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If F is a field with a (Krull) valuation, then the filtration of F induced by the


valuation yields an associated graded ring, which is a graded field. Conversely, if R


is a graded field with totally ordered grade group, then R is an integral domain and


there is a canonically associated valuation on the quotient field of R. The processes


of passing from valued field to graded field and vice versa are not quite inverses of


each other, but many properties in one setting are well-reflected in the other.


The goal of this paper is to describe an algebraic extension theory for graded


fields analogous to what is known for valued fields, and then to spell out the cor-


respondence between tame extensions of graded fields and Henselian valued fields.


This has the benefit that graded fields are easier to work with for many purposes
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than valued fields. But beyond this, there is a similar correspondence between


graded division rings and valued division rings, where the graded objects seem to


be significantly easier to work with than the valued objects. We first learned of this


correspondence from a paper by M. Boulagouaz [B2]. The correspondence for divi-


sion rings is actually far more extensive than what was described by Boulagouaz,


and we pursue that subject in a sequel to this paper [HW]. The choice of topics to


treat here was influenced by the needs of the study of division rings. But, we feel


that the commutative theory presented here is of interest in its own right.


§1 Graded fields (with totally ordered grade group)


Let
���


, +) be an abelian group and let R = ����� R
�


be a graded ring with


respect to
�


(i.e., R is a ring with 1, such that R
�


· R �
	 R
�
+� for all � , �� ����� We


set �
R = supp(R) = {�� � | R


���
= (0)}.


Also, let Rh = ����� R
�
, the set of homogeneous elements of R. If r  R


�
, r
�
= 0, we


write deg(r) = � .


The graded ring R is said to be a graded field if R is commutative with 1
�
= 0


and every nonzero homogeneous element of R is a unit. When this occurs,
�


R is


a subgroup of
���


and we call it the grade group of R. We will be interested exclu-


sively in the case where
�


R is totally ordered. We adopt as a standing hypothesis


throughout the paper that all the graded fields R we consider are equipped with a


total ordering on
�


R. (But, note that any torsion-free abelian group admits a total


ordering. Therefore, all the results in §§1-3 below on extensions of graded fields hold


if we merely assume that
�


R is torsion-free abelian. Only when we wish to build


a valuation ring on the quotient field of R will we need to specify an ordering on�
R.) A graded isomorphism R � R� of graded fields consists of an order-preserving


group isomorphism � :
�


R � �
R � and a ring isomorphism � : R � R� such that


� (R
�
) = R� � ( � ) for all �� � R. When such a graded isomorphism exists, we write


R �=g R� .
It follows from the total ordering of


�
R that a graded field R is an integral


domain and that its group of units R � = Rh − {0}. Let


QR = quotient field of R.


Since
�


R is totally ordered, it is a torsion-free abelian group, and we set


�
R = Q  Z


�
R, the divisible hull of


�
R.







We identify
�


R with its isomorphic image in
�


R (�"! 1  �� ). The total ordering


on
�


R extends uniquely to a total ordering on
�


R. Moreover, if # is any torsion-


free abelian group containing
�


R as a subgroup with # /
�


R torsion, then there is


a unique monomorphism #$� �
R extending the embedding


�
R % � �


R. We will


thus routinely view any such # as a subgroup of
�


R. The ordering on
�


R extends


uniquely to an ordering on # �
Since R is a graded field, it is clear that R0 is a field and each R


�
is a 1-


dimensional vector space over R0. For each �& � R, fix some nonzero t
�  R


�
.


Then for each � , �� � R there is c
�(' �) R �0, such that t


�
t � = c


�*' � t� + � . We call


{c
�(' � | � , �+ � R} a family of structure constants of R. The commutativity and


associativity of R imply


c
�*' � = c� ' � and c


�(' � c� + � ' , = c � ' , c�*' � +, for all � , � , -. � R. (1.1)


Conversely, it is clear that given any field F , any totally ordered abelian group
�/�


and any function
�


×
� � F � ((� , � ) 0� c


�(' � ) satisfying the conditions in (1.1), there


is a graded field R with R0 = F ,
�


R =
���


and structure constants given by the


specified function.


We say that a graded field R is of group-ring type if there is a family of structure


constants of R with c
�(' � = 1 for all � , �
 � R. Clearly, R is of group-ring type 132 R


is isomorphic (as a graded ring) to the group ring R0 4 �657�
Proposition 1.1. A graded field R is of group-ring type 8 9 the canonical short


exact sequence of abelian groups


0 � R �0 � R � � �
R � 0


is split exact.


Proof. Clearly, the exact sequence splits 1 2 there is a family {t
�


| �� � R} with


each t
�  R


�
− {0} and t


�
t� = t


�
+� . This is exactly what is needed so that the


structure constants relative to {t
�
} will all be 1. :


Prop. 1.1 shows that if
�


R �= Z, or
�


R is any free abelian group, then the


graded field R is of group-ring type (and hence determined up to isomorphism by


R0 and
�


R). But, not every graded field is of group-ring type, as the following


example shows.


Example 1.2. A graded field R with R0 = Q and
�


R = Z 1
2 , and R not of


group-ring type. Let t be an indeterminate, and let A = Q[t, t−1], the Laurent







polynomial ring in t over the rational numbers Q. This A is the group ring Q[Z],


so a graded field, with
�


A = Z and Ai = Qti, i  Z. Let p be any prime number.


In an algebraic closure of the quotient field of A, there are y1, y2, . . . satisfying


y2
1 = pt, y2


2 = p2y1, y2
3 = p4y2, . . . , y2


i = p2i−1


yi−1, . . . . Let B1 = A[y1], B2 =


B1[y2], . . . , Bi = Bi−1[yi], . . . , and let R =


;
i=1


Bi. Note that, as an A-module,


B1 = A < y1A, and B1 is a graded field with (B1)0 = Q,
�


B1
= 1


2
Z, and for j  Z,


(B1)j/2 = Qyj
1. Also, the gradings on A and B1 are compatible, so A is a graded


subfield of B1. Proceeding inductively, we have for each i, Bi = Bi−1 < Bi−1yi, Bi is


a graded field with (Bi)0 = Q,
�


Bi
= 2−iZ, (Bi)j/2i = Qyj


i for all j  Z, and Bi−1 is


a graded subfield of Bi. Hence, R is a graded field with R0 = Q and
�


R = Z 1
2


(the


additive group of the ring Z 1
2 , with the usual ordering). If R were of group-ring


type, then there would exist nonzero s1  R1 = Qt and s2−i  R2−i = Qyi such


that (s2−i)2
i


= s1, for all integers i > 0. However, observe that y2i


i = p(4i
−1)/3t.


