

International Conference on Representations of Algebras (ICRA 2012)

Torsionless modules over cluster-tilted algebras of type A_n

Lingling Yao

August 13- August 17, 2012 Bielefeld, Germany

Department of Mathematics, Southeast University, Nanjing 210096, China linglingyao@gmail.com

Ноте	Home Page	
Title	Page	
••	••	
	►	
Page	1 of 24	
Go	Go Back	
Full S	Full Screen	
Cl	Close	
Q	Quit	

Contents

- 1. Cluster categories and cluster-tilted algebras
- 2. Cluster-tilted algebras of type A_n
- \diamond 3. The torsionless modules
- 4. The Auslander-Reiten structure

Home Page	
Title Page	
•• ••	
•	•
Page 2 of 24	
Go Back	
Full Screen	
Close	
Quit	

1 cluster categories and cluster-tilted algebras

- k— a field
- H— a finite dimensional hereditary k-algebra
- $\mathcal{D} = \mathcal{D}^b(H)$ bounded derived category of finitely generated *H*-modules
- [1]— shift functor
- τ Auslander-Reiten translation in $\mathcal D$

Home Page	
Title Page	
•• ••	
Page 3 of 24	
Go Back	
Full Screen	
Close	
Quit	

Buan, Marsh, Reineke, Reiten, Todorov [4] defined a new category:

 $\mathcal{C} = \mathcal{D}^b(H)/F$ with the functor $F = \tau^{-1}[1]$

Objects: the F-orbits of objects in \mathcal{D}

Morphisms: $\operatorname{Hom}_{\mathcal{C}}(\widetilde{X}, \widetilde{Y}) = \coprod_{i \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{D}}(F^{i}X, Y)$. Here X, Y are the objects in \mathcal{D} , and $\widetilde{X}, \widetilde{Y}$ are the corresponding objects in \mathcal{C} .

This category C is called a **cluster category**.

Recall: For a hereditary algebra H, an H-module T is said to be a **tilting module** if

(a) $\operatorname{Ext}_{H}^{1}(T,T) = 0$, that is T is **exceptional**, and there exists an exact sequence $0 \to H \to T_{0} \to T_{1} \to 0$ with $T_{0}, T_{1} \in \operatorname{add} T$ (see [7]).

some useful equivalent characterizations [1]:

(b) T is exceptional and has n non-isomorphic indecomposable direct summands, where n is the number of simple H-modules.
(c) T is exceptional and has a maximal number of non-isomorphic indecomposable direct summands.

A tilting module is said to be **basic** if all of its direct summands are non-isomorphic.

For the case of $C = D^b(H)/F$, we say that T in C is a **cluster tilting object** if $\text{Ext}^1_C(T,T) = 0$ and T has a maximal number of non-isomorphic direct summands.

Lemma 1.1 [4] Let T be an H-module. Then T is exceptional if and only if T is an exceptional object in C.

Theorem 1.2 [4] (a) Let T be a basic tilting object in $\mathcal{C} = \mathcal{D}^b(H)/F$, where H is a hereditary algebra with n simple modules.

(i) T is induced by a basic tilting module over a hereditary algebra H', derived equivalent to H.

(ii) T has n indecomposable direct summands.

(b) Any basic tilting module over a hereditary algebra H induces a basic tilting object for $C = D^b(H)/F$.

Let C be a cluster category and T is a cluster tilting object in C, we call $\Gamma = \text{End}_{\mathcal{C}}(T)^{op}$ the **cluster-tilted algebra**.

Here we consider H the path algebra of a Dynkin quiver Q. If the underlying graph of Q is the Dynkin graph Δ , then we say that Γ is **cluster-tilted algebra of type** Δ .

Theorem 1.3 [2] Let T be a tilting object in C, and

 $G = \operatorname{Hom}_{\mathcal{C}}(T, -) : \mathcal{C} \longrightarrow \operatorname{mod}\Gamma.$

Then there is an induced functor $\overline{G} : C/\operatorname{add}(\tau T) \longrightarrow \operatorname{mod}\Gamma$, which is an equivalence.

