t-structures in 2-Calabi-Yau triangulated categories with cluster tilting objects

Bin Zhu (joint with Yu Zhou)

Tsinghua University

ICRA 2012, Bielefeld

Decompositions

Classification of cotorsion pairs

► To give a classification of cotorsion pairs in a 2-CY triangulated category with a cluster tilting object.

▲□▶▲@▶▲臣▶▲臣▶ 臣 のへで

Decompositions

Classification of cotorsion pairs

Basic definitions

Decompositions

Classification of cotorsion pairs

Basic definitions

Decompositions

Decompositions

Classification of cotorsion pairs

Basic definitions

Decompositions

Classification of cotorsion pairs

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のへで

Classification of cotorsion pairs

Basic definitions

▶. *d*-cluster tilting subcategories

▶. *d*-cluster tilting subcategories

C: a *k*-linear triangulated category, Hom-finite, Krull-Schmidt; with shift functor [1].

Basic definitions

▶. *d*-cluster tilting subcategories

C: a *k*-linear triangulated category, Hom-finite, Krull-Schmidt; with shift functor [1].

 \mathcal{T} : a subcategory of a triangulated category C (closed under isomorphisms, fnite direct sums and direct summands).

Basic definitions

▶. *d*-cluster tilting subcategories

C: a *k*-linear triangulated category, Hom-finite, Krull-Schmidt; with shift functor [1].

 \mathcal{T} : a subcategory of a triangulated category C (closed under isomorphisms, fnite direct sums and direct summands).

d > 1 : an integer.

${\mathcal T}$ is called a *d*-cluster tilting subcategory provided that

${\mathcal T}$ is called a *d*-cluster tilting subcategory provided that

(i). ${\mathcal T}$ is functorially finite in ${\mathcal C}$

${\mathcal T}$ is called a *d*-cluster tilting subcategory provided that

(i). ${\mathcal T}$ is functorially finite in ${\mathcal C}$

(ii). For $X \in C$, $X \in \mathcal{T}$ if and only if $Ext_C^i(X, \mathcal{T}) = 0, \forall 1 \le i \le d - 1$; if and only if $Ext_C^i(\mathcal{T}, X) = 0, \forall 1 \le i \le d - 1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

${\mathcal T}$ is called a *d*-cluster tilting subcategory provided that

(i). ${\mathcal T}$ is functorially finite in ${\mathcal C}$

(ii). For $X \in C$, $X \in \mathcal{T}$ if and only if $Ext^{i}_{C}(X, \mathcal{T}) = 0, \forall 1 \leq i \leq d - 1;$ if and only if $Ext^{i}_{C}(\mathcal{T}, X) = 0, \forall 1 \leq i \leq d - 1.$ *T* is called a *d*-cluster tilting object in *C* if add*T* is a *d*-cluster tilting subcategory.

► Calabi-Yau triangulated categories

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

► Calabi-Yau triangulated categories

C is called *d*–Calabi-Yau if there are functorial isomorphisms $Hom_C(X, Y) \simeq DHom_C(Y, X[d])$ for all $X, Y \in C$. Where $D = Hom_k(-, k)$

▶. Cotorsion pairs in a triangulated category C

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

(日)

▶. Cotorsion pairs in a triangulated category C

A pair $(\mathcal{X},\mathcal{Y})$ of subcategories in \mathcal{C} is called a cotorsion pair provided that

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

▶. Cotorsion pairs in a triangulated category C

A pair $(\mathcal{X},\mathcal{Y})$ of subcategories in \mathcal{C} is called a cotorsion pair provided that

1. $Ext_C^1(X, \mathcal{Y}) = 0$, i.e. $Ext_C^1(X, Y) = 0, \forall X \in X, Y \in \mathcal{Y}$.

2. For any $M \in C$, there is a triangle $X \to M \to Y[1] \to X[1]$, with $X \in X, Y \in \mathcal{Y}$. This means that $C = X * \mathcal{Y}[1]$

▶. Cotorsion pairs in a triangulated category C

A pair $(\mathcal{X},\mathcal{Y})$ of subcategories in \mathcal{C} is called a cotorsion pair provided that

1. $Ext_C^1(\mathcal{X}, \mathcal{Y}) = 0$, i.e. $Ext_C^1(\mathcal{X}, Y) = 0, \forall X \in \mathcal{X}, Y \in \mathcal{Y}$.

2. For any $M \in C$, there is a triangle $X \to M \to Y[1] \to X[1]$, with $X \in X, Y \in \mathcal{Y}$. This means that $C = X * \mathcal{Y}[1]$

 $I = X \cap \mathcal{Y}$ is called the core of the cotorsion pair (X, \mathcal{Y}) .