Hence, s1 
;


i=1


(R2−i)2
i


=


;
i=1


Q2i


p(4i
−1)/3t = (0), a contradiction. Hence, R is not


of group-ring type.


Corollary 1.3. Let R be a graded field. Then R is integrally closed, and R0 is


algebraically closed in QR.


Proof. If R were not integrally closed, this would be detected by an equation


involving only finitely many elements of R, hence only finitely many homogeneous


elements. Thus, there is a finitely generated subgroup # of
�


R such that for the


graded subfield A = R|= = > � = R
>


of R, A is not integrally closed. Note that�
A = # and A0 = R0. As # is finitely generated and torsion-free, # �= Zn for some


n. So, Prop. 1.1 shows A �= A0 4 # 5 �= A0[x1, x
−1
1 , . . . , xn, x−1


n ], where x1, . . . , xn are


independent indeterminates. Since A is a localization of a polynomial ring over a


field, A is integrally closed, a contradiction. Hence, R must be integrally closed.


That R0 is algebraically closed in QR is proved in the same way, as R0 = A0, which


is algebraically closed in the rational function field QA �= R0(x1, . . . , xn). :
Let R be a graded field. By a graded R-module, we mean an R-module M such


that M has a direct sum decomposition as abelian groups M =
µ


���
M


Mµ, where�
R acts freely on the set


�
M , and for �? � R, µ  � M , we have R


�
· Mµ 	 M


�
+µ.


(Here � + µ denotes the image of µ under the action of � .) There is no group


structure assumed on
�


M . That
�


R acts freely on
�


M means that for all � , �@ � R,


µ  � M , we have � + µ
�
= � + µ whenever � �= � . Observe that every graded


module M over any graded field R is a free R-module, with a homogeneous base.







Indeed, any maximal R-linearly independent homogeneous subset of M is a base


(cf. [B1, Th. 3]). We write dimR(M) for the rank of M as a free R-module. Note


that if N is any graded R-submodule of M then, as M/N is a graded, hence free,


R-module, we have M �= N < (M/N); so dimR(M) = dimR(N) + dimR(M/N). In


particular, if N is a proper graded R-submodule of M and dimR(M) < A then


dimR(N) < dimR(M).


§2 Graded algebraic extensions of graded fields


Let R 	 S be graded fields (i.e., R is a graded subfield of S). We set


[S : R] = dimR(S).


Clearly, R0 is a subfield of S0,
�


R is a subgroup of
�


S , and QR is a subfield of QS.


The following proposition is easy but important.


Proposition 2.1. (cf. [B2, p. 4278]) Let R 	 S be graded fields with [S : R] < A .


Then,


[S : R] = [S0 : R0]|
�


S :
�


R| = [QS : QR],


and QS �= QR  R S.


Proof. If {si}i


�
I is an R0-base of S0, and {tj}j


�
J 	 S � with {deg(tj)} a set


of representatives for the cosets of
�


R in
�


S . It is easy to check that {sitj} is


an R-base of S. This gives the first formula for [S : R], and the second follows


from QS �= QR  R S. This isomorphism holds as S is an integral domain finitely


generated as an R-module; so S (a torsion-free R-module) embeds in its localization


QR  R S which is a field, since it is an integral domain finite-dimensional over the


field QR. :
We will want to consider infinite degree extensions of graded fields which are


algebraic in an appropriate sense. For this, we first look at gradings on the poly-


nomial ring R[x] over a graded field R. For any �@ � R, there is a unique grading


on R[x] extending that on R, such that x  R[x] � . We call this the � -grading of


R[x]. An f  R[x] is said to be homogenizable if there is �+ � R such that f is


homogeneous with respect to the � -grading of R[x] (cf. [B1, §3], [vGvO, p. 274]).


The following proposition is essentially in [vGvO, pp. 274–276] for
�


R �= Z.


Proposition 2.2. Let R be a graded field which is a subring of the (ungraded) field


F . For any �) F , the following are equivalent:


(i) � is algebraic over QR, the minimal polynomial of � over QR, denoted


mB�C ' � , lies in R[x] and m B/C ' � is homogenizable.







(ii) R[ � ] is a graded field extension of R, with �D R[ � ]h and [R[ � ] : R] < A .


(iii) There is a graded field extension S of R, with R 	 S 	 F , [S : R] < A ,


and �D Sh.


Proof. (i) E (ii) Suppose � is algebraic over QR and that m B/C ' � lies in R[x] and is


homogeneous with respect to the � -grading on R[x], for some �� � R. Then (m B/C ' � )
is a homogeneous ideal R[x], so the ring R[x]/(m B/C ' � ) inherits a grading from


R[x] which extends the grading on R. The canonical evaluation homomorphism


R[x] � F given by f 0� f( � ) has image R[ � ] and kernel {f  R[x] | f( � ) = 0} =


(mB�C ' � QR[x]) F R[x] = m B/C ' � R[x]. (The last equality holds as m B�C ' � is monic in


R[x].) Hence, the isomorphism R[ � ] �= R[x]/(mB�C ' � ) allows us to define a grading


on R[ � ] extending that on R, with respect to which �D R[ � ]h since � is the image


of x  R[x]h. Also, [R( � ) : R] = [R[x]/(mB�C ' � ) : R] = deg(m B�C ' � ) < A . Because


R[ � ] is a graded integral domain (since it lies in F ), with [R[ � ] : R] < A , R[ � ] is


actually a graded field. (For, if �� R[ � ]h , � �= 0, then the map G6H : R[ � ] � R[ � ]
given by c 0�I� c is an injective graded R-module homomorphism. Then, as im( G6H )
is a graded R-submodule of R[ � ] with dimR(im( GJH )) = [R( � ) : R] < A , so G6H is


surjective by dimension count. (See the remarks at the end of §1.) Hence �? R[ � ] � .
(ii) E (iii) Take S = R[ � ].
(iii) E (i) Assume �D Sh for a graded field S K R, with [S : R] < A . Then � is


integral over R, since [S : R] < A . So � is algebraic over QR, and mB�C ' �  R[x], as


R is integrally closed by Cor. 1.3. Write mB�C ' � = xn+cn−1x
n−1+. . .+c0. If we take


the n deg( � ) homogeneous component of the equation � n + cn−1 � n−1 + . . .+ c0, we


get another monic polynomial in � of degree n with coLNMPON1 L�Q ts in R, which equals 0.


