Bi-module Problems

Zhang Yingbo Beijing Normal University Joint with Xu Yunge Hubei University

0. Introduction

In the paper "Matrix and Drozd's Theorem" (1990), Crawley-Boevey defined an algebraic structure called bi-module problem. Namely, let K be a k-category, M a K-K-bi-module, and $d: K \to M$ a derivation with d(UV) = d(U)V + Ud(V), then the triple (K, M, d) is called a bi-module problem. Usually we assume that k is a perfect field, and K is a Krull-Schmidt category with finitely many indecomposable objects. In the present talk we will extend the notion of Bi-module problem to that over a minimal algebra R over an algebraically closed k, and give its representation category, which is as the same as that given by Crawley-Boevey for R being trivial.

Then we define the dual structure of Bi-module problem, the so-called bi-co-module problem, and its representation category.

1. Δ^{\otimes} -modules

Let \mathcal{T} be a vertex set whose elements are divided into two disjoint families : the subset \mathcal{T}_0 of trivial vertices and the subset \mathcal{T}_1 of non-trivial vertices. To each $X \in \mathcal{T}_1$, we associate an indeterminate x and a fixed non-zero polynomial ϕ_X in k[x]. Given any $X \in \mathcal{T}$, we define a k-algebra R_X with identity 1_X by $R_X = k 1_X$ if X is trivial; and otherwise, $R_X = k[x, \phi_X(x)^{-1}]$ the localization of k[x] at $\phi_X(x)$, and x is called a parameter.

For the sake of convenience, for each $X \in \mathcal{T}_0$, we set $x = 1_X$, $\phi_X(x) = 1_X$ and $k[x] = k1_X$. In this way, R_X is the localization of k[x] at $\phi_X(x)$, for every $X \in \mathcal{T}$.

The k-algebra $R = \prod_{X \in \mathcal{T}} R_X$ is said to be a minimal algebra over \mathcal{T} .

The following notions are proposed and formulated by S.Liu.

Let $\Delta = R \otimes_k R$. Then Δ is a k-algebra under the multiplication $(a \otimes_k b)(c \otimes_k d) = ac \otimes_k bd$ for any $a, b, c, d \in R$. Denote

$$\Delta^{\otimes p} = \underbrace{\Delta \otimes_R \Delta \otimes_R \cdots \otimes_R \Delta}_{p} \text{ for } p \ge 1, \quad \text{ and } \quad \Delta^0 = R.$$

The following statements hold for an integer $p \ge 0$:

(i) $\Delta^{\otimes p} \cong \underbrace{R \otimes_k R \otimes_k \cdots \otimes_k R}_{p+1}$ is both a free left R-module and a free right R-module, as well as a free Δ -module.

(ii) $\Delta^{\otimes p}$ is a commutative R-semi-algebra with the multiplication defined by

$$(\delta_1 \otimes_R \cdots \otimes_R \delta_n)(\sigma_1 \otimes_R \cdots \otimes_R \sigma_p) = \delta_1 \sigma_1 \otimes_R \cdots \otimes_R \delta_p \sigma_p, \ \delta_i, \sigma_i \in \Delta.$$

(iii) $\Delta^{\otimes p}$ is a Δ -bi-module with the scalar multiplications

defined by

$$(r \otimes_k s) \otimes_{\Delta} (\delta_1 \otimes_R \cdots \otimes_R \delta_p) = (\delta_1 \otimes_R \cdots \otimes_R \delta_p) \otimes_{\Delta} (r \otimes_k s)$$
$$= r \delta_1 \otimes_R \cdots \otimes_R \delta_p s,$$

for $r, s \in R, \delta_i \in \Delta$.

(iv) $\Delta^{\otimes p} \otimes_R \Delta^{\otimes q}$ is a $\Delta^{\otimes 2}$ -bi-module with the operation

$$\begin{split} (\delta \otimes_{_R} \sigma) \otimes_{_{\Delta^{\otimes 2}}} (\xi \otimes_{_R} \eta) &= (\xi \otimes_{_R} \eta) \otimes_{_{\Delta^{\otimes 2}}} (\delta \otimes_{_R} \sigma) \\ &= (\delta \otimes_{_{\Delta}} \xi) \otimes_{_R} (\sigma \otimes_{_{\Delta}} \eta), \end{split}$$

6

where
$$\delta, \sigma \in \Delta$$
, $\xi \in \Delta^{\otimes p}$, $\eta \in \Delta^{\otimes q}$.