▶. Cotorsion pairs in a triangulated category C

A pair $(\mathcal{X},\mathcal{Y})$ of subcategories in \mathcal{C} is called a cotorsion pair provided that

1. $Ext_C^1(\mathcal{X}, \mathcal{Y}) = 0$, i.e. $Ext_C^1(\mathcal{X}, Y) = 0, \forall X \in \mathcal{X}, Y \in \mathcal{Y}$.

2. For any $M \in C$, there is a triangle $X \to M \to Y[1] \to X[1]$, with $X \in X, Y \in \mathcal{Y}$. This means that $C = X * \mathcal{Y}[1]$

 $I = X \cap \mathcal{Y}$ is called the core of the cotorsion pair (X, \mathcal{Y}) .

For a cotorsion pairs (X, \mathcal{Y}) , $X = {}^{\perp}(\mathcal{Y}[1]) := \{M \in C | Hom(M, \mathcal{Y}[1]) = 0\}.$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

A pair (X, Y) of subcategories in *C* is called a torsion pair if (X, Y[-1]) is a cotorsion pair.

A pair (X, \mathcal{Y}) of subcategories in *C* is called a torsion pair if $(X, \mathcal{Y}[-1])$ is a cotorsion pair.

A pair (X, \mathcal{Y}) of subcategories in *C* is called a *t*-structure if (X, \mathcal{Y}) is a cotorsion pair and $X[1] \subseteq X, \mathcal{Y}[-1] \subseteq \mathcal{Y}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A pair (X, \mathcal{Y}) of subcategories in *C* is called a torsion pair if $(X, \mathcal{Y}[-1])$ is a cotorsion pair.

A pair (X, \mathcal{Y}) of subcategories in *C* is called a *t*-structure if (X, \mathcal{Y}) is a cotorsion pair and $X[1] \subseteq X, \mathcal{Y}[-1] \subseteq \mathcal{Y}$.

A pair (X, \mathcal{Y}) of subcategories in *C* is called a co-*t*-structure if (X, \mathcal{Y}) is a cotorsion pair and $X[-1] \subseteq X$, $\mathcal{Y}[1] \subseteq \mathcal{Y}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Lemma. Let (X, \mathcal{Y}) be a cotorsion pair with core I in C. Then:

Lemma. Let $(\mathcal{X}, \mathcal{Y})$ be a cotorsion pair with core I in C. Then:

1. (X, \mathcal{Y}) is a *t*-structure iff I = 0;

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Lemma. Let $(\mathcal{X}, \mathcal{Y})$ be a cotorsion pair with core I in C. Then:

- **1.** (X, \mathcal{Y}) is a *t*-structure iff I = 0;
- **2.** X is a cluster tilting subcategory iff $I = X = \mathcal{Y}$

Some previous works on cotorsion pairs in cluster categories

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Some previous works on cotorsion pairs in cluster categories

1. A classification of cotorsion pairs in cluster category C_{A_n} , in cluster tubes, was given by Holm-Jörgensen-Rubey

(ロ) (同) (三) (三) (三) (三) (○) (○)

Some previous works on cotorsion pairs in cluster categories

1. A classification of cotorsion pairs in cluster category C_{A_n} , in cluster tubes, was given by Holm-Jörgensen-Rubey

2. A classification of cotorsion pairs in \mathcal{C}_{A_∞} was given by Ng

(ロ) (同) (三) (三) (三) (三) (○) (○)

Some previous works on cotorsion pairs in cluster categories

1. A classification of cotorsion pairs in cluster category C_{A_n} , in cluster tubes, was given by Holm-Jörgensen-Rubey

2. A classification of cotorsion pairs in \mathcal{C}_{A_∞} was given by Ng

3. A classification of cotorsion pairs in $C_{(S,M)}$ was given by Zhang-Zhou-Zhu, where $C_{(S,M)}$ is a marked surface without punctures.

Some previous works on cotorsion pairs in cluster categories

1. A classification of cotorsion pairs in cluster category C_{A_n} , in cluster tubes, was given by Holm-Jörgensen-Rubey

2. A classification of cotorsion pairs in \mathcal{C}_{A_∞} was given by Ng

3. A classification of cotorsion pairs in $C_{(S,M)}$ was given by Zhang-Zhou-Zhu, where $C_{(S,M)}$ is a marked surface without punctures.

4. Mutation of cotorsion pairs in triangulated categories *C* is defined and the geometric interpretation is given by Zhang-Zhou-Zhu when *C* is C_{A_n} , C_{A_∞} , $C_{(S,M)}$ (Yu Zhou's talk).