The uniqueness of mB�C ' � assures that this polynomial must coincide with m B/C ' � .
Hence, each ci  R(n−i)deg(� ). So mB�C ' � is homogeneous for the deg( � )-grading of


R[x], and deg( � ) = 1
ndeg(c0)  � R. :


Definition 2.3. An � satisfying the equivalent conditions of Prop. 2.2 is said to


be gr-algebraic over the graded field R. For a graded field extension S of R, we say


S is gr-algebraic over R if each �R Sh is gr-algebraic over R. (In particular, by


Prop. 2.2, if [S : R] < A , then S is gr-algebraic over R.)


Corollary 2.4. Suppose � is gr-algebraic over a graded field R. Then,


(a) mB�C ' � determines deg( � ).
(b)


�
R[� ] = S deg( � ) T + � R.


(c) deg( � ) = 0 8 9 mB�C ' �  R0[x], 8 9U� is algebraic over R0.


(d) R[ � ]0 = R0 8 9V� m  R, where m is the order of the image of deg( � ) in







�
R/
�


R. This occurs 8 9 m B/C ' � = xn − d0, where d0  Rh and deg(d0) has


order n in
�


R/n
�


R. Then n = m = [R[ � ] : R].


Proof. (a) The proof of Prop. 2.2 shows deg( � ) = 1
ndeg(c0), where n = deg(mB�C ' � )


and c0 is the constant term of m B�C ' � . Part (b) holds since �W R[ � ]h. For (c), if


� is algebraic over R0, then �X R[ � ]0 by Cor. 1.3; the rest of (c) is clear from the


proof of Prop. 2.2.


(d) By (b), m = |
�


R[� ]/ � R|. If R[ � ]0 = R0, then R = �Y���
R


R[ � ] � , by


Prop. 2.1, since these graded fields have the same grade group and the same


degree 0 component. Since deg( � m)  �
R, this shows � m  R. Now, sup-


pose we just know � m  R. Let c0 = � m, so mB�C ' � | (xm − c0). But, using


Prop. 2.1, deg(xm − c0) = m = |
�


R[ � ]/ � R| Z [QR( � ) : QR] = deg(m B/C ' � ). Hence,


mB�C ' � = xm −c0. Since deg( � ) has order m in
�


R/
�


R, we have deg(c0) = m deg( � )
has order m in


�
R/m


�
R. Now, suppose instead that mB�C ' � = xn − d0, where


d0  Rh and deg(d0) has order n in
�


R/n
�


R. Then 1
n
deg(d0) has order n in�


R/
�


R. But deg( � ) = 1
ndeg(d0). Hence, m = n. Since m = |


�
R[� ]/ � R| and


n = [R[ � ] : R], the equality m = n forces R[ � ]0 = R0, by Prop. 2.1. :
Corollary 2.5. Let R 	 S be graded fields with S gr-algebraic over R. Then,


(a) S is the integral closure of R in QS.


(b) QR F S = R.


(c) If �X S and a is gr-algebraic over R, then �X Sh.


(d) If [ is any QR-automorphism of QS, then [ (S) = S and [ |S : S � S is a


graded field isomorphism.


Proof. (a) S is integral over R by Prop. 2.2, and is integrally closed by Cor. 1.3.


(b) is immediate from (a), as R is integrally closed.


(c) By Prop. 2.2 there is a grading on R[x] with
�


R[x] 	 � R and x  R[x]h,


such that m B/C ' �  R[x]h. This grading extends (uniquely) to a grading on S[x]


which extends the grading on S. Since
�


S[x] 	 � S ,
�


S[x] is totally ordered. Hence,


the factor x − � of m B/C ' � in S[x] must be homogeneous, as m B/C ' �  S[x]h. So,


�D Sh.


(d) For any QR-automorphism [ of QS, we have [ (S) = S as S is the integral


closure of R in QS. Take any �\ Sh. Then mB�C ' ] ( � ) = mB�C ' � . Since � is gr-


algebraic over R, Prop. 2.2 shows [ ( � ) is also gr-algebraic over R. Then [ ( � )  Sh


by (c) above, and deg([ ( � )) = deg( � ) by Cor. 2.4(a). So the ring isomorphism [ |S
maps each homogeneous component of S onto itself. :







Corollary 2.6. Let R 	 S be graded fields, and let K be a field containing S. If


�D K is gr-algebraic over R, then � is gr-algebraic over S.


Proof. There is a grading on R[x] extending that on R with x  R[x]h, such that


m B�C ' �  R[x]h. This grading extends (uniquely) to a grading on S[x] extending


that on S, with
�


S[x] 	 � S . Since � is integral over S, we have mB�^ ' �  S[x]; then


m B�^ ' � | m B�C ' � in S[x], since this divisibility holds in QS[x], and m B/^ ' � is monic.


Since mB�C ' �  S[x]h and
�


S[x] is totally ordered, we must have m B�^ ' �  S[x]h.


Hence, � is gr-algebraic over S. :
The following corollary can now be proved just as in the ungraded case:


Corollary 2.7. Let R be a graded field which is a subring of the ungraded field F .


Then,


(a) If � 1, . . . , � n  F and each � i is gr-algebraic over F , then R[ � 1, . . . , � n] is


a graded field graded algebraic over R, with


[R[ � 1, . . . , � n] : R] Z n


i=1


[R[ � i] : R] < A .