Set

$$\Delta^{\otimes}=\oplus_{p=0}^{\infty}\Delta^{\otimes p}, \quad \text{ and } \quad \Delta^{\otimes_{\geqslant 1}}=\oplus_{p=1}^{\infty}\Delta^{\otimes p}.$$

It is easy to see that Δ^\otimes is an $\mathbb N\text{-}\mathsf{graded}\ k\text{-}\mathsf{algebra}\ \mathsf{with}\ \mathsf{the}\ \mathsf{multiplication}$

$$(\sigma_1 \otimes_R \cdots \otimes_R \sigma_m) \otimes_R (\eta_1 \otimes_R \cdots \otimes_R \eta_n) = \sigma_1 \otimes_R \cdots \otimes_R \sigma_m \otimes_R \eta_1 \otimes_R \cdots \otimes_R \eta_n, \ \forall \sigma_i, \eta_i \in \Delta.$$

And Δ^{\otimes} is a Δ -module.

Definition 1.1 (i) A Δ -module (left and right) S_1 is called a quasi-free Δ -module finitely generated by u_1, \dots, u_m , if the morphism

$$\Delta_{X_1,Y_1} \oplus \cdots \oplus \Delta_{X_m Y_m} \to \mathcal{S}_1$$

sending each $1_{X_i} \otimes_k 1_{Y_i}$ to u_i is an isomorphism. In this case, $\{u_1, \ldots, u_m\}$ is called a Δ -quasi-free basis of S_1 .

(ii) Set $S_p = \Delta^{\otimes p} \otimes_{\Delta} S_1, p \ge 1$. Then S_p is a quasi-free $\Delta^{\otimes p}$ -module with a quasi-basis $\{1_{\Delta^{\otimes p}} \otimes_{\Delta} u_i, \ldots, 1_{\Delta^{\otimes p}} \otimes_{\Delta} u_m\}$, and for $\eta, \sigma \in \Delta^{\otimes p}$,

$$\eta(\sigma \otimes_{\Delta} u_i) = (\eta \sigma) \otimes_{\Delta} u_i = (\sigma \otimes_{\Delta} u_i)\eta.$$

8

(iii) Set $\mathcal{S}=\oplus_{p=1}^\infty \mathcal{S}_p$, then \mathcal{S} is a $\Delta^{\otimes_{\geqslant 1}}$ -module under the operator

$$\xi v = \sum_{p=1}^{\infty} \xi_p v_p, \quad \xi = \xi_1 + \xi_2 + \dots \in \Delta^{\otimes_{\geq 1}}, \ v = v_1 + v_2 + \dots \in \mathcal{S},$$

which is called a quasi-free $\Delta^{\otimes \ge 1}$ -module finitely generated by index 1.

Let \mathcal{D} , \mathcal{G} be graded quasi-free $\Delta^{\otimes \geqslant 1}$ -modules finitely generated by index 1. A $\Delta^{\otimes \geqslant 1}$ -homomorphism $d: \mathcal{D} \to \mathcal{G}$ given by $d_p:$ $\mathcal{D}_p \to \mathcal{G}_p$ is said to be determined by index 1, provided for $p \ge 1, \eta \in \Delta^{\otimes p}, x \in \mathcal{D}_1$,

$$d_p = \mathsf{id} \otimes_\Delta d_1 : \Delta^{\otimes p} \otimes_\Delta \mathcal{D}_1 \to \Delta^{\otimes p} \otimes_\Delta \mathcal{G}_1, \qquad \qquad \eta \otimes_\Delta x \mapsto \eta \otimes_\Delta d_1(x).$$
(1-1)

