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0. Introduction

In the paper “Matrix and Drozd’s Theorem” (1990), Crawley-

Boevey defined an algebraic structure called bi-module problem.

Namely, let K be a k-category, M a K-K-bi-module, and

d : K → M a derivation with d(UV ) = d(U)V + Ud(V ), then

the triple (K, M, d) is called a bi-module problem. Usually we

assume that k is a perfect field, and K is a Krull-Schmidt

category with finitely many indecomposable objects.
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In the present talk we will extend the notion of Bi-module

problem to that over a minimal algebra R over an algebraically

closed k, and give its representation category, which is as the

same as that given by Crawley-Boevey for R being trivial.

Then we define the dual structure of Bi-module problem, the

so-called bi-co-module problem, and its representation category.
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1. ∆⊗-modules

Let T be a vertex set whose elements are divided into two

disjoint families : the subset T0 of trivial vertices and the subset

T1 of non-trivial vertices. To each X ∈ T1, we associate an

indeterminate x and a fixed non-zero polynomial φX in k[x].
Given any X ∈ T , we define a k-algebra RX with identity 1X by

RX = k1X if X is trivial ; and otherwise, RX = k[x, φ
X
(x)−1]

the localization of k[x] at φ
X
(x), and x is called a parameter.

For the sake of convenience, for each X ∈ T0, we set x = 1
X
,

φX(x) = 1
X

and k[x] = k1
X
. In this way, RX is the localization

of k[x] at φX(x), for every X ∈ T .
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The k-algebra R = ΠX∈TRX is said to be a minimal algebra

over T .

The following notions are proposed and formulated by S.Liu.

Let ∆ = R ⊗k R. Then ∆ is a k-algebra under the mul-

tiplication (a ⊗k b)(c ⊗k d) = ac ⊗k bd for any a, b, c, d ∈ R.

Denote

∆⊗p = ∆⊗R ∆⊗R · · · ⊗R ∆︸ ︷︷ ︸
p

for p > 1, and ∆0 = R.
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The following statements hold for an integer p > 0 :

(i) ∆⊗p ∼= R⊗k R⊗k · · · ⊗k R︸ ︷︷ ︸
p+1

is both a free left R-module

and a free right R-module, as well as a free ∆-module.

(ii) ∆⊗p is a commutative R-semi-algebra with the multipli-

cation defined by

(δ1⊗R
· · ·⊗

R
δn)(σ1⊗R

· · ·⊗
R
σp) = δ1σ1⊗R

· · ·⊗
R
δpσp, δi, σi ∈ ∆.

(iii) ∆⊗p is a ∆-bi-module with the scalar multiplications
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defined by

(r ⊗k s)⊗∆ (δ1 ⊗R
· · · ⊗

R
δp) = (δ1 ⊗R

· · · ⊗
R

δp)⊗∆ (r ⊗k s)
= rδ1 ⊗R

· · · ⊗
R

δps,

for r, s ∈ R, δi ∈ ∆.

(iv) ∆⊗p ⊗
R

∆⊗q is a ∆⊗2-bi-module with the operation

(δ ⊗
R

σ)⊗
∆⊗2 (ξ ⊗

R
η) = (ξ ⊗

R
η)⊗

∆⊗2 (δ ⊗
R

σ)
= (δ ⊗

∆
ξ)⊗

R
(σ ⊗

∆
η),
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where δ, σ ∈ ∆, ξ ∈ ∆⊗p, η ∈ ∆⊗q.

Set

∆⊗ = ⊕∞p=0∆
⊗p, and ∆⊗>1 = ⊕∞p=1∆

⊗p.

It is easy to see that ∆⊗ is an N-graded k-algebra with the

multiplication

(σ1 ⊗R
· · · ⊗

R
σm)⊗

R
(η1 ⊗R

· · · ⊗
R

ηn)
= σ1 ⊗R

· · · ⊗
R

σm ⊗
R

η1 ⊗R
· · · ⊗

R
ηn, ∀σi, ηi ∈ ∆.