	Home Page		
	Title Page		
	•• ••		
	◀		
	Page	7 of 24	
	Go Back		
	Full Screen		
	Close		
	Quit		

2 Cluster-tilted algebras of type A_n

Describe all the cluster-tilted algebras of type A_n in the following procedure:

Start with two quivers:

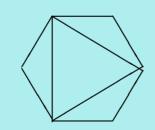
- $\circ \longrightarrow \circ$ and $\circ \longrightarrow \circ$.
- All these vertices are free.
- New quivers can be obtained by identifying two free vertices.
- When we identify the two free ones, the new vertex we get is no longer free.
- Denote \mathcal{A}_n by all the quivers of n vertices obtaining from this way.

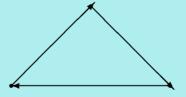
	Home Page	
	Title Page	
	44 >>	
-		
	•	
	Page <mark>8</mark> of <mark>24</mark>	
	Go Back	
	Full Screen	
	Close	
	Quit	

- *n* a positive integer
- \mathcal{P}_{n+3} a regular polygon with n+3 vertices

Let T be a triangulation of \mathcal{P}_{n+3} , define a quiver Q_T :

Example:





• \mathcal{T}_n — the set of all triangulations of \mathcal{P}_{n+3} Define a function $\varphi : \mathcal{T}_n \longrightarrow \mathcal{A}_n$ $\varphi(T) = Q_T$.

For a triangulation T of \mathcal{P}_{n+3} , denote by T(i) the triangulation obtained from T by rotating T i steps in the clockwise direction. Define an equivalence relation \sim on \mathcal{T}_n : let $T \sim T(i)$ for all i. Then we get a new function $\overline{\varphi} : (\mathcal{T}_n/\sim) \longrightarrow \mathcal{A}_n$ induced by φ .

Proposition 2.1 The function $\overline{\varphi} : (\mathcal{T}_n / \sim) \longrightarrow \mathcal{A}_n$ is a bijection.

Remark Torkildsen [9] proved there is a bijection between (\mathcal{T}_n/\sim) and the cluster-tilted algebras of type A_n .

Home Page		
Title	Page	
••	••	
	►	
Page 1	0 of 24	
Go E	Go Back	
Full Screen		
Close		
Quit		

3 The torsionless modules

In the following we want to describe Sub(A) and $\underline{Sub}(A)$ of a cluster-tilted algebra A of type A_n .

• $Sub(A) = \{{}_{A}X|X$ is torsionless, i.e., X is a submodule of a projective module}

• $\underline{Sub}(A) = \underline{Sub}(A) / \underline{Proj}(A)$ where $\underline{Proj}(A)$ denotes all the projective A-modules.

A particular example is that A is a self-injective cluster-tilted algebra. Then Sub(A) = mod(A).

cluster categories and ... Cluster-tilted algebras ... The torsionless modules The Auslander-Reiten ...

Home Page

Title Page

Page 11 of 24

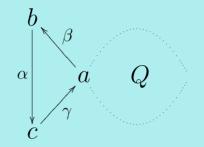
Go Back

Full Screen

Close

Quit

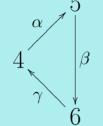
Lemma 3.1 Let A be a finite dimensional k-algebra. B is the algebra of the following quiver Q':



where Q is the quiver of the algebra A. Here the arrow β and γ are not involved in any relations except $\alpha\beta = 0$, $\gamma\alpha = 0$, $\beta\gamma = 0$. Then there is a bijection between indSub(A) and indSub(B)/{P(b), P(c), S(b), S(c), radP(c)} with P(b), P(c) are the indecomposable projective B-modules and S(b), S(c) the simple B-modules corresponding to the vertex b and c. Hence there is a bijection between indSub(A) and indSub(B)/{S(b), S(c), radP(c)}.