(b) If S is a graded field, R 	 S 	 F , with S gr-algebraic over R, and if �X F


is gr-algebraic over S, then � is gr-algebraic over R.


(c) Let A = R[{ �_ F | � is gr-algebraic over R}]. Then A is a graded field


which is gr-algebraic over R, and for every graded field S with R 	 S 	 F


and S gr-algebraic over R, S is a graded subfield of A.


Definition 2.8. We call the A of Cor. 2.7(c) the graded algebraic closure of R in


F .


Note that even if F is algebraic over QR, the field QA may be a proper subfield


of F . The following example is given in [vGvO, Ex. 3.10.2]: Let R = K[t, t−1], where


K is any field of characteristic not 2, t is transcendental over K, and R is graded with


R0 = K,
�


R = Z, Ri = Kti; so QR = K(t). Let F = K(t)( ` t + 1). For �D F −QR


write � = r+s ` t + 1, with r, s  QR, s
�
= 0; so, m B�C ' � = x2−2rx+(r2−s2(t+1)).


If � is integral over R, then r, s  R, but then mB�C ' � is not homogenizable, since


its constant term is not homogeneous in R. The gr-algebraic closure of R in F is in


this case R itself.


Now, for any graded field R, let QRalg denote the algebraic closure of QR. Let


A be the graded algebraic closure of R in QRalg. It is clear that for any gr-algebraic


extension field S of R, S is graded R-isomorphic to a graded subfield of A. Also,







from Cor. 2.7(b) it follows easily that A0 �= R0alg and
�


A =
�


R. Also, QA is


normal over QR, since for each �X Ah, Prop. 2.2 and Cor. 2.4 show that each root


of m B/C ' � in QRalg actually lies in Ah. However, QA need not be Galois over QR.


We call A the gr-algebraic closure of R, denoted Rgr-alg.


§3. Unramified, totally ramified, and tame graded field extensions


We now look at some specific types of gr-algebraic extensions of graded fields.


Let R 	 S be graded fields with S gr-algebraic over R. The torsion group
�


S/
�


R is


called the ramification group of S over R, and |
�


S/
�


R| the ramification index of S


over R. We say S is totally ramified over R if S0 = R0. At the other extreme, we say


S is unramified over R if
�


S =
�


R and S0 is separable over R0. (This is analogous to


the terminology for extensions of valued fields.) Note that every graded extension


of graded fields R 	 S has a unique subextension A with
�


A =
�


R and S totally


ramified over A, namely A = S0  R0
R.


Remark 3.1. If
�


S =
�


R, then clearly S �=g S0  R0
R, and QS �= S0  R0


QR. For any


intermediate graded field A, R 	 A 	 S, necessarily
�


A =
�


R, so A �=g A0  R0
R.


Thus, there is a one-to-one correspondence between intermediate graded fields A,


R 	 A 	 S, and intermediate fields A0, R0 	 A0 	 S0. Further QS is separable


(resp. purely inseparable, resp. Galois) over QR 1 2 S0 is separable (resp. purely


inseparable, resp. Galois) over R0. For the Galois case, use Cor. 2.5; note that then


G(QS/QR) �= G(S0/R0).


For any graded field R and any subgroup # of
�


R, we write R|= for �Y� = R
�
, a


graded subfield of R.


Proposition 3.2. Let R 	 S be graded fields with S gr-algebraic over R. Suppose


S is totally ramified over R. Then,


(a) R = S|
�


R
.


(b) Every intermediate graded field A, R 	 A 	 S has the form A = S|= , where


# is a group,
�


R 	a#b	 � S. Thus, there is a one-to-one correspondence


between subgroups of
�


S/
�


R and intermediate graded fields.


(c) Suppose [S : R] = n < A , so
�


S/
�


R �= Z/t1Z×. . .×Z/tkZ with t1 . . . tk = n.


Pick any si  Sh − {0} with deg(si) mapping to a generator of the i-th


component in the given cyclic decomposition of
�


S/
�


R, 1 Z i Z k. Then,


sti


i  Rh, [R[si] : R] = ti, and S �=g R[s1]  R . . .  R R[sk ]. Likewise,


QS �= QR(s1)  QR . . .  QR QR(sk), with [QR(si) : QR] = ti and sti


i  QR.







Proof. (a) is clear since (S|
�


R
)0 = S0 = R0 and also S|


�
R


and R have the


same grade group. (b) is immediate from (a), since for R 	 A 	 S, S is to-


tally ramified over A, since it is totally ramified over R. For (c), take any si as


described in (c). Since tideg(si)  � R, we have sti


i  Stideg(si) = Rtideg(si) (see


(a)). Then [R[si] : R] = ti by Cor. 2.4(d). The graded ring homomorphism


- : R[si]  R . . .  R R[sk ] � S has image a graded subfield of S with
�


im(


,
) =


�
S .


Hence im(- ) = S by (b). Because [S : R] = ti . . . tn = dimR(R[s1]  R . . .  R R[sk ]),


- must be an isomorphism. The isomorphism for QS follows from this by Prop. 2.1.


:
The Galois case deserves special attention:


Proposition 3.3. Let R 	 S be graded fields with [S : R] < A and S totally


ramified over R. Let c be the exponent of
�


S/
�


R, and let µ d denote the group of all


c -th roots of unity in QRalg. Then,


(a) QS is Galois over QR 8 9 char(R0) [S : R] and µ de	 R0.


(b) When QS is Galois over QR, there is a (well-defined) perfect pairing


�
S/
�


R × G(QS/QR) � µ d
given by (� +


�
R, [ ) 0� f [ (a), for any a  Sh, a


�
= 0, with deg(a) = � .


Furthermore, QS is an c -Kummer extension of QR, and if B = {b  QS � |
b
d  QR � }, then B/QR �g�= � S/


�
R and there is a commutative diagram


�
S/
�


R × G(QS/QR) −−−−� µd
h
=


B/QR � × G(QS/QR) −−−−� µd
with the lower row the perfect Kummer pairing, given by (b QR � , [ ) 0�iNj [ (b).


