
GROUPS OF TYPE E7 OVER ARBITRARY FIELDS

R. SKIP GARIBALDI

Abstract. Freudenthal triple systems come in two flavors, degenerate and nondegenerate.
The best criterion for distinguishing between the two which is available in the literature is
by descent. We provide an identity which is satisfied only by nondegenerate triple systems.
We then use this to define algebraic structures whose automorphism groups produce all
adjoint algebraic groups of type E7 over an arbitrary field of characteristic

�
= 2, 3.

As an application, we provide a construction of adjoint groups with Tits algebras of index
2. We use this construction to fully describe the degree one connecting homomorphism on
Galois cohomology for all adjoint groups of type E7 over a real-closed field.

A useful strategy for studying simple �������	��
 algebraic groups over arbitrary fields has
been to describe such a group as the group of automorphisms of some algebraic object.
We restrict our attention to fields of characteristic �= 2, 3. The idea is that these algebraic
objects are easier to study, and their properties correspond to properties of the group one is
interested in. Weil described all groups of type An, Bn, Cn,

1Dn, and 2Dn in this manner in
[Wei60]. Similar descriptions were soon found for groups of type F4 (as automorphism groups
of Albert algebras) and G2 (as automorphism groups of Cayley algebras). Recently, groups
of type 3D4 and 6D4 have been described in [KMRT98, §43] as groups of automorphisms of
trialitarian central simple algebras. The remaining groups are those of types E6, E7, and
E8.

As an attempt to provide an algebraic structure associated to groups of type E7, Freuden-
thal introduced a new kind of algebraic structure in [Fre54, §4], which was later studied
axiomatically in [Mey68], [Bro69], and [Fer72]. These objects, called Freudenthal triple sys-
tems, come in two flavors: degenerate and nondegenerate. The automorphism groups of the
nondegenerate ones provide all simply connected groups of type E7 with trivial Tits algebras
over an arbitrary field. In fact, more is true: they are precisely the G-torsors for G simply
connected of type E7 with trivial Tits algebras.

One issue that has not been addressed adequately in the study of triple systems is how to
distinguish between the two kinds. A triple system consists of a 56-dimensional vector space
endowed with a nondegenerate skew-symmetric bilinear form and a quartic form (see 1.1 for
a complete definition), and we say that the triple system is nondegenerate precisely when
this quartic form is irreducible when we extend scalars to a separable closure of the base
field. This seems to be the best criterion available in the literature to distinguish between
the two types. In Section 2, we show that one of the identities which nondegenerate triple
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systems are known to satisfy is not satisfied by degenerate ones, thus providing a criterion
for 	����������� tiating between the two types which is doesn’t require enlarging the base field.

In Section 3, we define algebraic structures whose groups of automorphisms produce all
groups of type E7 up to isogeny. Thanks to the preceding result distinguishing between
degenerate and nondegenerate triple systems, no Galois descent is needed for this definition.
We call these structures gifts (short for generalized Freudenthal triple systems). They are
triples (A, � , � ) such that A is a central simple F -algebra of degree 56, � is a symplectic
involution on A, and � : A −� A is an F -linear map satisfying certain axioms (see 3.2 for
a full definition). We also show an equivalence of categories between the category of gifts
over an arbitrary field F and the category of adjoint (equivalently, simply connected) groups
of type E7 over F . A description of the flag (a.k.a. projective homogeneous) varieties of an
arbitrary group of type E7 is then easily derived, see Section 4.

We also give a construction of gifts with algebra component A of index 2 (which is equiv-
alent to constructing groups of type E7 with Tits algebra of index 2 and correspond to Tits’
construction of analogous Lie algebras in [Tit66a], or see [Jac71, §10]) and we describe the
involution � explicitly in this case.

As a consequence of all this, in the final section we completely describe the connecting
homomorphism on Galois cohomology in degree one for groups of type E7 over a real-
closed field. The interest in this connecting homomorphism arises from the Hasse Principle
Conjecture II [BFP98], which generalizes the Hasse principle for number fields to fields F
such that the cohomological dimension of F ( −1) � 2. This conjecture remains open for
groups of type E7, and a possible ingredient in any proof would be a local-global principle for
this connecting homomorphism (similar to what was done for the classical groups in [BFP98]
and for trialitarian groups in [Gar99b, 3.8]). Our result specifies the local values.