A $\Delta^{\otimes \geqslant 1}$ -homomorphism $f : \mathcal{D} \otimes_R \mathcal{G} \to \mathcal{G}$ given by $f_{pq} : \mathcal{D}_p \otimes_R \mathcal{G}_q \to \mathcal{G}_{p+q}$ is said to be determined by index (1,1) provided for $p, q \ge 1, \eta \in \Delta^{\otimes p}, \sigma \in \Delta^{\otimes q}, x \in \mathcal{D}_1, y \in \mathcal{G}_1$,

$$f_{pq} = \operatorname{id} \otimes_R \operatorname{id} \otimes_{\Delta^{\otimes 2}} f_{11}:$$

$$(\Delta^{\otimes p} \otimes_\Delta \mathcal{D}_1) \otimes_R (\Delta^{\otimes q} \otimes_\Delta \mathcal{G}_1) \to \Delta^{\otimes p+q} \otimes_\Delta \mathcal{G}_1 \qquad (1-2)$$

$$(\eta \otimes_\Delta x) \otimes_R (\sigma \otimes_\Delta y) \mapsto (\eta \otimes_R \sigma) \otimes_{\Delta^{\otimes 2}} f_{11}(x \otimes_R y).$$

Definition 1.2 Let R be a minimal algebra with vertex set \mathcal{T} . We define a quasi-free R-module $\mathcal{K}_0 = \sum_{X \in \mathcal{T}} R_X E_X \cong R$ with a quasi-basis $\{E_X\}_{X \in \mathcal{T}}$; and a quasi-free Δ -module \mathcal{K}_1 with a quasi-basis $\mathcal{V} = \{V_1, V_2, \cdots, V_m\}$. Let $\mathcal{K}_{\geq 1} = \bigoplus_{i=1}^{\infty} \mathcal{K}_i$ be a $\Delta^{\otimes \geq 1}$ -module finitely generated by index 1, and $\mathcal{K} = \bigoplus_{i=0}^{\infty} \mathcal{K}_i$ be a Δ^{\otimes} -module.

Moreover, there are a Δ^{\otimes} -homomorphism $m : \mathcal{K} \otimes_R \mathcal{K} \to \mathcal{K}$, where restricting m into $\mathcal{K}_{\geq 1} \otimes_R \mathcal{K}_{\geq 1}$ is a $\Delta^{\otimes \geq 1}$ homomorphism determined by index (1,1); and a Δ -homomorphism $e : R \cong$ $\mathcal{K}_0 \hookrightarrow \mathcal{K}$, such that (\mathcal{K}, m, e) becomes an \mathbb{N} -graded k-algebra with identity $E = \sum_{X \in \mathcal{T}} E_X$. Definition 1.3 Let the minimal algebra R and the \mathbb{N} -graded algebra \mathcal{K} be given in 1.2. We define an Δ^{\otimes} -module $\mathcal{M} = \bigoplus_{i=0}^{\infty} \mathcal{M}_i$, where $\mathcal{M}_0 = 0$, $\mathcal{M}_{\geq 1} = \bigoplus_{i=1}^{\infty} \mathcal{M}_i$ is a $\Delta^{\otimes \geq 1}$ -module finitely generated by index 1, and \mathcal{M}_1 has a Δ -quasi-basis $\mathcal{A} = \{A_1, A_2, \ldots, A_n\}$. Moreover, there are Δ^{\otimes} -homomorphisms l: $\mathcal{K} \otimes_R \mathcal{M} \to \mathcal{M}$ and $r : \mathcal{M} \otimes_R \mathcal{K} \to \mathcal{M}$, where restricting l and rinto $\mathcal{K}_{\geq 1} \otimes_R \mathcal{M}_{\geq 1}$ and $\mathcal{M}_{\geq 1} \otimes_R \mathcal{K}_{\geq 1}$ are $\Delta^{\otimes \geq 1}$ homomorphisms determined by index (1, 1) respectively, such that \mathcal{M} becomes an \mathbb{N} -graded \mathcal{K} - \mathcal{K} -bi-module.

