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PARITY

I The first question:
What is parity?

I Where there is a semigroup or a ring, there might be a parity
over it. Since parity is essentially given by one or two
operations of the 2-element field GF (2):

+ 0 1

0 0 1
1 1 0

× 0 1

0 0 0
1 0 1
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PARITY OVER Z

I The first example: Z.

I The parity over Z is given by the following short exact
sequence of groups or rings

0 −→ 2Z ι−→ Z π−→ Z/2Z −→ 0

I The two homomorphisms ι and π determine each other, either
makes the parity over Z. Indeed, the injection ι assigns all
even elements (hence also assigns all ”odd” elements), while
the canonical surjection π determines the operation table(s) of
the parity.
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PARITY OVER OTHER SYSTEMS

I Another example is the so-called even and odd functions
defined over, say, R. The parity over the set F of all even and
odd functions is a monoid under ”multiplication”. But this
parity only makes sense when we misunderstand this
multiplication as addition ”+”: since

odd × odd = even even × odd = odd!

I The parity over symmetric group Sn on n letters is entirely at
the same situation as above and is determined completely by
the following short exact sequence of groups

1 −→ An
ι−→ Sn

π−→ S2 −→ 1

Return
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PARITY OVER ALGEBRAIC SYSTEMS

I A possible answer:
Parity (over an algebraic system) is a short exact sequence
with end term Z2 (as group or ring).

I Equivalently:
Parity is a monomorphism (=injective homomorphism here) of
index 2.

Return
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PARITY OVER ALGEBRAIC SYSTEMS

I BUT: Parity is clearly well-defined over 3Z, 5Z, · · · , so the
natural index-3 monomorphism 3Z −→ Z also deserves a
name of ”even” or ”odd”. So, the reasonable question should
be:

Can we call a monomorphism even or odd?

I So, parity should be defined over such systems consisting of
elements (more precisely, objects) of the form

A
φ−→ B

with φ a monomorphism. Such system is called to be a
monomorphism category.

I Every object in mathematics is some kind of monomorphism.

Return
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Background: Counting the subobjects

I Question 1 (G.Birkhoff 1934). How many pairs of
subgroups of a finite abelian group? i.e. let G be a finite
abelian group of order n, S2(n)- the set of pairs (A,B), where
A ≤ B ≤ G ( ”≤” means ”subgroup”), then

|S2(n)| := ]{indecomposable isoclasses of S2(n)} =?

where (A,B) ∼= (A′,B ′) ⇐⇒ ∃ isomorphism f : B → B ′ such
that f (A) = A′.

I Since group homomorphism preserves p-subgroup (p - a
prime), Question 1 can be reduced to abelian p-groups, thus
may assume |G | = pn and

G =
t∑

i=1

⊕Z/pni , n1 + n2 + · · ·+ nt = n

Return



Background: Counting the subobjects

I Question 1 (G.Birkhoff 1934). How many pairs of
subgroups of a finite abelian group? i.e. let G be a finite
abelian group of order n, S2(n)- the set of pairs (A,B), where
A ≤ B ≤ G ( ”≤” means ”subgroup”), then

|S2(n)| := ]{indecomposable isoclasses of S2(n)} =?

where (A,B) ∼= (A′,B ′) ⇐⇒ ∃ isomorphism f : B → B ′ such
that f (A) = A′.

I Since group homomorphism preserves p-subgroup (p - a
prime), Question 1 can be reduced to abelian p-groups, thus
may assume |G | = pn and

G =
t∑

i=1

⊕Z/pni , n1 + n2 + · · ·+ nt = n

Return



Background: Counting the subobjects(2)

Answer

I 1. 1934, G.Birkhoff, |S2(2)| = 5, |S2(3)| = 10;

I 2. 1984, Hunter-Richman-Walker, |S2(4)| = 20;

I 3. 1999, Richman-Walker, |S2(5)| = 50.

I 4. But |S2(6)| depends on p and G , say, for
G = Z/p4 ⊕ Z/p2, |S2(6)| = p + 7.

Return
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Background: Counting the subobjects(III)

I 1989, 2000, D.M.Arnold[Ar]
Filtered chain category Sn(R) over commutative Artin
uniserial ring R
• objects in Sn(R) : C = (C1 ≤ C2 ≤ · · · ≤ Cn ) with all C ′

i s
modules over R.
• morphisms in Sn(R) : f : C → C ′, f (Ci ) ≤ C

′
i , 1 ≤ i ≤ n.

I Remark:The category studied by Birkhoff is a special case of
Sn(R) When n = 2,R = Z/pmZ .

I 2002, D.Simon[S], R = k[x ]/xm.
1. Sn(R) representation-finite ⇐⇒ m ≤ 2 or n = 1 or
m = 3 ∧ (3 ≤ n ≤ 4) or m = 4, 5 ∧ n = 2;
2. Sn(R) representation-tame ⇐⇒ m = 6 ∧ n = 2 or
m = 4 ∧ (3 ≤ n ≤ 4) or m = 3 ∧ n = 5;
3. Sn(R) representation-wild ⇐⇒ m ≥ 7 ∧ n ≥ 2 or
m ≥ 5 ∧ n ≥ 3 or m ≥ 4 ∧ n ≥ 5 or m ≥ 3 ∧ n ≥ 6.
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Morphism Category of A Category

Let A be a category (say: A=category of all finite groups)

I Mor(A)-morphism category of A

• Object of Mor(A) is (X , φ) = X1
φ−→ X2 with A-morphism

φ : X1 → X2;

• A morphism f : (X , φ) → (Y , ψ) of Mor(A) is f =
(

f1
f2

)
with A-morphism fi : Xi → Yi such that ψf1 = f2φ

X1

f1
��

φ // X2

f2
��

Y1
ψ // Y2
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Monomorphism Category (= subobjects category) S(A)

I Let S(A) (the monomorphism category)- the full
subcategory of Mor(A) consisting of all the objects (X , φ)
where φ : X1 ↪→ X2 is a monomorphism.