Proof. (a) From the description of QS in Prop. 3.2(c) as a radical extension of


QR, it is clear that QS is separable over QR 1 2 char(R0) [S : R]; further, as


c = lcm(t, . . . , tk) for the ti of Prop. 3.2(c), QS is Galois over QR 132 additionally


QR contains the required roots of unity, i.e., µdk	 QR. When this occurs, µ dk	 R0


by Cor. 1.3, since µ d is algebraic over R0. Also, QS is clearly an c -Kummer extension


of QR.


For (b) assume now that QS is Galois over QR. It is easy to check that the


map
�


S/
�


R × G(QS/QR) � µd is a well-defined pairing of finite abelian groups.







Also, there is a well-defined group homomorphism � :
�


S/
�


R � B/QR � given by


� +
�


R 0� a QR � for any a  S
�
, a


�
= 0. This � is clearly injective, and is an


isomorphism since |
�


S/
�


R| = [S : R] = [QS : QR] = |B/QR � |, the last equality


given by Kummer theory. The diagram of the proposition is clearly commutative,


and its vertical lines are isomorphisms. Since the bottom row of the diagram is the


perfect pairing of Kummer theory, the top row must also be a perfect pairing. :
The graded analogue to a tamely ramified extension of a valued field is of


particular interest here.


Definition 3.4. Let R 	 S be graded fields with S gr-algebraic over R. Then S


is said to be tame over R if char(R0) = 0 or char(R0) = p
�
= 0 and S0 is separable


over R0 and
�


S/
�


R has no p-torsion.


Clearly, for graded fields R 	 A 	 S, S is tame over R 1 2 S is tame over A


and A is tame over R.


Proposition 3.5. (cf. [B1, Th. 4]) Let R 	 S be a gr-algebraic extension of graded


fields. Then S is tame over R 8 9 QS is separable over QR.


Proof. Since this is clear if char(R0) = 0, assume char(R0) = p
�
= 0. Let I =


S0  R0
R. Since QI �= S0  R0


QR, I0 = S0, and
�


I =
�


R, we have I is tame over


R 1 2 I0 is separable over R0 132 QI is separable over QR. Since S is totally ramified


over I , Prop. 3.2 shows that for every finite degree subextension S � of S, QS � is a


radical extension of QI obtained by adjoining ti-th roots of homogeneous elements


of I , where lcm({ti}) = exp
���


S � / � I). Thus, QS is separable over QI 1 2 each QS �
is separable over QI 1 2 each


�
S � / � I has no p-torsion 1 2 � S/


�
I has no p-torsion 132


S is tame over I . The transitivity of tameness and of separable field extensions


completes the proof. :
Lemma 3.6. Let R 	 S be a graded algebraic extension of graded fields with


char(R0) = p. There is no proper tame extension of R in S 8 9 S0 is purely insepa-


rable over R0 and
�


S/
�


R is a p-primary torsion group, 8 9 QS is purely inseparable


over QR.


Proof. In the first equivalence, l is clear. For E , suppose R has no proper tame


extension in S. Let A0 be the separable closure of R0 in S0. Since A0  R0
R is a


tame extension of R in S, we must have A0 = R0, so S0 is purely inseparable over


R0. Suppose
�


S/
�


R is not p-primary. Then, there is �� � S −
�


R with image of


order n in
�


S/
�


R, where p n. Take any s  S
�
, s
�
= 0. Then deg(sn)  � R, so if







we take any r  R m � , r
�
= 0, we have sn/r  S0. Because S0 is purely inseparable


over R0, (sn/r)pk  R0 for some k. So, (spk


)n = (sn/r)pk


rpk  Rpk m � . Since


deg(spk


) = pk � , which has order n in
�


S/
�


R, R[spk


] is a proper tame and totally


ramified extension of R, by Cor. 2.4(b) and (d), a contradiction. Hence,
�


S/
�


R


must be p-primary. This proves the first equivalence.


Let A = S0  R0
R. Then, QA is purely inseparable over QR 1 2 S0 is purely


inseparable over R0 (see Remark 3.1). Also, as S is totally ramified over A and�
A =


�
R, QS is purely inseparable over QA 1 2 � S/


�
R is p-primary torsion, as QS


is built from QA by radical extensions of degrees the orders of elements in
�


S/
�


R,


by Prop. 3.2(a). :
Proposition 3.7. Let R 	 S be a gr-algebraic extension of graded fields. Let


T = L F S, where L is the separable closure of QR in QS. Then T is a graded field


gr-algebraic and tame over R. Also, for any graded field A with R 	 A 	 S, A is


tame over R 8 9 A 	 T .


Proof. Let U be a maximal tame graded field extension of R in S. Such a U


exists by Zorn’s Lemma, using the transitivity of the property of tameness. Then


QU is separable over QR, by Prop. 3.5, and QS is purely inseparable over QU by


Lemma 3.6. Hence, QU = L, so that by Cor. 2.5(b), U = QU F S = L F S = T .


This shows T is a graded field tame over R. Also, QT = QU = L. If A is any


graded field, R 	 A 	 S and A is tame over R, then QA is separable over QR by


Prop. 3.5. Hence, by Cor. 2.5(b) again, A = QA F S 	 L F S = T . Conversely, if


A 	 T , then A is tame over R, since T is tame over R. :
Definition 3.8. The T of Prop. 3.7 is called the tame closure of R in S. Note that


by Lemma 3.6, T0 is the separable closure of R0 in S0, and (if char(R0) = p
�
= 0)�


T/
�


R is the prime-to-p part of
�


S/
�


R. Also, QT is the separable closure of QR


in QS, as we saw in the proof of Prop. 3.7.


Theorem 3.9. Let R be a graded field. Let T be the tame closure of R in Rgr-alg.


Then,


(a) QT is the separable closure of QR in Q(Rgr-alg), so QT is Galois over QR.


(b) There is a one-to-one correspondence between the graded fields A such that


R 	 A 	 Rgr-alg with A tame over R and the fields L with QR 	 L 	 QT .


(The correspondence is given by A 0� QA and L 0� T F L.)


Proof. (a) Since Q(Rgr-alg) is normal over QR, as noted after Definition 2.8, and


QT is the separable closure of QR in Q(Rgr-alg), QT is Galois over QR (typically







of infinite degree).