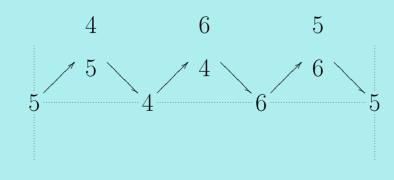
Examples:

(1) A is the path algebra of the quiver

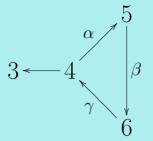


with the relations $\beta \alpha = 0$, $\gamma \beta = 0$, $\alpha \gamma = 0$.

Note that it is a self-injective algebra. Hence we have Sub(A) = mod(A).

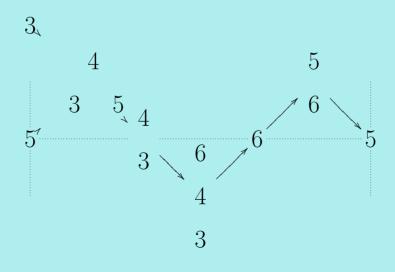


(2) A is the algebra of the quiver



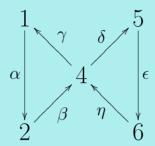
with the relations $\beta \alpha = 0$, $\gamma \beta = 0$, $\alpha \gamma = 0$.

We can get the indecomposable torsionless modules are:



(3) A is the algebra of the quiver

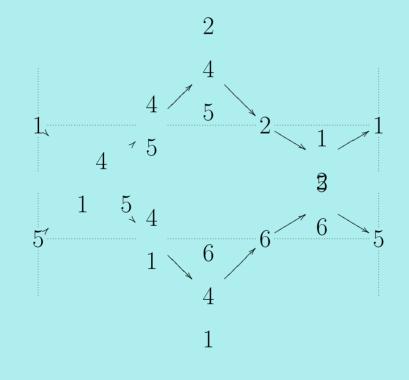
0.



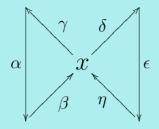
with the relations $\beta \alpha = 0$, $\gamma \beta = 0$, $\alpha \gamma = 0$, $\epsilon \delta = 0$, $\eta \epsilon = 0$, $\delta \eta =$

Home Page			
	Title Page		
	•• ••		
	•	►	
	Page 1	5 of 24	
	Go Back		
	Full Screen		
	Close		
	Quit		

All the indecomposable torsionless modules are:

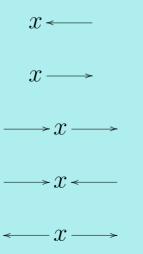


We call a vertex x a connecting vertex if two arrows end in x and two arrows start in x, i.e.,



with the relation $\gamma\beta = 0$ and $\delta\eta = 0$.

We say a vertex x is normal if it is one of the following cases:



Proposition 3.2 If A is a cluster-tilted algebra of type A_n , then l(A) = 6c - d + e, where c is the number of the 3-cycles in the quiver of A, d is the number of connecting vertices and e is the number of normal vertices.

Proposition 3.3 If M is a torsionless module, then M is local.

Proposition 3.4 If M is a torsionless but not projective module, then M is serial.

cluster categories and ... Cluster-tilted algebras ... The torsionless modules The Auslander-Reiten ...

Home Page

Title Page

Page 18 of 24

Go Back

Full Screen

Close

Quit

Theorem 3.5 If M is serial, then M is torsionless if and only if (1) Hom(T, M) = 0 for all non torsionless simple modules T = S(x) and for all $T = S(\alpha)$, where α is an arrow not in any 3-cycle and $S(\alpha)$ not torsionless but $S(t(\alpha))$ torsionless; (2) $M \neq L(\alpha)$ for α not in any 3-cycle.