And ∆⊗ is a ∆-module.
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Definition 1.1 (i) A ∆-module (left and right) S1 is called

a quasi-free ∆-module finitely generated by u1, · · · , um, if the

morphism

∆X1,Y1 ⊕ · · · ⊕∆XmYm → S1

sending each 1Xi
⊗k 1Yi

to ui is an isomorphism. In this case,

{u1, . . . , um} is called a ∆-quasi-free basis of S1.

(ii) Set Sp = ∆⊗p ⊗∆ S1, p > 1. Then Sp is a quasi-free

∆⊗p-module with a quasi-basis {1∆⊗p ⊗∆ ui, . . . , 1∆⊗p ⊗∆ um},
and for η, σ ∈ ∆⊗p,

η(σ ⊗∆ ui) = (ησ)⊗∆ ui = (σ ⊗∆ ui)η.
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(iii) Set S = ⊕∞p=1Sp, then S is a ∆⊗>1-module under the

operator

ξv =
∞∑

p=1

ξpvp, ξ = ξ1+ξ2+· · · ∈ ∆⊗>1, v = v1+v2+· · · ∈ S,

which is called a quasi-free ∆⊗>1-module finitely generated by

index 1.
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Let D, G be graded quasi-free ∆⊗>1-modules finitely generated

by index 1. A ∆⊗>1-homomorphism d : D → G given by dp :
Dp → Gp is said to be determined by index 1, provided for

p > 1, η ∈ ∆⊗p, x ∈ D1,

dp = id⊗∆ d1 : ∆⊗p ⊗∆ D1 → ∆⊗p ⊗∆ G1,

η ⊗∆ x 7→ η ⊗
∆

d1(x).
(1-1)
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A ∆⊗>1-homomorphism f : D ⊗R G → G given by fpq :
Dp ⊗R Gq → Gp+q is said to be determined by index (1, 1)
provided for p, q > 1, η ∈ ∆⊗p, σ ∈ ∆⊗q, x ∈ D1, y ∈ G1,

fpq = id⊗R id⊗∆⊗2 f11 :
(∆⊗p ⊗∆ D1)⊗R (∆⊗q ⊗∆ G1) → ∆⊗p+q ⊗∆ G1

(η ⊗∆ x)⊗R (σ ⊗∆ y) 7→ (η ⊗R σ)⊗
∆⊗2 f11(x⊗R y).

(1-2)
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Definition 1.2 Let R be a minimal algebra with vertex set

T . We define a quasi-free R-module K0 =
∑

X∈T RXEX
∼= R

with a quasi-basis {EX}X∈T ; and a quasi-free ∆-module K1

with a quasi-basis V = {V1, V2, · · · , Vm}. Let K>1 = ⊕∞i=1Ki be

a ∆⊗>1-module finitely generated by index 1, and K = ⊕∞i=0Ki

be a ∆⊗-module.

Moreover, there are a ∆⊗-homomorphism m : K ⊗R K → K,

where restricting m into K>1 ⊗R K>1 is a ∆⊗>1 homomorphism

determined by index (1, 1) ; and a ∆-homomorphism e : R ∼=
K0 ↪→ K, such that (K,m, e) becomes an N-graded k-algebra

with identity E =
∑

X∈T EX.
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Definition 1.3 Let the minimal algebra R and the N-graded

algebra K be given in 1.2. We define an ∆⊗-module M =
⊕∞i=0Mi, where M0 = 0, M>1 = ⊕∞i=1Mi is a ∆⊗>1-module

finitely generated by index 1, and M1 has a ∆-quasi-basis A =
{A1, A2, . . . , An}. Moreover, there are ∆⊗-homomorphisms l :
K⊗RM→M and r : M⊗RK →M, where restricting l and r

into K>1 ⊗R M>1 and M>1 ⊗R K>1 are ∆⊗>1 homomorphisms

determined by index (1, 1) respectively, such that M becomes

an N-graded K-K-bi-module.
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2. ∆⊗-co-modules

Let S = ⊕∞p=1Sp be a ∆⊗>1-module finitely generated by index

1 with S1 a quasi-free ∆-module. Then the ∆⊗>1-dual module of
S is defined to be S∗ = ⊕∞p=1S∗p , where S∗p = Hom∆⊗p(Sp,∆⊗p)
for p = 1, 2, · · · .