Decomposition of *d***-cluster tiltings**

C: a triangulated category with shift functor [1],

(ロ) (同) (三) (三) (三) (三) (○) (○)

Decomposition of *d***-cluster tiltings**

C: a triangulated category with shift functor [1],

▶ Definition. Let C_i , $i \in A$, be triangulated subcategories of *C*. *C* is called a direct sum of C_i , $i \in A$, if

1. $Hom_C(C_i, C_j) = 0$, for $i \neq j, i, j \in A$;

Decomposition of *d***-cluster tiltings**

C: a triangulated category with shift functor [1],

▶ Definition. Let C_i , $i \in A$, be triangulated subcategories of *C*. *C* is called a direct sum of C_i , $i \in A$, if

1. $Hom_C(C_i, C_j) = 0$, for $i \neq j, i, j \in A$;

2. For any $M \in C$, there are $M_i \in C_i$ for all $i \in A$, such that almost all $M_i = 0$, and $M = \bigoplus_{i \in A} M_i$.

・ロト・(四ト・(日下・(日下・))への)

Decomposition of *d***-cluster tiltings**

C: a triangulated category with shift functor [1],

▶ Definition. Let C_i , $i \in A$, be triangulated subcategories of *C*. *C* is called a direct sum of C_i , $i \in A$, if

1. $Hom_C(C_i, C_j) = 0$, for $i \neq j, i, j \in A$;

2. For any $M \in C$, there are $M_i \in C_i$ for all $i \in A$, such that almost all $M_i = 0$, and $M = \bigoplus_{i \in A} M_i$.

Denote by $C = \bigoplus_{i \in A} C_i$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

► C is called indecomposable (or connected) if C can not be decomposed as a direct sum of two non-zero triangulated subcategories.

(日)

▶ Definition. Let \mathcal{T} be a *d*-cluster tilting subcategory in a triangulated category C, \mathcal{T}_i , $i \in A$ subcategories of \mathcal{T} . Then \mathcal{T} is called a direct sum of \mathcal{T}_i provided that:

▶ Definition. Let \mathcal{T} be a *d*-cluster tilting subcategory in a triangulated category C, \mathcal{T}_i , $i \in A$ subcategories of \mathcal{T} . Then \mathcal{T} is called a direct sum of \mathcal{T}_i provided that:

1. $Hom_{\mathcal{C}}(\mathcal{T}_i, \mathcal{T}_j) = 0$, for $i \neq j, i, j \in A$;

▶ Definition. Let \mathcal{T} be a *d*-cluster tilting subcategory in a triangulated category C, \mathcal{T}_i , $i \in A$ subcategories of \mathcal{T} . Then \mathcal{T} is called a direct sum of \mathcal{T}_i provided that:

1. $Hom_C(\mathcal{T}_i, \mathcal{T}_j) = 0$, for $i \neq j, i, j \in A$;

2. For any $T \in \mathcal{T}$, there are $T_i \in \mathcal{T}_i$, $i \in A$, such that almost all $T_i = 0$, and $T = \bigoplus_{i \in A} T_i$;

▶ Definition. Let \mathcal{T} be a *d*-cluster tilting subcategory in a triangulated category C, \mathcal{T}_i , $i \in A$ subcategories of \mathcal{T} . Then \mathcal{T} is called a direct sum of \mathcal{T}_i provided that:

1. $Hom_C(\mathcal{T}_i, \mathcal{T}_j) = 0$, for $i \neq j, i, j \in A$;

2. For any $T \in \mathcal{T}$, there are $T_i \in \mathcal{T}_i$, $i \in A$, such that almost all $T_i = 0$, and $T = \bigoplus_{i \in A} T_i$;

3.*Hom*_C($\mathcal{T}_i[k], \mathcal{T}_j$) = 0 for any $i \neq j, 1 \leq k \leq d - 2$.

▶ Definition. Let \mathcal{T} be a *d*-cluster tilting subcategory in a triangulated category C, \mathcal{T}_i , $i \in A$ subcategories of \mathcal{T} . Then \mathcal{T} is called a direct sum of \mathcal{T}_i provided that:

1. $Hom_{\mathcal{C}}(\mathcal{T}_i, \mathcal{T}_j) = 0$, for $i \neq j, i, j \in A$;

2. For any $T \in \mathcal{T}$, there are $T_i \in \mathcal{T}_i$, $i \in A$, such that almost all $T_i = 0$, and $T = \bigoplus_{i \in A} T_i$;

3. $Hom_{\mathcal{C}}(\mathcal{T}_i[k], \mathcal{T}_j) = 0$ for any $i \neq j, 1 \leq k \leq d-2$.

