Monomorphism Category Associated to Symmetric Group and Parity in Finite Groups

Yuehui Zhang (Shanghai Jiao Tong University, China)

2012.8.13-ICRA

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

PARITY

► The first question:

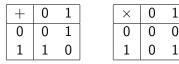
What is parity?

PARITY

The first question:

What is parity?

Where there is a semigroup or a ring, there might be a parity over it. Since parity is essentially given by one or two operations of the 2-element field GF(2):



PARITY OVER $\ensuremath{\mathbb{Z}}$

• The first example: \mathbb{Z} .

PARITY OVER $\ensuremath{\mathbb{Z}}$

- The first example: \mathbb{Z} .
- ► The parity over Z is given by the following short exact sequence of groups or rings

$$0 \longrightarrow 2\mathbb{Z} \stackrel{\iota}{\longrightarrow} \mathbb{Z} \stackrel{\pi}{\longrightarrow} \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

PARITY OVER $\mathbb Z$

- ▶ The first example: ℤ.
- ► The parity over Z is given by the following short exact sequence of groups or rings

$$0 \longrightarrow 2\mathbb{Z} \stackrel{\iota}{\longrightarrow} \mathbb{Z} \stackrel{\pi}{\longrightarrow} \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

The two homomorphisms ι and π determine each other, either makes the parity over Z. Indeed, the injection ι assigns all even elements (hence also assigns all "odd" elements), while the canonical surjection π determines the operation table(s) of the parity.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

PARITY OVER OTHER SYSTEMS

► Another example is the so-called even and odd functions defined over, say, ℝ. The parity over the set F of all even and odd functions is a monoid under "multiplication". But this parity only makes sense when we misunderstand this multiplication as addition "+": since

 $odd \times odd = even \quad even \times odd = odd!$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

PARITY OVER OTHER SYSTEMS

► Another example is the so-called even and odd functions defined over, say, ℝ. The parity over the set F of all even and odd functions is a monoid under "multiplication". But this parity only makes sense when we misunderstand this multiplication as addition "+": since

$$odd \times odd = even \quad even \times odd = odd!$$

► The parity over symmetric group S_n on n letters is entirely at the same situation as above and is determined completely by the following short exact sequence of groups

$$1 \longrightarrow A_n \stackrel{\iota}{\longrightarrow} S_n \stackrel{\pi}{\longrightarrow} S_2 \longrightarrow 1$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A possible answer:

Parity (over an algebraic system) is a short exact sequence with end term \mathbb{Z}_2 (as group or ring).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A possible answer:

Parity (over an algebraic system) is a short exact sequence with end term \mathbb{Z}_2 (as group or ring).

Equivalently:

Parity is a monomorphism (=injective homomorphism here) of index 2.

▶ Return

► BUT: Parity is clearly well-defined over 3Z, 5Z, ···, so the natural index-3 monomorphism 3Z → Z also deserves a name of "even" or "odd". So, the reasonable question should be:

Can we call a monomorphism even or odd?

► BUT: Parity is clearly well-defined over 3Z, 5Z, ···, so the natural index-3 monomorphism 3Z → Z also deserves a name of "even" or "odd". So, the reasonable question should be:

Can we call a monomorphism even or odd?

 So, parity should be defined over such systems consisting of elements (more precisely, objects) of the form

$$A \stackrel{\phi}{\longrightarrow} B$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

with ϕ a monomorphism. Such system is called to be a **monomorphism category**.

► BUT: Parity is clearly well-defined over 3Z, 5Z, ···, so the natural index-3 monomorphism 3Z → Z also deserves a name of "even" or "odd". So, the reasonable question should be:

Can we call a monomorphism even or odd?

 So, parity should be defined over such systems consisting of elements (more precisely, objects) of the form

$$A \stackrel{\phi}{\longrightarrow} B$$

with ϕ a monomorphism. Such system is called to be a **monomorphism category**.

• Every object in mathematics is some kind of monomorphism.

► Question 1 (G.Birkhoff 1934). How many pairs of subgroups of a finite abelian group? i.e. let G be a finite abelian group of order n, S₂(n)- the set of pairs (A, B), where A ≤ B ≤ G("≤" means "subgroup"), then

 $|S_2(n)| :=$ {indecomposable isoclasses of $S_2(n)$ } =?

where $(A, B) \cong (A', B') \iff \exists$ isomorphism $f : B \to B'$ such that f(A) = A'.

Question 1 (G.Birkhoff 1934). How many pairs of subgroups of a finite abelian group? i.e. let G be a finite abelian group of order n, S₂(n)- the set of pairs (A, B), where A ≤ B ≤ G("≤" means "subgroup"), then

 $|S_2(n)| :=$ {indecomposable isoclasses of $S_2(n)$ } =?

where $(A, B) \cong (A', B') \iff \exists$ isomorphism $f : B \to B'$ such that f(A) = A'.