2. Δ^{\otimes} -co-modules

Let $S = \bigoplus_{p=1}^{\infty} S_p$ be a $\Delta^{\otimes \ge 1}$ -module finitely generated by index 1 with S_1 a quasi-free Δ -module. Then the $\Delta^{\otimes \ge 1}$ -dual module of S is defined to be $S^* = \bigoplus_{p=1}^{\infty} S_p^*$, where $S_p^* = \operatorname{Hom}_{\Delta^{\otimes p}}(S_p, \Delta^{\otimes p})$ for $p = 1, 2, \cdots$.

We have the following Lemma.

Lemma 2.1 $\mathcal{S}^* \simeq \bigoplus_{p=1}^{\infty} \Delta^{\otimes p} \otimes_{\Delta} \mathcal{S}_1^*$.

Let \mathcal{D} , \mathcal{G} be $\Delta^{\otimes \geqslant 1}$ -modules finitely generated by index 1 with \mathcal{D}_1 and \mathcal{G}_1 being quasi-free Δ -modules. And let $d: \mathcal{D} \to \mathcal{G}$ be a $\Delta^{\otimes \geqslant 1}$ -homomorphism determined by index 1 given in Formula (1-1). Then the $\Delta^{\otimes \geqslant 1}$ -dual d^* of d is defined by $d_p^*: \mathcal{G}_p^* \to \mathcal{D}_p^*$ for $p = 1, 2, \cdots$.

Lemma 2.2 $d_p^* = id \otimes_{\Delta} d_1^*$. Consequently d^* is still determined by index 1.

Let \mathcal{D} , \mathcal{G} be $\Delta^{\otimes \geq 1}$ -modules finitely generated by index 1 with \mathcal{D}_1 , \mathcal{G}_1 being quasi-free Δ -modules. And let $f : \mathcal{D} \otimes_R \mathcal{G} \to \mathcal{G}$ be a $\Delta^{\otimes \geq 1}$ -homomorphism determined by index (1,1) given in Formula (1-2). Then the $\Delta^{\otimes \geq 1}$ -dual f^* of f is defined for $n = 2, 3, \cdots$:

$$f_n^* = \sum_{p+q=n} f_{pq}^* : \mathcal{G}_n^* \to \sum_{p+q=n} \mathcal{D}_p^* \otimes_R \mathcal{G}_q^*$$

Lemma 2.3 $f_{pq}^* = \operatorname{id}_{\Delta^{\otimes p}} \otimes_R \operatorname{id}_{\Delta^{\otimes q}} \otimes_{\Delta^{\otimes 2}} f_{11}^*$. Thus f^* is still determined by index (1, 1).

The following notions concern bi-co-module problems is suggested by Y.Han.

Definition 2.4 Let R be a minimal algebra with vertex set \mathcal{T} . We define a quasi-free R-module $\mathcal{C}_0 = \sum_{X \in \mathcal{T}} R_X e_X \simeq R$ with a quasi-basis $\{e_X\}_{X \in \mathcal{T}}$; and a quasi-free Δ -module \mathcal{C}_1 with a quasi-basis $\mathcal{V}^* = \{v_1, v_2, \cdots, v_m\}$. Let $\mathcal{C}_{\geq 1} = \bigoplus_{i=1}^{\infty} \mathcal{C}_i$ be a $\Delta^{\otimes \geq 1}$ -module finitely generated by index 1, and let $\mathcal{C} = \bigoplus_{i=0}^{\infty} \mathcal{C}_i$ be a Δ^{\otimes} -module.

Moreover, there exists a Δ^{\otimes} -homomorphism $\mu : \mathcal{C} \to \mathcal{C} \otimes_R \mathcal{C}$, where restricting μ into $\mathcal{C}_{\geq 1}$ is a $\Delta^{\otimes \geq 1}$ homomorphism determined by index (1,1); and a Δ morphism $\varepsilon : \mathcal{C} \to \mathcal{C}_0 \simeq R$ which sends e_X to 1_X , and v_j to 0 for all $1 \leq j \leq m$, such that $(\mathcal{C}, \mu, \varepsilon)$ becomes an \mathbb{N} -graded k-co-algebra.