Denote by $\mathcal{T} = \bigoplus_{i \in A} \mathcal{T}_i$.

Remark: When d = 2, the condition 3 above is empty.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Decomposition theorem

► Theorem: Let *C* be a *d*-CY triangulated category and \mathcal{T} be a *d*-cluster tilting subcatgeory. Then $C = \bigoplus_{i \in A} C_i$, where $C_i, i \in A$ are triangulated subcategories of *C*, if and only if $\mathcal{T} = \bigoplus_{i \in A} \mathcal{T}_i$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Decomposition theorem

► Theorem: Let *C* be a *d*-CY triangulated category and \mathcal{T} be a *d*-cluster tilting subcatgeory. Then $C = \bigoplus_{i \in A} C_i$, where $C_i, i \in A$ are triangulated subcategories of *C*, if and only if $\mathcal{T} = \bigoplus_{i \in A} \mathcal{T}_i$.

Moreover in this case, $C_i = \mathcal{T}_i * \mathcal{T}[1] * \cdots \mathcal{T}_i[d-1]$, and \mathcal{T}_i is *d*-cluster tilting in C_i .

▶ Example: Let $Q: 4 \rightarrow 3 \rightarrow 2 \rightarrow 1$, $C = C_Q$, the cluster catgeory of Q:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

We take X = add(E), $^{\perp}(X[1]) = add(\{E, P_3, P_4[1], P_4, I_2, P_1[1], S_2, S_3\}.$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We take X = add(E), $^{\perp}(X[1]) = add(\{E, P_3, P_4[1], P_4, I_2, P_1[1], S_2, S_3\}.$

By lyama-Yoshino, the subquotient category ${}^{\perp}(X[1])/X = \{P_3, P_4[1], P_4, I_2, P_1[1], S_2, S_3\}$ is triangulated, and 2–CY

We take X = add(E), $^{\perp}(X[1]) = add(\{E, P_3, P_4[1], P_4, I_2, P_1[1], S_2, S_3\}.$

By lyama-Yoshino, the subquotient category ${}^{\perp}(\mathcal{X}[1])/\mathcal{X} = \{P_3, P_4[1], P_4, I_2, P_1[1], S_2, S_3\}$ is triangulated, and 2–CY

This subqeotient category admits cluster tilting objects, for example the object $T = P_4[1] \oplus P_3 \oplus E \oplus S_3$. We have that in this subquotient category, $addT = add(S_3) \oplus add(P_3 \oplus P_4[1])$. We take X = add(E), $^{\perp}(X[1]) = add(\{E, P_3, P_4[1], P_4, I_2, P_1[1], S_2, S_3\}.$

By lyama-Yoshino, the subquotient category ${}^{\perp}(X[1])/X = \{P_3, P_4[1], P_4, I_2, P_1[1], S_2, S_3\}$ is triangulated, and 2–CY

This subqeotient category admits cluster tilting objects, for example the object $T = P_4[1] \oplus P_3 \oplus E \oplus S_3$. We have that in this subquotient category, $addT = add(S_3) \oplus add(P_3 \oplus P_4[1])$.

Then this subquotient category

 $^{\perp}(X[1])/X = add(\{S_2, S_3\}) \oplus add(\{P_3, P_4[1], P_4, I_2, P_1[1]\})$. The first direct summand is the cluster category of the quiver A_1 , the second direct summand is equivalent to C_{A_2} .

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

► Corollary: Let *C* be a 2–CY triangulated category, *T* and *T'* be cluster tilting objects in *C*. Then the quiver Q_T of End_{*C*}*T* is connected if and only if $Q_{T'}$ is connected.

▶ Remark: If C is not d-CY, Theorem above is not true

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

▶ Remark: If C is not d-CY, Theorem above is not true

► Example: $C = D^b(kQ)$, where $Q: 3 \to 2 \to 1$. $\mathcal{T} = add(\tau^{-n}kQ[n]; n \in \mathbb{Z})$ is a cluster tilting subcategory in *C*. Let $\mathcal{T}_i = add(\tau^{-i}KQ[i]), i \in \mathbb{Z}$. Then $\mathcal{T} = \bigoplus_{i \in \mathbb{Z}} \mathcal{T}_i$. But *C* is indecomposable.

t-structures

ightarrow C: a 2–CY triangulated category with a cluster tilting object *T*.

t-structures

ightarrow C: a 2–CY triangulated category with a cluster tilting object *T*.

