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Basic definitions Decompositions Classification of cotorsion pairs

Aims:

I To give a classification of cotorsion pairs in a 2−CY
triangulated category with a cluster tilting object.
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Basic definitions

I. d−cluster tilting subcategories

C: a k−linear triangulated category, Hom-finite,
Krull-Schmidt; with shift functor [1].

T : a subcategory of a triangulated category C (closed
under isomorphisms, fnite direct sums and direct
summands).

d > 1 : an integer.
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T is called a d−cluster tilting subcategory provided that

(i). T is functorially finite in C

(ii). For X ∈ C,
X ∈ T if and only if Exti

C
(X,T ) = 0,∀1 ≤ i ≤ d − 1;

if and only if Exti
C

(T ,X) = 0,∀1 ≤ i ≤ d − 1.

T is called a d−cluster tilting objcet in C if addT is a
d−cluster tilting subcategory.



Basic definitions Decompositions Classification of cotorsion pairs

T is called a d−cluster tilting subcategory provided that

(i). T is functorially finite in C

(ii). For X ∈ C,
X ∈ T if and only if Exti

C
(X,T ) = 0,∀1 ≤ i ≤ d − 1;

if and only if Exti
C

(T ,X) = 0,∀1 ≤ i ≤ d − 1.

T is called a d−cluster tilting objcet in C if addT is a
d−cluster tilting subcategory.



Basic definitions Decompositions Classification of cotorsion pairs

T is called a d−cluster tilting subcategory provided that

(i). T is functorially finite in C

(ii). For X ∈ C,
X ∈ T if and only if Exti

C
(X,T ) = 0,∀1 ≤ i ≤ d − 1;

if and only if Exti
C

(T ,X) = 0,∀1 ≤ i ≤ d − 1.

T is called a d−cluster tilting objcet in C if addT is a
d−cluster tilting subcategory.



Basic definitions Decompositions Classification of cotorsion pairs

T is called a d−cluster tilting subcategory provided that

(i). T is functorially finite in C

(ii). For X ∈ C,
X ∈ T if and only if Exti

C
(X,T ) = 0,∀1 ≤ i ≤ d − 1;

if and only if Exti
C

(T ,X) = 0,∀1 ≤ i ≤ d − 1.

T is called a d−cluster tilting objcet in C if addT is a
d−cluster tilting subcategory.



Basic definitions Decompositions Classification of cotorsion pairs

I Calabi-Yau triangulated categories

C is called d−Calabi-Yau if there are functorial
isomorphisms
HomC(X,Y) ' DHomC(Y ,X[d]) for all X,Y ∈ C. Where
D = Homk(−, k)



Basic definitions Decompositions Classification of cotorsion pairs

I Calabi-Yau triangulated categories

C is called d−Calabi-Yau if there are functorial
isomorphisms
HomC(X,Y) ' DHomC(Y ,X[d]) for all X,Y ∈ C. Where
D = Homk(−, k)



Basic definitions Decompositions Classification of cotorsion pairs

I. Cotorsion pairs in a triangulated category C

A pair (X,Y) of subcategories in C is called a cotorsion
pair provided that

1. Ext1
C

(X,Y) = 0, i.e. Ext1
C

(X,Y) = 0,∀X ∈ X,Y ∈ Y.

2. For any M ∈ C, there is a triangle X → M → Y[1]→ X[1],
with X ∈ X,Y ∈ Y. This means that C = X ∗ Y[1]

I = X
⋂
Y is called the core of the cotorsion pair (X,Y).

For a cotorsion pairs (X,Y),
X = ⊥(Y[1]) := {M ∈ C|Hom(M,Y[1]) = 0}.
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A pair (X,Y) of subcategories in C is called a torsion pair if
(X,Y[−1]) is a cotorsion pair.

A pair (X,Y) of subcategories in C is called a t−structure if
(X,Y) is a cotorsion pair and X[1] ⊆ X, Y[−1] ⊆ Y.

A pair (X,Y) of subcategories in C is called a
co-t−structure if (X,Y) is a cotorsion pair and X[−1] ⊆ X,
Y[1] ⊆ Y.
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Then:

1. (X,Y) is a t−structure iff I = 0;

2. X is a cluster tilting subcategory iff I = X = Y
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Some previous works on cotorsion pairs in cluster
categories

1. A classification of cotorsion pairs in cluster category
CAn , in cluster tubes, was given by Holm-Jörgensen-Rubey

2. A classification of cotorsion pairs in CA∞ was given by
Ng

3. A classification of cotorsion pairs in C(S,M) was given by
Zhang-Zhou-Zhu, where C(S,M) is a marked surface without
punctures.