Definition 2.5 Let the minimal algebra R and the N-graded co-algebra \mathcal{C} be given in 2.4. We define a Δ^{\otimes} -module $\mathcal{N} = \bigoplus_{i=0}^{\infty} \mathcal{N}_i$, where $\mathcal{N}_0 = 0$, $\mathcal{N}_{\geq 1} = \bigoplus_{i=1}^{\infty} \mathcal{N}_i$ is a $\Delta^{\otimes \geq 1}$ -module finitely generated in degree 1 with \mathcal{N}_1 being a quasi-free Δ -module, having a Δ -quasi-basis $\mathcal{A}^* = \{a_1, a_2, \ldots, a_n\}$.

Moreover there exist graded Δ^{\otimes} -homomorphisms $\iota : \mathcal{N} \to \mathcal{C} \otimes_R \mathcal{N}$ and $\tau : \mathcal{N} \to \mathcal{N} \otimes_R \mathcal{C}$, such that $\iota : \mathcal{N}^{\geqslant 2} \to \mathcal{C}^{\geqslant 1} \otimes_R \mathcal{N}^{\geqslant 1}$ and $\tau : \mathcal{N}^{\geqslant 2} \to \mathcal{N}^{\geqslant 1} \otimes_R \mathcal{C}^{\geqslant 1}$ are determined by index (1,1)respectively, thus \mathcal{N} becomes an \mathbb{N} -graded \mathcal{C} - \mathcal{C} -bi-co-module.

3. Bi-module problems and their representations

Definition 3.1 A quadruple $\mathfrak{A} = (R, \mathcal{K}, \mathcal{M}, d)$ is called a bi-module problem provided

(i) R is a minimal algebra with vertex set \mathcal{T} .

(ii) $\mathcal{K} = \bigoplus_{i=0}^{\infty} \mathcal{K}_i$ is an N-graded k-algebra given by Definition 1.2.

(iii) $\mathcal{M} = \bigoplus_{i=0}^{\infty} \mathcal{M}_i$ is an N-graded \mathcal{K} - \mathcal{K} -bi-module given by Definition 1.3.

(iv) There is an \mathbb{N} -graded derivation $d: \mathcal{K} \to \mathcal{M}$ determined

by index 1 given in Formula (1-1) with d(UV) = Ud(V) + d(U)Vfor any $U, V \in \mathcal{K}$.

Now we define the representation category of \mathfrak{A} .

Definition 3.2 Let $J(\lambda) = J_d(\lambda)^{e_d} \oplus J_{d-1}(\lambda)^{e_{d-1}} \oplus \cdots \oplus J_1(\lambda)^{e_1}$, with e_i non-negative integers, be a Jordan form. Set $m_j = e_d + e_{d-1} + \cdots + e_j$. The following partitioned matrix W_λ is called a Weyr matrix of eigenvalue λ :

$$W(\lambda) = \begin{pmatrix} \lambda I_{m_1} & W_{12} & 0 & \cdots & 0 & 0 \\ & \lambda I_{m_2} & W_{23} & \cdots & 0 & 0 \\ & & \lambda I_{m_3} & \cdots & 0 & 0 \\ & & & \ddots & \vdots & \vdots \\ & & & & \lambda I_{m_{d-1}} & W_{d-1,d} \\ & & & & & \lambda I_{m_d} \end{pmatrix}_{d \times d},$$

with
$$W_{j,j+1} = \begin{pmatrix} I_{m_{j+1}} \\ 0 \end{pmatrix}_{m_j \times m_{j+1}}$$
. A direct sum $W = W(\lambda_1) \oplus W(\lambda_2) \oplus \cdots \oplus W(\lambda_s)$ of finitely many Weyr matrices with distinct eigenvalues λ_i is said to be a Weyr matrix.

Let $X \in \mathcal{T}_1$. A Weyr matrix W over k is called R_X -regular if its eigenvalues are R_X -regular, i.e. $\phi_X(\lambda) \neq 0$, for all the eigenvalues λ .