Since group homomorphism preserves *p*-subgroup (*p*- a prime), Question 1 can be reduced to abelian *p*-groups, thus may assume |G| = pⁿ and

$$G = \sum_{i=1}^t \oplus \mathbb{Z}/p^{n_i}, n_1 + n_2 + \cdots + n_t = n$$

Answer

▶ 1. 1934, G.Birkhoff, $|S_2(2)| = 5$, $|S_2(3)| = 10$;

Answer

- ▶ 1. 1934, G.Birkhoff, $|S_2(2)| = 5$, $|S_2(3)| = 10$;
- ▶ 2. 1984, Hunter-Richman-Walker, $|S_2(4)| = 20$;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Answer

- ▶ 1. 1934, G.Birkhoff, $|S_2(2)| = 5$, $|S_2(3)| = 10$;
- ▶ 2. 1984, Hunter-Richman-Walker, $|S_2(4)| = 20$;

▶ 3. 1999, Richman-Walker, $|S_2(5)| = 50$.

Answer

- ▶ 1. 1934, G.Birkhoff, $|S_2(2)| = 5$, $|S_2(3)| = 10$;
- ▶ 2. 1984, Hunter-Richman-Walker, $|S_2(4)| = 20$;
- ▶ 3. 1999, Richman-Walker, $|S_2(5)| = 50$.
- ▶ 4. But $|S_2(6)|$ depends on p and G, say, for $G = \mathbb{Z}/p^4 \oplus \mathbb{Z}/p^2$, $|S_2(6)| = p + 7$.

Return

- 1989, 2000, D.M.Arnold[Ar]
 Filtered chain category S_n(R) over commutative Artin uniserial ring R
 - objects in $S_n(R)$: $C = (C_1 \le C_2 \le \cdots \le C_n)$ with all C'_i s modules over R.
 - morphisms in $S_n(R)$: $f : C \to C', f(C_i) \le C'_i, 1 \le i \le n$.

- 1989, 2000, D.M.Arnold[Ar]
 Filtered chain category S_n(R) over commutative Artin uniserial ring R
 - objects in $S_n(R)$: $C = (C_1 \le C_2 \le \cdots \le C_n)$ with all C'_i s modules over R.
 - morphisms in $S_n(R)$: $f: C \to C', f(C_i) \leq C'_i, 1 \leq i \leq n$.

▶ Remark: The category studied by Birkhoff is a special case of $S_n(R)$ When $n = 2, R = Z/p^m Z$.

- 1989, 2000, D.M.Arnold[Ar]
 Filtered chain category S_n(R) over commutative Artin uniserial ring R
 - objects in $S_n(R)$: $C = (C_1 \le C_2 \le \cdots \le C_n)$ with all C'_i s modules over R.
 - morphisms in $S_n(R)$: $f: C \to C', f(C_i) \le C'_i, 1 \le i \le n$.
- ▶ Remark: The category studied by Birkhoff is a special case of S_n(R) When n = 2, R = Z/p^mZ.
- ▶ 2002, D.Simon[S], $R = k[x]/x^m$. 1. $S_n(R)$ representation-finite $\iff m \le 2$ or n = 1 or $m = 3 \land (3 \le n \le 4)$ or $m = 4, 5 \land n = 2$; 2. $S_n(R)$ representation-tame $\iff m = 6 \land n = 2$ or $m = 4 \land (3 \le n \le 4)$ or $m = 3 \land n = 5$; 3. $S_n(R)$ representation-wild $\iff m \ge 7 \land n \ge 2$ or $m \ge 5 \land n \ge 3$ or $m \ge 4 \land n \ge 5$ or $m \ge 3 \land n \ge 6$.

Morphism Category of A Category

Let A be a category (say: A=category of all finite groups)

Mor(A)-morphism category of A

• Object of Mor(A) is $(X, \phi) = X_1 \xrightarrow{\phi} X_2$ with A-morphism $\phi : X_1 \to X_2$;

• A morphism $f : (X, \phi) \to (Y, \psi)$ of Mor(A) is $f = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}$ with A-morphism $f_i : X_i \to Y_i$ such that $\psi f_1 = f_2 \phi$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Monomorphism Category (= subobjects category) S(A)

- Let S(A) (the monomorphism category)- the full subcategory of Mor(A) consisting of all the objects (X, φ) where φ : X₁ → X₂ is a monomorphism.
- Can define dually F(A) (the epimorphism category=(factor-objects category))-we do not use it in this talk.

▶ Return

Subgroups of Symmetric Groups

• $\mathcal{S}=$ the monomorphism category of all subgroups of symmetric groups:

(1) Object= $(G, \phi, n) = G \xrightarrow{\phi} S_n$ with ϕ an injective group homomorphism.

(2) Morphism=commutative square of group homomorphisms.

AIM: Find "parity" in this monomorphism category and apply.