(b) If A is a graded field with R 	 A 	 Rgr-alg and A tame over R, then A 	 T


by Prop. 3.7, so QA 	 QT and A = T F QA, by Cor. 2.5(b). On the other hand,


let L be any field with QR 	 L 	 QT . So QT is Galois over L. Let H = G(QT/L).


By Cor. 2.5(d), each [X H maps T to T by a graded field isomorphism. Hence, as


T F L = TH , the H-fixed points of T , T F L is a graded integral domain, which is a


graded field, since it is gr-algebraic over R. For any cn L, since c is algebraic over


QR, there is r  R, r
�
= 0 with rc integral over R. Then, as T is the integral closure


of R in QT , rco T F L. This shows L = Q(T F L), which proves the one-to-one


correspondence asserted in the Theorem. :
Note one somewhat surprising consequence of the theorem just proved: If t  T ,


then QR(t) F T is a graded field containing t, so all the homogeneous components


of t lie in QR(t). This requires the tameness of R[t] over R, as the next example


illustrates:


Example 3.10. Let R0 be a field, char(R0) = p
�
= 0, and let R = R0[s, t, s


−1, t−1],


where s and t are algebraically independent over R0. Then R is a graded field


with deg(s) = (1, 0) and deg(t) = (0, 1) in
�


R = Z × Z, and QR is the rational


function field R0(s, t). Let S = R[
p` s,


p` t], which is a totally ramified but not a


tame gr-algebraic graded field extension of R. Let u =
p` s +


p` t =
p` s + t  S.


Then,
p` s,


p` t / QR(u), since otherwise QR(u) = QS. This cannot occur, as


[QR(u) : QR] = p while [QS : QR] = p2. Here, QR(u) F S is not a graded subring


of S since it contains u but not its homogeneous components
p` s and


p` t. In fact,


the kind of one-to-one correspondence described in the theorem for the tame case


fails dramatically here, since there are infinitely many fields L with QR 	 L 	 QS,


but by Prop. 3.2(b) there are only finitely many graded fields A with R 	 A 	 S.


Theorem 3.11. Let R 	 S be graded fields with [S : R] < A . Then,


(a) S is separable over R 8 9 S is tame over R 8 9 QS is separable over QR.


(b) S is Galois over R 8 9 QS is Galois over QR. When this occurs, G(S/R) �=
G(QS/QR).


(c) If S is separable over R, there is a graded field A K S with [A : S] < A and


A Galois over R.


Proof. (b) If S is Galois over R, with group N , then by base extension (cf. [G,


p. 5, Lemma 1.11]) QS is Galois over QR, as QS �= QR  R S by Prop. 2.1. Also,


the general base extension result shows G(QS/QR) �= N . Conversely, suppose QS


is Galois over QR. Let G = G(QS/QR). By Cor. 2.5, each [U G restricts to







a graded automorphism of S. Furthermore, SG = S F QR = R by Cor. 2.5(b).


For [p G, [ �= idQS there is t  Sh, t
�
= 0 with [ (t) �= t. Since [ preserves


degrees [ (t) − t  Sh − {0} = S � . So, there is no maximal ideal M of S containing


{[ (s) − s | s  S}. This together with SG = R shows that S is Galois over R with


respect to G, by [CHR, Th. 1.3] or [G, pp. 2–3, Th. 1.6].


(a) and (c) Now, assume QS is separable over QR. Then S is tame over R


by Prop. 3.5, so we can assume S lies in the tame closure T of R in Rgr-alg. Since


QT is Galois over QR by Th. 3.9, the normal closure L of QS over QR lies in QT .


Furthermore, L is Galois over QR and [L : QR] < A . Let A = T F L, which is a


graded subfield of T with QA = L, by Th. 3.9, and [A : R] = [L : QR] < A by


Prop. 2.1. So, A is Galois over R with respect to (the restriction to A of) G(L/QR),


as we just proved. Let H = G(L/QS) 	 G(L/QR). Since AH = A F QS = S by


Cor. 2.5(b), S is separable over R by [CHR, Th. 2.2] or [G, p. 7, Th. 2.2]. On the


other hand, if S is separable over R, then QS �= QR  R S is separable over QR as


separability is preserved under base extension. By Prop. 3.5 this is equivalent to S


being tame over R. This yields (a), and also (c) along the way. :


§4. Tame extensions of valued fields


We now recall some facts about tame extensions of valued fields, which will


be needed for our comparison of valued fields and graded fields in the next section.


Everything we mention in this section is known, but a concise summary seems


worthwhile.


Let F be a field,
�


a totally ordered abelian group, and v : F � � �
a (Krull)


valuation on F . (That is, (i) v( �6� ) = v( � )+v(� ), and (ii) v( � +� ) q min(v( � ), v(� ))


for all ��rs�t F � (with � �= − � in (ii)).) Let
�


F = im(v), the value group of v; let VF


be the valuation ring of v; MF the unique maximal ideal of VF ; and F = VF /MF , the


residue field of v. The indexing by F will cause no confusion, because we will never


consider more than one valuation at a time on any given field. Let p = char(F ).


Now, let F 	 K be fields with K algebraic over F , and let v be a valuation


on F which has a unique extension (also called v) to K. If [K : F ] < A , we say


K is tame over F (with respect to v) if K is separable over F , p |
�


K :
�


F |, and


[K : F ] = [K : F ]|
�


K :
�


F |. In the terminology of Endler [E, pp. 178-180], K is


tamely ramified and defectless over F . If [K : F ] = A , we say that K is tame over


F if for every field L with F 	 L 	 K and [L : F ] < A we have L is tame over F


(with respect to the restriction of v from K to L). Recall that if K is tame over F ,







then K is separable over F . This follows at once from the fact that if L is purely


inseparable over F , then L is purely inseparable over F and
�


L/
�


F is a p-group (cf.


[E, Ex. III-6, pp. 228-229]). Note also that if [K : F ] < A and N is any field with


F 	 N 	 K, then K is tame over F 1 2 N is tame over F and K is tame over N .


This is immediate from the fundamental inequality [E, (13.10)].