Denote by mod-R the category consisting of finitely dimensional R-modules. Since R is commutative, mod-R can be viewed as both left and right module category. Let

$$P \in \mathsf{mod}\text{-}R$$
, with $P_X = k^{m_X}$, $P(x) = W_X$, $\forall X \in \mathcal{T}$,

where $W_X = I_{m_X}$ for $X \in \mathcal{T}_0$; or W_X is a R_X -regular Weyr matrix for $X \in \mathcal{T}_1$. And $(m_X)_{X \in \mathcal{T}}$ is said to be the dimension vector of P. Suppose the quasi-basis element $A_i = 1_{X_i} A_i 1_{Y_i}$, let

$${}_{P}(\mathcal{M}_{1})_{P} = P \otimes_{R} \mathcal{M}_{1} \otimes_{R} P \implies \\ {}_{P}(\mathcal{M}_{1})_{P} \simeq \bigoplus_{i=1}^{n} \operatorname{IM}_{m_{X_{i}} \times m_{Y_{i}}}(k).$$
(3-1)

In fact $P \otimes_R \mathcal{M}_1 \otimes_R P \simeq P \otimes_R (\bigoplus_{i=1}^n \Delta_{X_iY_i}) \otimes_R P \simeq \bigoplus_{i=1}^n P \otimes_R R(1_{X_i} \otimes_k 1_{Y_i})R \otimes_R P \simeq \bigoplus_{i=1}^n P 1_{X_i} \otimes_k 1_{Y_i}P \simeq \bigoplus_{i=1}^n IM_{m_{X_i} \times m_{Y_i}}(k)$. Then $P(\mathcal{M}_1)P$ possesses an R-R-bimodules structure :

 $xB = W_XB, \quad By = BW_Y, \quad \forall \ B \in \operatorname{IM}_{m_X \times m_Y}(k).$ (3-2)

Taken $\alpha = (\alpha_1, \cdots, \alpha_n) \in_P (\mathcal{M}_1)_P$ with $\alpha_i \in \mathrm{IM}_{m_{X_i} \times m_{Y_i}}(k)$.

Write

$$P_1 = \sum_{i=1}^n \alpha_i \otimes_\Delta A_i, \tag{3-3}$$

where α_i can be viewed as a matrix coefficient of A_i .

Definition 3.3 A representation (P, P_1) of a bi-module problem \mathfrak{A} consists of a module $P \in \text{mod-}R$ and an element P_1 given by Formulae (3-1)-(3-3).

Suppose (Q, Q_1) is again a representation of dimension vector \underline{n} , $Q_X = W'_X$ for $X \in \mathcal{T}$, and $Q_1 = \sum_{i=1}^n \beta_i \otimes_\Delta A_i$. Set the 24 quasi-basis element $V_j = 1_{X_j'} V_j 1_{Y_j'}$, let

$${}_{P}(\mathcal{K}_{1})_{Q} = P \otimes_{R} \mathcal{K}_{1} \otimes_{R} Q \simeq \bigoplus_{j=1}^{m} \operatorname{IM}_{m_{X'_{j}} \times n_{Y'_{j}}}(k), \quad (3-4)$$

with the left and right R-module actions :

$$xU = W_X U, \quad Uy = UW'_Y, \quad \forall U \in \mathrm{IM}_{m_X \times n_Y}(k).$$
 (3-5)

Let $f_0 = (f_X \mid X \in \mathcal{T}) : P \to Q$ be an R-module homomorphism, and $f_1 = (f_1^1, \cdots, f_1^m) \in {}_P(\mathcal{K}_1)_Q$ with $f_1^j \in IM_{m_{X'_j} \times n_{Y'_j}}(k)$. Write

$$S_0 = \sum_{X \in \mathcal{T}} f_X \otimes_R E_X, \quad S_1 = \sum_{j=1}^m f_1^j \otimes_\Delta V_j, \qquad (3-6)$$

25

where f_X, f_1^j can be viewed as matrix coefficients of E_X, V_j respectively.

Definition 3.4 A morphism of a bi-module problem \mathfrak{A} is $S = S_0 + S_1 : (P, P_1) \rightarrow (Q, Q_1)$, where S_0, S_1 are given by (3-4)-(3-6), such that $P_1 \circ S_1 - S_1 \circ Q_1 = d(S_1)$ with the operations "d" and " \circ " being calculated below.