I Can define dually F (A) (the epimorphism
category=(factor-objects category))-we do not use it in this
talk.
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Subgroups of Symmetric Groups

• S = the monomorphism category of all subgroups of symmetric
groups:

(1) Object= (G , φ, n) = G
φ−→ Sn with φ an injective group

homomorphism.
(2) Morphism=commutative square of group homomorphisms.

AIM: Find ”parity” in this monomorphism category and apply.
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Semigroup Structure over All Symmetric Groups

I Let G be the category of all symmetric groups (with group
homomorphism as morphism). Let Sm be the symmetric
group on letters Xm = {xm

1 , · · · , xm
m}. For

σ = (x1x2 · · · xr ) ∈ Sm, τ = (y1y2 · · · yt) ∈ Sn. Define an
operation ∗ of σ and τ by

σ ∗ τ = στ

which is an element of the symmetric group Sm+n on m + n
letters Xm ∪ X n = {xm

1 , · · · , xm
m , x

n
1 , · · · , xn

n}. The above
operation can be extended over all permutations and thus
defines a commutative semigroup structure over G:

Sm ∗ Sn = Sm+n = Sn ∗ Sm

with no identity element.
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Semigroup Structure over Monomorphism Category

I Let (X , φ,m), (Y , ψ, n) ∈ S. Define

(X , φ,m) ∗ (Y , ψ, n) = (X × Y , φ ∗ ψ,mn)

where φ ∗ ψ(x , y) = φ(x) ∗ ψ(y).

I This equips S with a commutative semigroup structure.
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Equivalence over Monomorphism Category

I Let I be the full subcategory consisting of such objects
(X , φ, n) of S such that φ(X ) ⊆ An, the alternating group on
n letters.

I Define a relation ∼ over S by I:

(G , φ,m) ∼ (H, ψ, n) ⇐⇒ (G , φ,m) ∗ A = (H, ψ, n) ∗ B

for some A,B ∈ I.

I Fact: ∼ is an equivalence relation.
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Quotient Category of Monomorphism Category

I Theorem
• The quotient category Q := S/ ∼ is equivalent to a
category with two objects

Q ' {(S1, Id , 1), (S2, Id , 2)}.

• (Q, ∗) is a monoid (=semigroup with identity) under the
induced operation * with operation table

* a b

a a a
b a b

where a := (S1, Id , 1) and b := (S2, Id , 2), so a serves as the
zero element and b the identity element.
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Proof of the Theorem

I Let (G , φ, n) ∈ S. A(G ) = φ−1(φ(G ) ∩ An) C G . Claim
(G , φ, n) ' (S1, Id , 1) or (G , φ, n) ' (S2, Id , 2) . If A(G ) = G ,
then it is clear (G , φ, n) ' (S1, Id , 1). Else, the following
commutative diagrams of natural homomorphisms

G

f1
��

φ // Sn

f2
��

G/A(G )
Id // Sn/An
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Proof of the Theorem (continued)

I

A(G )

iG
��

ι // An

i
��

G

πG

��

φ // Sn

π
��

G/A(G )
Id // Sn/An

give the desired isomorphism between (G , φ, n) and (S2, Id , 2).

I Corollary. There is a parity over S, where all (G , φ, n) with
φ(G ) ⊆ An are even elements, the other odd ones.
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Applications: Parity over Finite Groups

I Application 1. Let |G | be odd. Then all injection G −→ Sn is
even. In particular, G can be embedded into A|G | (saving 50%
space, comparing with Cayley’s Embedding Theorem ,)

I Application 2. Let G be commutative and |G | be even. Then
there is at least one injection G −→ Sn is not even. That is,
there is a parity over G .

I Remark. Application 1 and 2 can be deduced from Lagrange’s
Theorem.
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Parity over Noncommutative Groups of Even Orders

I Application 3. Let G be noncommutative and |G | be even.
Then the parity is independent of |G |.

I Example 1. All injections An ↪→ Sn are even so there is no
parity over any alternating group.(When n is large, this can be
deduced from the simplicity of An.)

I Example 2. Let Dn =< (12 · · · n),
∏

2≤j<n+2−j(j n + 2− j) >
be the dihedral group (|Dn| = 2n). Then there is a parity over
Dn ⇐⇒ n 6= 3(mod4).

Return



Main References
[Ar ]D. M. Arnold, Abelian groups and representations of finite
partially ordered sets, Canad. Math. Soc. Books in Math.,
Springer-Verlag, New York, 2000.
[B]G. Birkhoff, Subgroups of Abelian Groups, Proceedings London
Math Soc 38 (1935), 385-401.
[S ]D. Simson, Chain categories of modules and subprojective
representations of posets over uniserial algebras, Rocky Mountain
J. Math. 32(4)(2002), 1627-1650.
[XZZ ]B.L.Xiong, P.Zhang, Y.H.Zhang, Auslander-Reiten
Sequences in Monomorphism Category, arXiv:1101.4113, to appear
in Math. Forum.
[Z ]Y.H.Zhang, Monomorphism Categories Associated to
Symmetric Groups and Parity in Finite Groups, Science in China A,
DOI: 10.1007/s11425-012-4427-6.

Return



THANK YOU FOR YOUR ATTENTION!

Return