▶ Theorem: If *C* is indecomposable, then *C* has only trivial *t*-structures, i.e. (C, 0) and (0, C).

t-structures

ightarrow C : a 2–CY triangulated category with a cluster tilting object *T*.

▶ Theorem: If *C* is indecomposable, then *C* has only trivial *t*-structures, i.e. (C, 0) and (0, C).

▶ Remark: Some special cases were known before:

t-structures

ightarrow C : a 2–CY triangulated category with a cluster tilting object *T*.

▶ Theorem: If *C* is indecomposable, then *C* has only trivial t-structures, i.e. (*C*, 0) and (0, *C*).

► Remark: Some special cases were known before:

For cluster category of type A_n , this result was proved by Holm-Jörgensen-Rubey;

t-structures

ightarrow C : a 2–CY triangulated category with a cluster tilting object *T*.

▶ Theorem: If *C* is indecomposable, then *C* has only trivial t-structures, i.e. (*C*, 0) and (0, *C*).

▶ Remark: Some special cases were known before:

For cluster category of type A_n , this result was proved by Holm-Jörgensen-Rubey;

For (generalized) cluster category $C_{(S,M)}$, associated to a marked surface without punctures, this result was proved by Zhang-Zhou-Zhu.

► Remark: The theorem is not true for 2–CY category with cluster tilting subcategory containing infinitely many indecomposables. For example, the cluster category of type A_∞, introduced by Holm-Jörgensen contains non-trivial *t*-structutes by Ng's work.

Classification of cotorsion pairs

▶ Theorem: Let *C* be a 2–CY category with a cluster tilting object *T*, *I* a rigid object, and ${}^{\perp}(I[1])/I = \bigoplus_{j \in J} I_j$ be the complete decomposition of the triangulated category ${}^{\perp}(I[1])/I$.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Classification of cotorsion pairs

▶ Theorem: Let *C* be a 2–CY category with a cluster tilting object *T*, *I* a rigid object, and ${}^{\perp}(I[1])/I = \bigoplus_{j \in J} I_j$ be the complete decomposition of the triangulated category ${}^{\perp}(I[1])/I$.

Then all cotorsion pairs with core *I* are obtained as preimages under the functor $\pi : {}^{\perp}(I[1]) \rightarrow {}^{\perp}(I[1])/I$ of the pairs $(\bigoplus_{j \in L} I_j, \bigoplus_{j \in J-L} I_j)$, where *L* is a subset of *J*, and *J* – *L* is the complement of *L* in *J*.

Moreover there are 2^n cortorsion pairs with core *I* in *C*, where n = |J|.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

► Corollary: C: 2-CY category with cluster tilting object. Then

► Corollary: C: 2-CY category with cluster tilting object. Then

1. If $(\mathcal{X},\mathcal{Y})$ is a cotorsion pair, then $(\mathcal{Y},\mathcal{X})$ is also a cotorsion pair.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

► Corollary: C: 2-CY category with cluster tilting object. Then

1. If $(\mathcal{X},\mathcal{Y})$ is a cotorsion pair, then $(\mathcal{Y},\mathcal{X})$ is also a cotorsion pair.

2. The co-t-structures in C are only trivial, i.e. (C, 0), (0, C).

・ロト・西ト・田・・田・ ひゃぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

▶ Example: $Q: 4 \rightarrow 3 \rightarrow 2 \rightarrow 1$, $C = C_Q$ the cluster category of Q as before.

We take $I = add(P_2)$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

We take $I = add(P_2)$.

${}^{\perp}(I[1]) = add(\{P_1, P_2, P_3, P_4, S_2, S_4, P_3[1], P_4[1]\})$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We take $I = add(P_2)$.

 ${}^{\perp}(I[1]) = add(\{P_1, P_2, P_3, P_4, S_2, S_4, P_3[1], P_4[1]\})$

This subquotient category has the complete decomposition:

 $^{\perp}(I[1])/I = add(\{P_1, S_2\}) \oplus add(\{P_3, P_4S_4, P_3[1], P_4[1]\}).$

There are 4 cortorsion pairs with core *I*:

 $\begin{array}{l} (\{P_2\},\{P_1,P_2,P_3,P_4,S_2,S_4,P_3[1],P_4[1]\});\\ (\{P_2,P_1,S_2\},\{P_2,P_3,P_4,S_2,S_4,P_3[1],P_4[1]\});\\ (\{P_2,P_3,P_4,S_2,S_4,P_3[1],P_4[1]\},\{P_2,P_1,S_2\});\\ (\{P_1,P_2,P_3,P_4,S_2,S_4,P_3[1],P_4[1]\},\{P_2\}) \end{array}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Thank You!