4. Mutation of cotorsion pairs in triangulated categories C
is defined and the geometric interpretation is given by
Zhang-Zhou-Zhu when C is CAn , CA∞ , C(S,M) (Yu Zhou’s talk).
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Decomposition of d−cluster tiltings

C : a triangulated category with shift functor [1],

I Definition. Let Ci, i ∈ A, be triangulated subcategories of
C. C is called a direct sum of Ci, i ∈ A, if

1. HomC(Ci,Cj) = 0, for i , j, i, j ∈ A;

2. For any M ∈ C, there are Mi ∈ Ci for all i ∈ A, such that
almost all Mi = 0, and M = ⊕i∈AMi.

Denote by C = ⊕i∈ACi.
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I C is called indecomposable (or connected) if C can not
be decomposed as a direct sum of two non-zero
triangulated subcategories.
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I Definition. Let T be a d−cluster tilting subcategory in a
triangulated category C, Ti, i ∈ A subcategories of T . Then
T is called a direct sum of Ti provided that:

1. HomC(Ti,Tj) = 0, for i , j, i, j ∈ A;

2. For any T ∈ T , there are Ti ∈ Ti, i ∈ A, such that almost all
Ti = 0, and T = ⊕i∈ATi;

3.HomC(Ti[k],Tj) = 0 for any i , j, 1 ≤ k ≤ d − 2.

Denote by T = ⊕i∈ATi.

I Remark: When d = 2, the condition 3 above is empty.
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Decomposition theorem

I Theorem: Let C be a d−CY triangulated category and T
be a d−cluster tilting subcatgeory. Then C = ⊕i∈ACi, where
Ci, i ∈ A are triangulated subcategories of C, if and only if
T = ⊕i∈ATi.

Moreover in this case, Ci = Ti ∗ T [1] ∗ · · · Ti[d − 1], and Ti is
d−cluster tilting in Ci.
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I Example: Let Q : 4→ 3→ 2→ 1, C = CQ, the cluster
catgeory of Q:
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We take X = add(E),
⊥(X[1]) = add({E,P3,P4[1],P4, I2,P1[1], S2, S3}.

By Iyama-Yoshino, the subquotient category
⊥(X[1])/X = {P3,P4[1],P4, I2,P1[1], S2, S3} is triangulated, and
2−CY

This subqeotient category admits cluster tilting objects,
for example the object T = P4[1] ⊕ P3 ⊕ E ⊕ S3. We have that
in this subquotient category, addT = add(S3) ⊕ add(P3 ⊕ P4[1]).

Then this subquotient category
⊥(X[1])/X = add({S2, S3}) ⊕ add({P3,P4[1],P4, I2,P1[1]}). The first
direct summand is the cluster category of the quiver A1,
the second direct summand is equivalent to CA2 .
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I Corollary: Let C be a 2−CY triangulated category, T and
T ′ be cluster tilting objects in C. Then the quiver QT of
EndCT is connected if and only if QT′ is connected.
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I Remark: If C is not d−CY, Theorem above is not true

I Example: C = Db(kQ), where Q : 3→ 2→ 1.
T = add(τ−nkQ[n]; n ∈ Z) is a cluster tilting subcategory in C.
Let Ti = add(τ−iKQ[i]), i ∈ Z. Then T = ⊕i∈ZTi. But C is
indecomposable.
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t−structures
I C : a 2−CY triangulated category with a cluster tilting

object T.

I Theorem: If C is indecomposable, then C has only trivial
t−structures, i.e. (C, 0) and (0,C).

I Remark: Some special cases were known before:

For cluster category of type An, this result was proved by
Holm-Jörgensen-Rubey;

For (generalized) cluster category C(S,M), associated to a
marked surface without punctures, this result was proved
by Zhang-Zhou-Zhu.
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For (generalized) cluster category C(S,M), associated to a
marked surface without punctures, this result was proved
by Zhang-Zhou-Zhu.
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I Remark: The theorem is not true for 2−CY category with
cluster tilting subcategory containing infinitely many
indecomposables.
For example, the cluster category of type A∞, introduced
by Holm-Jörgensen contains non-trivial t−structutes by
Ng’s work.
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Classification of cotorsion pairs

I Theorem: Let C be a 2−CY category with a cluster tilting
object T, I a rigid object, and ⊥(I[1])/I = ⊕j∈JIj be the
complete decomposition of the triangulated category
⊥(I[1])/I.

Then all cotorsion pairs with core I are obtained as
preimages under the functor π : ⊥(I[1])→ ⊥(I[1])/I of the
pairs (⊕j∈LIj,⊕j∈J−LIj), where L is a subset of J, and J − L is
the complement of L in J.

Moreover there are 2n cortorsion pairs with core I in C,
where n = |J|.
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ICorollary: C: 2−CY category with cluster tilting object.
Then

1. If (X,Y) is a cotorsion pair, then (Y,X) is also a cotorsion
pair.

2. The co-t−structures in C are only trivial, i.e. (C, 0), (0,C).
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I Example: Q : 4→ 3→ 2→ 1, C = CQ the cluster category
of Q as before.
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We take I = add(P2).

⊥(I[1]) = add({P1,P2,P3,P4, S2, S4,P3[1],P4[1]})

This subquotient category has the complete
decomposition:
⊥(I[1])/I = add({P1, S2}) ⊕ add({P3,P4S4,P3[1],P4[1]}).
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There are 4 cortorsion pairs with core I:
({P2}, {P1,P2,P3,P4, S2, S4,P3[1],P4[1]});
({P2,P1, S2}, {P2,P3,P4, S2, S4,P3[1],P4[1]});
({P2,P3,P4, S2, S4,P3[1],P4[1]}, {P2,P1, S2});
({P1,P2,P3,P4, S2, S4,P3[1],P4[1]}, {P2})
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Thank You!
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