For the calculation of d, we have

 $d(V_i) = \sum_l \zeta_{il} \otimes_\Delta A_l \implies d(f_1^i \otimes_\Delta V_i) = \sum_l \left(\zeta_{il} \otimes_\Delta f_1^i \right) \otimes_\Delta A_l$

by duality. For the calculation of \circ , we have :

$$V_i \otimes_R A_j = \sum_l \eta_{ijl} \otimes_{\Delta^{\otimes 2}} (1_{\Delta^{\otimes 2}} \otimes_{\Delta} A_l) \Longrightarrow$$
$$(f_1^i \otimes_{\Delta} V_i) \circ (\alpha_j \otimes_{\Delta} A_j) = \sum_l [\eta_{ijl} \otimes_{\Delta^{\otimes 2}} (f_1^i \otimes_R \alpha_j)] \otimes_{\Delta} A_l$$

by duality. $(\alpha_i \otimes_{\Delta} A_j) \circ (f_1^{\mathcal{I}} \otimes_{\Delta} V_j)$ can be calculated similarly.

Corollary 3.5 Let $S : (P, P_1) \rightarrow (Q, Q_1), S' : (Q, Q_1) \rightarrow (U, U_1)$ be two morphisms over \mathfrak{A} . Then $S \circ S' : (P, P_1) \rightarrow (U, U_1)$ is also a morphism over \mathfrak{A} with $(S \circ S')_0 = S_0 S'_0$, $(S \circ S')_1 = S_0 S'_1 + S_1 S'_0 + S_1 \circ S'_1$.

We denote by $R(\mathfrak{A})$ the category of representations of the bi-module problem \mathfrak{A} .

4. Bi-co-module problems and their representations

Definition 4.1 A quadruple $\mathfrak{C} = (R, \mathcal{C}, \mathcal{N}, \partial)$ is called a bi-co-module problem provided

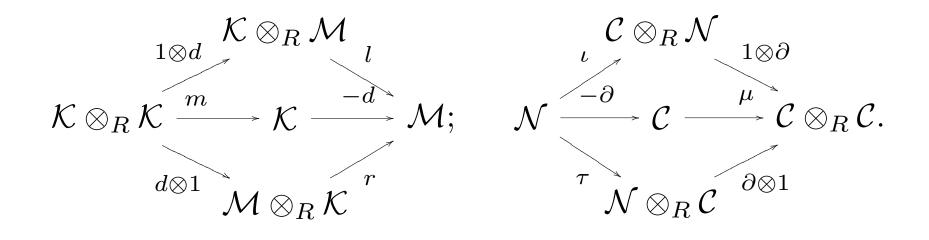
(i) R is a minimal algebra with a vertex set \mathcal{T} ;

(ii) $C = \bigoplus_{i=0}^{\infty} C_i$ is an N-graded co-algebra given by Definition 2.4.

(iii) $\mathcal{N} = \bigoplus_{i=0}^{\infty} \mathcal{N}_i$ is an N-graded \mathcal{C} - \mathcal{C} -bi-co-module given by Definition 2.5.

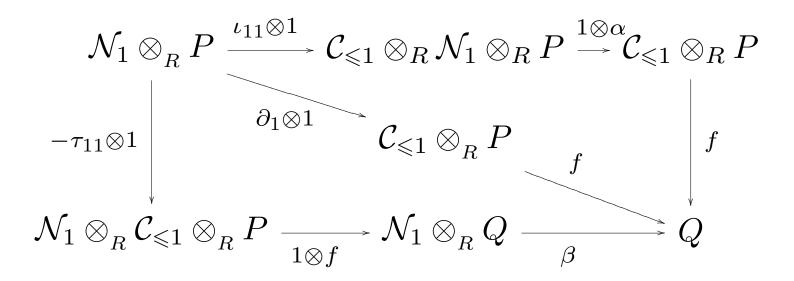
(iv) There is an \mathbb{N} -graded co-derivation $\partial : \mathcal{N} \to \mathcal{C}$ determined by index 1.

The derivation law and co-derivation law are shown in the picture below :



Definition 4.2 A representation (P, α) of bi-co-module problem \mathfrak{C} is a pair (P, α) , where P is a finite-dimensional left R-module, and $\alpha \in \operatorname{Hom}_R(\mathcal{N}_1 \otimes_R P, P)$.

