_AAe$ and eA_A are injective and faithful.
- (4) There is an idempotent e of A such that $_AAe$ is faithful and $D(Ae)_A \cong eA_A$.

As an application of Theorem 2.4 we have the following theorem generalizing the Fan-König's Theorem 1.2.

Theorem 2.6. For an algebra A, the following conditions are equivalent:

(1) $V_A \cong A_A$.

(2) $_{A}V \cong _{A}A.$

(3) $A \cong \text{End}(M_B)$, where M is a faithful right module over a Frobenius algebra B such that $M \cong M_{\nu_B}$ as right B-modules.

(4) $A \cong \operatorname{End}(_BN)^{op}$, where N is a faithful left module over a Frobenius algebra B such that $N \cong_{\nu_B} N$ as left B-modules.

Obviously the algebra A satisfying the equivalent conditions of Theorem 2.6 is a Morita algebra over B.

References

- M. FANG and S. KÖNIG, Endomorphism algebras of generators over symmetric algebras, J. Algebra **332** (2011), 428–433.
- [2] O. KERNER and K. YAMAGATA, Morita algebras, preprint, 2012.
- [3] O. KERNER and K. YAMAGATA, Morita theory, revisited, to appear in Proceedings of Maurice Auslander Distinguished Lectures and International Conference 2012, Amer. Math. Soc..
- [4] K. MORITA, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku Sec. A 6 (1958), 83–142.