We have the following Lemma.

Lemma 2.1 S∗ ' ⊕∞p=1∆
⊗p ⊗∆ S∗1 .
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Let D, G be ∆⊗>1-modules finitely generated by index 1 with

D1 and G1 being quasi-free ∆-modules. And let d : D → G be

a ∆⊗>1-homomorphism determined by index 1 given in Formula

(1-1). Then the ∆⊗>1-dual d∗ of d is defined by d∗p : G∗p → D∗p
for p = 1, 2, · · · .

Lemma 2.2 d∗p = id⊗∆d∗1. Consequently d∗ is still determined

by index 1.
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Let D, G be ∆⊗>1-modules finitely generated by index 1 with

D1, G1 being quasi-free ∆-modules. And let f : D ⊗R G → G
be a ∆⊗>1-homomorphism determined by index (1, 1) given in

Formula (1-2). Then the ∆⊗>1-dual f∗ of f is defined for

n = 2, 3, · · · :

f∗n =
∑

p+q=n

f∗pq : G∗n →
∑

p+q=n

D∗p ⊗R G∗q

Lemma 2.3 f∗pq = id∆⊗p ⊗R id∆⊗q ⊗∆⊗2 f∗11. Thus f∗ is still

determined by index (1, 1).
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The following notions concern bi-co-module problems is sug-

gested by Y.Han.

Definition 2.4 Let R be a minimal algebra with vertex set

T . We define a quasi-free R-module C0 =
∑

X∈T RXeX ' R

with a quasi-basis {eX}X∈T ; and a quasi-free ∆-module C1 with

a quasi-basis V∗ = {v1, v2, · · · , vm}. Let C>1 = ⊕∞i=1Ci be a

∆⊗>1-module finitely generated by index 1, and let C = ⊕∞i=0Ci

be a ∆⊗-module.

Moreover, there exists a ∆⊗-homomorphism µ : C → C ⊗
R
C,

where restricting µ into C>1 is a ∆⊗>1 homomorphism determined

by index (1, 1) ; and a ∆ morphism ε : C → C0 ' R which sends
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eX to 1X, and vj to 0 for all 1 6 j 6 m, such that (C, µ, ε)
becomes an N-graded k-co-algebra.

Definition 2.5 Let the minimal algebra R and the N-graded

co-algebra C be given in 2.4. We define a ∆⊗-module N =
⊕∞i=0Ni, where N0 = 0, N>1 = ⊕∞i=1Ni is a ∆⊗>1-module

finitely generated in degree 1 with N1 being a quasi-free ∆-

module, having a ∆-quasi-basis A∗ = {a1, a2, . . . , an}.

Moreover there exist graded ∆⊗-homomorphisms ι : N →
C⊗

R
N and τ : N → N ⊗

R
C, such that ι : N>2 → C>1⊗

R
N>1

and τ : N>2 → N>1 ⊗
R
C>1 are determined by index (1, 1)

respectively, thus N becomes an N-graded C-C-bi-co-module.
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3. Bi-module problems and their representations

Definition 3.1 A quadruple A = (R,K,M, d) is called a

bi-module problem provided

(i) R is a minimal algebra with vertex set T .

(ii) K = ⊕∞i=0Ki is an N-graded k-algebra given by Definition

1.2.

(iii) M = ⊕∞i=0Mi is an N-graded K-K-bi-module given by

Definition 1.3.

(iv) There is an N-graded derivation d : K →M determined
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by index 1 given in Formula (1-1) with d(UV ) = Ud(V )+d(U)V
for any U, V ∈ K.

Now we define the representation category of A.

Definition 3.2 Let J(λ) = Jd(λ)ed ⊕ Jd−1(λ)ed−1 ⊕ · · · ⊕
J1(λ)e1, with ei non-negative integers, be a Jordan form. Set

mj = ed + ed−1 + · · ·+ ej. The following partitioned matrix Wλ

is called a Weyr matrix of eigenvalue λ :
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W (λ) =



λIm1 W12 0 · · · 0 0
λIm2 W23 · · · 0 0

λIm3 · · · 0 0
. . . ... ...