Let (P, α) and (Q, β) be two representations of \mathfrak{C} of dimension $\underline{m}, \underline{n}$ respectively. A morphism $f : (P, \alpha) \to (Q, \beta)$ of a bi-comodule problem \mathfrak{C} is an R-morphism $f \in \operatorname{Hom}_R(\mathcal{C}_{\leq 1} \otimes_R P, Q)$ satisfying the following commutative diagram :



If $g: Q \to U$ is another morphism, then the composition h = fg is defined to be the composition of the following maps :

$$\mathcal{C}_{\leqslant 1} \otimes_R P \xrightarrow{\mu \otimes 1} \mathcal{C}_{\leqslant 1} \otimes_R \mathcal{C}_{\leqslant 1} \otimes_R P \xrightarrow{1 \otimes f} \mathcal{C}_{\leqslant 1} \otimes_R Q \xrightarrow{g} U.$$
31

We denote by $R(\mathfrak{C})$ the category of representations of the bi-co-module problem \mathfrak{C} .

Theorem 4.4 Let $\mathfrak{A} = (R, \mathcal{K}, \mathcal{M}, d)$ be a bi-module problem. Let \mathcal{C} and \mathcal{N} be the Δ^{\otimes} -dual of \mathcal{K} and \mathcal{M} respectively, and ι, τ, ∂ be the Δ^{\otimes} -dual of the left module action l, the right module action r, the derivation d respectively. Then $\mathfrak{C} = (R, \mathcal{C}, \mathcal{N}, \partial)$ is a bi-co-module problem, which is called the Δ^{\otimes} -dual of \mathfrak{A} .

Furthermore, representation categories $R(\mathfrak{A})$ and $R(\mathfrak{C})$ are equivalent.

Moreover, we can construct a layered bocs $B = (\Gamma; \Omega)$ from a bi-co-module problem \mathfrak{C} corresponding to a bi-module problem \mathfrak{A} such that the representation categories $R(\mathfrak{A}); R(\mathfrak{C})$ and $R(\mathfrak{B})$ are equivalent.

We can also introduce the reduction operations for bi-module problems and bi-co-module problems which correspond to the reductions for bocses. These reduction techniques can not only provide some inductive step in the proof of foundation Tame Wild Theorem, but also play a key role to find some "good" or "bad" configurations in representation categories. In addition, a class of special bi-module problems in terms of matrices, the so-called matrix bi-module problem, is very important and interesting. Perhaps, the notions of bi-module problem, bi-co-module problem and bocs originated with it.

Unfortunately, for the limit of time I am not able to show the above subjects.

Références

- [1] Drozd Yu.A. Tame and wild matrix problems. In Representations and Quadratic forms. Inst. Math. Akad. Nauk Ukrain. SSR, Kiev 1979 : 39-74 (in Russian).
- [2] Rojter A.V. Matrix problems and representations of BOCS's. In : Dlab V., Gabriel P. eds, Representation theory I, LNM 831, Springer-Verlag, Berlin,1980 : 288-324.
- [3] Crawley-Boevey W.W. On tame algebras and bocses. Proc. London Math. Soc. 1988, 56(3) : 451-483.
- [4] Zeng Xiangyong and Zhang Yingbo, A correspondence of

almost split sequences between some categories, Comm. alg. 2001, 29(2) : 1-26.

- [5] Crawley-Boevey W.W., Matrix problems and Drozd's theorem, In : S. Balcerzyk et al eds, Topics in algebra, Banach Center publications, PWN-Polish Scientific Publishers, Warsaw, 1990, 26(1) : 199-222.
- [6] Bautista R. and Kleiner M., Almost split sequences for relatively projective modules, J. Alg. 1990, 135(1) : 19-56.
- [7] Sergeichuk V.V. , Canonical matrices for basic matrix problems, Linear algebra and its applications. 2000, 317(1/3) : 53-102.
- [8] Xu Yunge and Zhang Yingbo. Indecomposablity and the

number of links. Science in China(Series A). 2001, 44(12) : 1515-1522.

Thanks