Still assuming v has a unique extension from F to K, suppose [K : F ] < A
and K is Galois over F . Let G be the Galois group G(K/F ). Let GV = { uX G |
u (c)/c  MK for all c  K � } the ramification subgroup (= Verzweigungsgruppe) of


v, and let FV be the fixed field KGV


, which is called the ramification field of K over


F . Then it is known (cf. [E, (20.11), (19.12), (20.20), (19.14)]) that GV is a p-group


(if p = 0 this means |GV | = 1), GV is a normal subgroup of G, so FV is Galois over


F , and that FV is tame over F (since FV is tame over the inertia field FT and FT


is tame over F ), and that K purely inseparable over FV and
�


K/
�


F V is a p-group


(so
�


F V =
�


K if p = 0). Hence, FV can have no proper tame extension in K, so


FV is a maximal tame extension of F in K. For any field L with F 	 L 	 K, let H


be the corresponding group G(K/L). Since HV = GV F H , we have LV = L · FV .


If L is tame over F , then LV is also tame over F , by the transitivity of tameness,


so LV = FV , and hence L 	 FV . Thus, FV is the unique maximal tame extension


of F , and an intermediate field L is tame over F 1 2 L 	 FV . It follows that if


intermediate fields L1, L2 are each tame over F , then L1 · L2 is tame over F . Thus,


if N is any intermediate field, then there is a unique maximal tame extension N0


of F inside N , and we have N0 = FV F N . We call N0 the tame closure of F in N .


All of the preceding paragraph extends readily to the case of infinite degree


algebraic extensions (see [E, (20.12), (20.17), (20.18) ]) and leads to the following


in the Henselian case:


Suppose F is a field with a Henselian valuation v. We work in some fixed


algebraic closure Falg of F . That v is Henselian means that there is a unique


extension of v to Falg.


Proposition 4.1. Suppose a field F has a Henselian valuation v. Then,


(a) There is a unique maximal tame extension Ft of F in Falg, and Ft is the


compositum of all the finite degree tame extensions of F in Falg.


(b) Ft = (F )sep,
�


Ft
=
�


F  Z Z(p) (if p = 0, then
�


Ft
=
�


F  Z Q).


(c) For any field L, F 	 L 	 Falg, we have L is tame over F 8 9 L 	 Ft.


(d) For any field N , F 	 N 	 Falg, we have Nt = Ft · N , and N F Ft is the


unique maximal tame extension of F in N .







Proof. Since any tame extension of F is separable over F , this follows easily from


the preceding discussion, when we take Ft = FV , the ramification field with respect


to the (usually infinite degree) Galois extension Fsep over F , where Fsep is the


separable closure of F in Falg. :
Definition 4.2. We call the Ft of Prop. 4.1 the tame closure of F and N F Ft the


tame closure of F in N . Note that N F Ft is the separable closure of F in N , and�
N v Ft


/
�


F is the prime-to-p part of
�


N/
�


F . Also, [N : N F Ft] is a power of p


(N = N F Ft if p = 0).


§5 Correspondence between graded fields and valued fields


We now recall how valued fields can be obtained from graded fields, and vice


versa. We will then prove correspondences for the tame extensions of each kind of


field.


Let R = �Y���
R


R
�


be a graded field (with
�


R totally ordered, as we are always


assuming). Define a function v : R − {0} � �
R by


v � r
�


= the least � such that r � �= 0.


So, for a, a�w R − {0}, we clearly have


(i) v(aa� ) = v(a) + v(a� );
(ii) v(a + a� ) q min(v(a), v(a� )), if a� �= −a.


This function v extends canonically to a function v : QR − {0} � �
R by v(rs−1) =


v(r)−v(s), for r, s  R−{0}. Property (i) shows that v is well-defined on QR−{0}.


Properties (i) and (ii) hold for all a, a�  QR−{0}. Thus v is a valuation on QR, for


which clearly
�


QR =
�


R. Also, for the residue field, QR = R0. For, the canonical


injection R0 � QR is onto, since if v(rs−1) = 0, then v(r) = v(s), so r = r
�
+


higher degree terms, s = s
�


+ higher degree terms, for � = v(r) = v(s)), yielding


rs−1 = r
�
s−1
�  im(R0).


Let HR denote the Henselization of QR with respect to v (see, e.g. [E, p. 131]


for the Henselization of a valued field). If S is a gr-algebraic extension graded field of


R, then QS K QR canonically, and while HS is determined only up to isomorphism


in QSalg, we will assume HS has been chosen to be QS · HR.


Now, suppose instead we start with a field F with a valuation v on F . For each







�� � F , define


W


�
= {c  F � | v(c) q"� } x {0}


W y � = {c  F � | v(c) > � } x {0}.


Then set R
�


= W


�
/W y � . Define multiplication R


�
× R �z� R


�
+� by, for a  W


�
and b  W


�
: (a + W y � ) · (b + W y � ) = ab + W y � + � . This is well-defined, and


extends to a multiplication on all of �Y���
F


R
�
, making it a graded field. We denote


this graded field by GF . Clearly,
�


GF =
�


F and GF0 = F . Note that if K is a field


with a valuation extending v on F , then GK is a graded field extension of GF .


If we start with a graded field R, and build the valuation on QR as described


above, then form the associated graded field GQR, then GQR �=g R, canonically.


For, each R
�


maps bijectively onto (GQR)
�
. Likewise, GHR �=g R canonically. On


the other hand, if we start with a valued field F , we need not have QGF �= F , nor


HGF �= F , even if the valuation on F is Henselian. (For example, char(QGF ) =


char(F ), which need not equal char(F ). Also, if F and
�


F are countable, then QGF


is countable, though F might be uncountable.)


Proposition 5.1. Let R be a graded field, and let S be the tame closure of R


in Rgr-alg. Then HS is the maximal tame extension of HR, and G(HS/HR) �=
G(QS/QR). Hence, there are one-to-one correspondences


tame gr-algebraic graded field extensions of R in Rgr-alg


! field extensions of QR in QS


! tame field extensions of HR in (HR)alg.