λImd−1
Wd−1,d

λImd


d×d

,

with Wj,j+1 =
(

Imj+1

0

)
mj×mj+1

. A direct sum W =

W (λ1) ⊕W (λ2) ⊕ · · · ⊕W (λs) of finitely many Weyr matrices

with distinct eigenvalues λi is said to be a Weyr matrix.
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Let X ∈ T1. A Weyr matrix W over k is called RX-regular

if its eigenvalues are RX-regular, i.e. φX(λ) 6= 0, for all the

eigenvalues λ.

Denote by mod-R the category consisting of finitely dimensio-

nal R-modules. Since R is commutative, mod-R can be viewed

as both left and right module category. Let

P ∈ mod-R, with PX = kmX , P (x) = WX, ∀X ∈ T ,

where WX = ImX
for X ∈ T0; or WX is a RX-regular Weyr

matrix for X ∈ T1. And (mX)X∈T is said to be the dimension
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vector of P . Suppose the quasi-basis element Ai = 1Xi
Ai1Yi

, let

P (M1)P = P ⊗R M1 ⊗R P =⇒
P (M1)P '

⊕n
i=1 IMmXi

×mYi
(k). (3-1)

In fact P ⊗R M1 ⊗R P ' P ⊗R (⊕n
i=1∆XiYi

) ⊗R P '
⊕n

i=1P ⊗R R(1Xi
⊗k 1Yi

)R ⊗R P ' ⊕n
i=1P1Xi

⊗k 1Yi
P '

⊕n
i=1IMmXi

×mYi
(k). Then P (M1)P possesses an R-R-bi-

modules structure :

xB = WXB, By = BWY , ∀ B ∈ IMmX×mY
(k). (3-2)

Taken α = (α1, · · · , αn) ∈P (M1)P with αi ∈ IMmXi
×mYi

(k).
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Write

P1 =
∑n

i=1 αi ⊗∆ Ai, (3-3)

where αi can be viewed as a matrix coefficient of Ai.

Definition 3.3 A representation (P, P1) of a bi-module problem

A consists of a module P ∈ mod-R and an element P1 given by

Formulae (3-1)-(3-3).

Suppose (Q,Q1) is again a representation of dimension vector

n, QX = W ′
X for X ∈ T , and Q1 =

∑n
i=1 βi ⊗∆ Ai. Set the
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quasi-basis element Vj = 1X′
j
Vj1Y ′

j
, let

P (K1)Q = P ⊗R K1 ⊗R Q '
⊕m

j=1 IMmX′
j
×nY ′

j

(k), (3-4)

with the left and right R-module actions :

xU = WXU, Uy = UW ′
Y , ∀U ∈ IMmX×nY

(k). (3-5)

Let f0 = (fX | X ∈ T ) : P → Q be an R-module ho-

momorphism, and f1 = (f1
1 , · · · , fm

1 ) ∈ P (K1)Q with f j
1 ∈

IMmX′
j
×nY ′

j

(k). Write

S0 =
∑

X∈T fX ⊗R EX, S1 =
∑m

j=1 f j
1 ⊗∆ Vj, (3-6)
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where fX, f j
1 can be viewed as matrix coefficients of EX, Vj

respectively.

Definition 3.4 A morphism of a bi-module problem A is

S = S0 + S1 : (P, P1) → (Q,Q1), where S0, S1 are given by (3-

4)-(3-6), such that P1◦S1−S1◦Q1 = d(S1) with the operations

“d” and “ ◦ ” being calculated below.

For the calculation of d, we have

d(Vi) =
∑

l ζil ⊗∆ Al =⇒ d(f i
1 ⊗∆ Vi) =

∑
l

(
ζil ⊗∆ f i

1

)
⊗∆ Al
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by duality. For the calculation of ◦, we have :

Vi ⊗R Aj =
∑

l ηijl ⊗∆⊗2 (1∆⊗2 ⊗∆ Al) =⇒
(f i

1 ⊗∆ Vi) ◦ (αj ⊗∆ Aj) =
∑

l[ηijl ⊗∆⊗2 (f i
1 ⊗R αj)]⊗∆ Al

by duality. (αi ⊗∆ Aj) ◦ (f j
1 ⊗∆ Vj) can be calculated similarly.