Next we consider a special case: the cluster-tilted algebras of type A_n generated by $\therefore \alpha$ with relations $\alpha\beta = 0, \beta\gamma = 0, \gamma\alpha = 0.$

Recall the dominant dimension of an algebra A: dom.dim $A \ge n :\Leftrightarrow$ if $0 \to A \to I_0 \to I_1 \to \cdots$ is a minimal injective resolution, then $I_0, I_1, \cdots, I_{n-1}$ are projective.

Proposition 3.6 If A is a cluster-tilted algebra as above. Then

dom.dim $A \ge 1$.

4 The Auslander-Reiten structure

First we introduce the notion of $L(\alpha)$ and $Q(\beta)$. Actually this is the notion in the paper by Butler and Ringel [5]. For each arrow $\alpha : x \to y$, we have the exact sequence $0 \to Q(\alpha) \to$ $M(\alpha) \to L(\alpha) \to 0$ where $0 \to Q(\alpha) \to I(y) \xrightarrow{I(\alpha)} I(x)$ and $P(y) \xrightarrow{P(\alpha)} P(x) \to L(\alpha) \to 0$.

Theorem 4.1 All the indecomposable torsionless modules of a cluster-tilted algebra A are the indecomposable projective modules and all the $L(\alpha)$'s where α is a cyclic arrow.

cluster categories and ... Cluster-tilted algebras ... The torsionless modules The Auslander-Reiten ...

Home Page

Title Page

Page 21 of 24

Go Back

Full Screen

Close

Quit

••

Theorem 4.2 A is a cluster-tilted algebra of type A_n , and the corresponding quiver is Q. If $1 \rightarrow 2$ is a full subquiver of Q, then the Auslander-Reiten structure of all the indecomposable torsion-

less modules related to this part is $P(2) \rightarrow P(1)$. If $3 \xrightarrow{\beta} \gamma \rightarrow 1$ with the relations $\beta \alpha = 0, \gamma \beta = 0, \alpha \gamma = 0$ is a full subquiver of Q, then the Auslander-Reiten structure of all the indecomposable torsionless modules related to this part is

$$L(\beta) = \alpha A \qquad L(\alpha) = \gamma A \qquad L(\gamma) = \beta A \qquad L(\beta) = \alpha A$$

References

- [1] K Bongartz, Tilted algebras, Lecture Notes in Math, vol. 903, Springer-Verlag, pp. 26-38, 1981.
- [2] A B Buan, R Marsh, I Reiten, Cluster-tilted algebras, Trans Amer Math Soc, 359(1), 2007, 323-332.
- [3] A B Buan, R Marsh, I Reiten, Cluster-tilted algebras of finite representation type, J Algebra, 306, 2006, 412-431.
- [4] A B Buan, R Marsh, M Reineke, I Reiten, G Todorov, Tilting theory and cluster combinatorics, Adv Math, 204(2), 2006, 572-618.
- [5] M C R Butler, C M Ringel, Auslander-Reiten sequences with few middle terms and applications to string algebras, comm Algebra, 151, 1987, 145-179.
- [6] P Caldero, F Chapoton, R Schiffler, Quivers with relations arising from clusters (A_n case), Trans Amer Math Soc, 358(3), 2006, 1347-1364.
- [7] D Happel, C M Ringel, Tilted algebras, Trans Amer Math Soc, vol. 274, pp. 399-443, 1982.
- [8] C M Ringel, The self-injective cluster-tilted algebras, Arch Math, 91, 2008, 218-225.
- [9] H A Torkildsen, Counting cluster-tilted algebras of type A_n , Int Elec J Algebra, 4, 2008, 149-158.

H	Home Page	
7	Title Page	
•	•• ••	
•		►
Pag	ge <mark>23</mark> c	of 24
	Go Back	
F	Full Screen	
	Close	
	Quit	

Thank you!

Home Page	
Title Page	
•• >>	
Page 24 of 24	
Go Back	
Full Screen	
Close	
Quit	