Proof. Let T be a graded field with R 	 T 	 S and [T : R] < A . So, T is tame


over R by Prop. 3.7. Then, QT = T0 is separable over QR = R0, and


[QT : QR] = [T : R] = [T0 : R0]|
�


T :
�


R| = [QT : QR]|
�


QT :
�


QR| ;


hence QT is a tame valued field extension of QR. Since by convention HT =


QT · HR, we have


[HT : HR] Z [QT : QR] = [QT : QR]|
�


QT :
�


QR|


= [HT : HR]|
�


HT :
�


HR| Z [HT : HR] ;


the last inequality is the fundamental inequality for valued field extensions [E,


(13.10)]. So, equality holds throughout. Since HT = T0 is separable over HR = R0,







this shows HT is tame over HR. Also, the equality just proved shows QT and HR


are linearly disjoint over QR. Since S is the union of such finite-degree extensions


as T , HS is tame over HR, and QS and HR are linearly disjoint over QR. Further-


more, as HS = S0 is separably closed and
���


HS  Z Q)/
�


HS =
�


R/
�


S is p-primary


where p = char(R0) = char(HS), HS can have no proper tame field extensions.


Hence, HS is the maximal tame extension of the valued field HR. From the linear


disjointness, we have G(HS/HR) = G(QS · HR/HR) �= G(QS/QR).


We have seen in Th. 3.9(b) the one-to-one correspondence between tame gr-


algebraic graded field extensions of R and field extensions of QR in QS. The


isomorphism of Galois groups gives the one-to-one correspondence between field


extensions of QR in QS and the field extensions of HR in HS. The latter are


precisely the tame field extensions of HR in (HR)alg. :
Theorem 5.2. Let F be a field with Henselian valuation v, and let K be the max-


imal tame extension of F in Falg re v. Then GK is the tame closure of GF in


GFgr-alg, and G(QGK/QGF ) �= G(K/F ). There are one-to-one correspondences:


tame field extensions of F in Falg re v


! tame graded field extensions of GF in (GF )gr-alg


! field extensions of QGF in QGK.


Proof. Let p = char(F ) = char(GF ). Since GK0 = K = F sep = (GF0)sep and�
GK/


�
GF =


�
K/
�


F , which is the prime-to-p part of
�


GF /
�


GF , GK is tame over


GF and has no proper tame extensions. Hence, GK is the tame closure of GF .


We define a homomorphism � : G(K/F ) � G(QGK/QGF ) as follows: For


u{ G(K/F ), u (VK) = VK since VK is the unique extension of the Henselian


valuation ring VF to K. Moreover, as
�


K/
�


F is a torsion group, u must induce the


identity automorphism on
�


K . Hence, u (W
�
K) = W


�
K and u (W y �


K ) = W y �
K for each


�� � K . Thus, u induces a graded ring isomorphism u � : GK � GK which is the


identity on GF . This isomorphism extends to an isomorphism u : QGK � QGK


of the quotient field. Define � ( u ) = u� G(QGK/QGF ).


To show that � is an isomorphism, we proceed in stages. First, let I be the


maximal unramified extension of F in K, re v. Then I = F sep and
�


I =
�


F ,


and I is Galois over F with G(I/F ) �= G(I/F ) canonically. So, GI is the maximal


unramified graded field extension of GF , since GI0 = I = (F )sep = (GF0)sep and�
GI =


�
I =


�
F =


�
GF . Hence, QGI �= GI0  GF0


QGF , by Remark 3.1, showing


that QGI is Galois over QGF , with


G(QGI/QGF ) �= G(GI0/GF0) �= G(F sep/F ) �= G(I/F ) .







The inverse of this isomorphism corresponds to the mapping induced by � .
The field extension K/I is tame and totally ramified. Let | = {}~ Isep | } n =


1 for some n  N with p n}. Since VI is Henselian and I is separably closed, |�	 I


and | maps injectively to I , let |�� be the image of | in I = GI0. Let L be any


finite-degree field extension of I in K. Then, L is tame and totally ramified over I .


Because further VI is Henselian and I contains all c -th roots of unity for c = [L : I ],


L is an c -Kummer extension of I (cf. [S, p. 64, Th. 3] or [TW, Prop. 1.4(iii)]).


Likewise, QGL is an c -Kummer extension of QGI , by Prop. 3.3. Moreover, by [E,


(20.11)] or [TW, Prop. 1.4(i)] there is a perfect pairing
�


L/
�


I × G(L/I) ��| � given


by (� +
�


I, u ) 0� f j u (a) for any a  L with v(a) = � . With respect to the canonical


isomorphism
�


L/
�


I � �
GL/


�
GI and the map G(L/I) � G(QGL/QGI) induced


by � , the following diagram is evidently commutative,�
L/
�


I × G(L/I) −−−−� |e�
�


GL/
�


GI × G(QGL/QGI) −−−−� |e�
where the bottom row is the perfect pairing of Prop. 3.3(b). Because both rows


of the diagram are perfect pairings, the map G(L/I) � G(QGL/QGI) must be an


isomorphism. Since K is the union of fields such as L and QGK is the union of the


corresponding fields QGL, the restriction of � mapping G(K/I) to G(QGK/QGI)


is an isomorphism. Thus, we have a commutative diagram


1 −−−−� G(K/I) −−−−� G(K/F ) −−−−� G(I/F ) −−−−� 1


h
=


� h
=


1 −−−−� G(QGK/QGI) −−−−� G(QGK/QGF ) −−−−� G(QGI/QGF ) −−−−� 1


The 5-lemma shows that � is an isomorphism. The isomorphism � of Galois groups


gives the one-to-one correspondence between tame field extensions of F in Falg (i.e.,


subfields of K) and field extensions of QGF in QGK. The correspondence between


these fields and the tame graded field extensions of GF in GFgr-alg was given in


Th. 3.9. :
In the setting of Th. 5.2, it was shown in [B1, Th. 5] that if L is a field extension


of F with [L : F ] = n < A , then L is tame over F 1 2 QGL is separable over QGF


with [QGL : QGF ] = n.


Corollary 5.3. Let K be the maximal tame extension of a Henselian valued field


F . Then HGK is the maximal tame extension of HGF , and G(HGK/HGF ) �=
G(K/F ).







Proof. This is immediate from Prop. 5.1 and Th. 5.2. :
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