▶ Return

Semigroup Structure over All Symmetric Groups

Let G be the category of all symmetric groups (with group homomorphism as morphism). Let S_m be the symmetric group on letters X^m = {x₁^m, · · · , x_m^m}. For σ = (x₁x₂ · · · x_r) ∈ S_m, τ = (y₁y₂ · · · y_t) ∈ S_n. Define an operation * of σ and τ by

$$\sigma * \tau = \sigma \tau$$

which is an element of the symmetric group S_{m+n} on m+nletters $X^m \cup X^n = \{x_1^m, \dots, x_m^m, x_1^n, \dots, x_n^n\}$. The above operation can be extended over all permutations and thus defines a commutative semigroup structure over \mathcal{G} :

$$S_m * S_n = S_{m+n} = S_n * S_m$$

with no identity element.

Semigroup Structure over Monomorphism Category

• Let
$$(X, \phi, m), (Y, \psi, n) \in S$$
. Define

 $(X,\phi,m)*(Y,\psi,n)=(X\times Y,\phi*\psi,mn)$

where $\phi * \psi(x, y) = \phi(x) * \psi(y)$.

• This equips S with a commutative semigroup structure.

Return

Equivalence over Monomorphism Category

• Let \mathcal{I} be the full subcategory consisting of such objects (X, ϕ, n) of \mathcal{S} such that $\phi(X) \subseteq A_n$, the alternating group on n letters.

• Define a relation
$$\sim$$
 over S by \mathcal{I} :

$$(G, \phi, m) \sim (H, \psi, n) \iff (G, \phi, m) * A = (H, \psi, n) * B$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for some $A, B \in \mathcal{I}$.

▶ Fact: ~ is an equivalence relation.

▶ Return

Quotient Category of Monomorphism Category

Theorem

- The quotient category $\mathcal{Q}:=\mathcal{S}/\sim$ is equivalent to a category with two objects

$$Q \simeq \{(S_1, Id, 1), (S_2, Id, 2)\}.$$

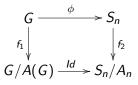
• (Q, *) is a monoid (=semigroup with identity) under the induced operation * with operation table

*	а	b
а	а	а
b	а	b

where $a := (S_1, Id, 1)$ and $b := (S_2, Id, 2)$, so a serves as the zero element and b the identity element.

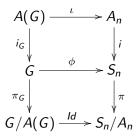
Proof of the Theorem

▶ Let $(G, \phi, n) \in S$. $A(G) = \phi^{-1}(\phi(G) \cap A_n) \triangleleft G$. Claim $(G, \phi, n) \simeq (S_1, Id, 1)$ or $(G, \phi, n) \simeq (S_2, Id, 2)$. If A(G) = G, then it is clear $(G, \phi, n) \simeq (S_1, Id, 1)$. Else, the following commutative diagrams of natural homomorphisms



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof of the Theorem (continued)



give the desired isomorphism between (G, ϕ, n) and $(S_2, Id, 2)$.

Corollary. There is a parity over S, where all (G, φ, n) with φ(G) ⊆ A_n are even elements, the other odd ones.

Applications: Parity over Finite Groups

- ▶ Application 1. Let |G| be odd. Then all injection G → S_n is even. In particular, G can be embedded into A_{|G|} (saving 50% space, comparing with Cayley's Embedding Theorem ⁽²⁾)
- ▶ Application 2. Let G be commutative and |G| be even. Then there is at least one injection $G \longrightarrow S_n$ is not even. That is, there is a parity over G.
- Remark. Application 1 and 2 can be deduced from Lagrange's Theorem.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ Return

Parity over Noncommutative Groups of Even Orders

- ▶ Application 3. Let G be noncommutative and |G| be even. Then the parity is independent of |G|.
- Example 1. All injections A_n → S_n are even so there is no parity over any alternating group.(When n is large, this can be deduced from the simplicity of A_n.)
- ▶ Example 2. Let $D_n = \langle (12 \cdots n), \prod_{2 \leq j < n+2-j} (j \quad n+2-j) \rangle$ be the dihedral group $(|D_n| = 2n)$. Then there is a parity over $D_n \iff n \neq 3 \pmod{4}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Return

Main References

[*Ar*]D. M. Arnold, Abelian groups and representations of finite partially ordered sets, Canad. Math. Soc. Books in Math.,

- Springer-Verlag, New York, 2000.
- [*B*]G. Birkhoff, Subgroups of Abelian Groups, Proceedings London Math Soc 38 (1935), 385-401.
- [S]D. Simson, Chain categories of modules and subprojective representations of posets over uniserial algebras, Rocky Mountain J. Math. 32(4)(2002), 1627-1650.
- [XZZ]B.L.Xiong, P.Zhang, Y.H.Zhang, Auslander-Reiten Sequences in Monomorphism Category, arXiv:1101.4113, to appear

in Math. Forum.

[Z]Y.H.Zhang, Monomorphism Categories Associated to Symmetric Groups and Parity in Finite Groups, Science in China A, DOI: 10.1007/s11425-012-4427-6.

▶ Return

THANK YOU FOR YOUR ATTENTION!