Corollary 3.5 Let S : (P, P1) → (Q,Q1), S′ : (Q,Q1) →
(U,U1) be two morphisms over A. Then S ◦ S′ : (P, P1) →
(U,U1) is also a morphism over A with (S ◦ S′)0 = S0S

′
0,

(S ◦ S′)1 = S0S
′
1 + S1S

′
0 + S1 ◦ S′1.

We denote by R(A) the category of representations of the

bi-module problem A.
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4. Bi-co-module problems and their
representations

Definition 4.1 A quadruple C = (R, C,N , ∂) is called a bi-co-

module problem provided

(i) R is a minimal algebra with a vertex set T ;

(ii) C = ⊕∞i=0Ci is an N-graded co-algebra given by Definition

2.4.

(iii) N = ⊕∞i=0Ni is an N-graded C-C-bi-co-module given by

Definition 2.5.
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(iv) There is an N-graded co-derivation ∂ : N → C determined

by index 1.

The derivation law and co-derivation law are shown in the

picture below :

K ⊗R M
l

&&LLLLLLLLLLL

K ⊗R K

1⊗d 77oooooooooooo
m

//

d⊗1
''OOOOOOOOOOOO
K

−d
// M;

M⊗R K
r

99rrrrrrrrrrr

C ⊗R N
1⊗∂

''OOOOOOOOOOO

N

ι ::ttttttttttt −∂
//

τ $$JJJJJJJJJJJ
C

µ
// C ⊗R C.

N ⊗R C
∂⊗1

77ooooooooooo
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Definition 4.2 A representation (P, α) of bi-co-module pro-

blem C is a pair (P, α), where P is a finite-dimensional left

R-module, and α ∈ HomR(N1 ⊗R
P, P ).

Let (P, α) and (Q, β) be two representations of C of dimension

m,n respectively. A morphism f : (P, α) → (Q, β) of a bi-co-

module problem C is an R-morphism f ∈ HomR(C61 ⊗R
P,Q)

satisfying the following commutative diagram :
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N1 ⊗R
P

ι11⊗1
//

−τ11⊗1

��

∂1⊗1 **UUUUUUUUUUUUUUUUUUUUUU
C61 ⊗R N1 ⊗R P

1⊗α
// C61 ⊗R P

f

��

C61 ⊗R
P

f

))SSSSSSSSSSSSSSSSSSSSSSS

N1 ⊗R
C61 ⊗R

P
1⊗f

// N1 ⊗R
Q

β

// Q

If g : Q → U is another morphism, then the composition h = fg

is defined to be the composition of the following maps :

C61 ⊗R
P

µ⊗1−→ C61 ⊗R
C61 ⊗R

P
1⊗f−→ C61 ⊗R

Q
g−→ U.
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We denote by R(C) the category of representations of the

bi-co-module problem C.

Theorem 4.4 Let A = (R,K,M, d) be a bi-module problem.

Let C and N be the ∆⊗-dual of K and M respectively, and ι, τ, ∂

be the ∆⊗-dual of the left module action l, the right module

action r, the derivation d respectively. Then C = (R, C,N , ∂) is

a bi-co-module problem, which is called the ∆⊗-dual of A.

Furthermore, representation categories R(A) and R(C) are

equivalent.
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Moreover, we can construct a layered bocs B = (Γ; Ω) from

a bi-co-module problem C corresponding to a bi-module problem

A such that the representation categories R(A);R(C) and R(B)
are equivalent.

We can also introduce the reduction operations for bi-module

problems and bi-co-module problems which correspond to the

reductions for bocses. These reduction techniques can not only

provide some inductive step in the proof of foundation Tame

Wild Theorem, but also play a key role to find some “good” or

“bad” configurations in representation categories.
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In addition, a class of special bi-module problems in terms

of matrices, the so-called matrix bi-module problem, is very

important and interesting. Perhaps, the notions of bi-module

problem, bi-co-module problem and bocs originated with it.

Unfortunately, for the limit of time I am not able to show the

above subjects.
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