Notations and conventions. All fields that we consider will have characteristic �= 2, 3.
For a field F , we write Fs for its separable closure.

For g an element in a group G, we write Int (g) for the automorphism of G given by
x �� gxg−1.

For X a variety over a field F and K any field extension of F , we write X(K) for the
K-points of X.

When we say that an �����	� algebraic group (scheme) G is simple, we mean that it is
absolutely almost simple in the usual sense (i.e., G(Fs) has a finite center and no noncentral
normal subgroups). For any simple algebraic group G over a field F , there is a unique
minimal finite Galois field extension L of F such that G is of inner type over L (i.e., the
absolute Galois group of L acts trivially on the Dynkin diagram of G). We call L the inner
extension for G.

We write Gm,F for the algebraic group whose F -points are F � .
We will also follow the usual conventions for Galois cohomology and write H i(F,G) :=

H i(Ga� (Fs/F ), G(Fs)) for G any algebraic group over F , and similarly for the cocycles
Z1(F,G). For more information about Galois cohomology, see [Ser79] and [Ser94].

We follow the notation in [Lam73] for quadratic forms.
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For a, b � F � , we write (a, b)F for the (associative) quaternion F -algebra generated by
skew-commuting elements i and j such that i2 = a and j2 = b, please see [Lam73] or [Dra83,
§14] for more information.

For I a right ideal of in a central simple F -algebra A, we define the rank of I to be
(dimF I)/degA. Thus when A is split, so that we may write A �= EndF (V ) for some F -
vector space V , I = HomF (V,U) for some subspace U of V and the rank of I is precisely
the dimension of U .

1. Background on triple systems

Definition 1.1. (See, for example, [Fer72, p. 314] or [Gar99a, 3.1]) A (simple) Freudenthal
triple system is a 3-tuple (V, b, t) such that V is a 56-dimensional vector space, b is a nonde-
generate skew-symmetric bilinear form on V , and t is a trilinear product t : V ×V ×V −� V .

We define a 4-linear form q(x, y, z, w) := b(x, t(y, z, w)) for x, y, z, w � V , and we require
that

FTS1: q is symmetric,
FTS2: q is not identically zero, and
FTS3: t(t(x, x, x), x, y) = b(y, x)t(x, x, x)+ q(y, x, x, x)x for all x, y � V .

We say that such a triple system is nondegenerate if the quartic form v �� q(v, v, v, v) on
V is absolutely irreducible (i.e., irreducible over a separable closure of the base field) and
degenerate otherwise.

A similarity of triple systems is a map f : (V, b, t) �−� (V � , b� , t� ) defined by an F -vector
space isomorphism f : V �−� V � such that b� (f(x), f(y)) =  "! (x, y) and t� (f(x), f(y), f(z)) = "# (t(x, y, z)) for all x, y, z � V and some  $� F � . If  = 1 we say that f is an isometry
or an isomorphism. For a triple system M, we write Inv (M) for the algebraic group whose
F -points are the isometries of M.

Note that since b is nondegenerate, FTS1 implies that t is symmetric.
One can linearize FTS3 a little bit to get an equivalent axiom that will be of use later.

Specifically, replacing x with x+  �% , expanding using linearity, and taking the co ���'&��(��� t of , one gets the equivalent formula

FTS3� t(t(x, x, z), z, y)+ t(t(x, z, z), x, y) = zq(x, x, z, y)+ xq(x, z, z, y)
+ b(y, z)t(x, x, z)+ b(y, x)t(x, z, z).

Example 1.2. (Cf. [Bro69, p. 94], [Mey68, p. 172]) Let W be a 27-dimensional F -vector
space endowed with a non-degenerate skew-symmetric bilinear form s and set

V :=
F W
W F

.(1.3)

For

x := ) j
j �+* and y := , k

k �.-(1.4)
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set

b(x, y) := ) - − * , + s(j, k � ) + s(j � , k).
We define the determinant map det : V −� F by

det(x) := ) * − s(j, j � )
and set

t(x, x, x) := 6 det(x)
− ) j
−j � * .

Then (V, b, t) is a Freudenthal triple system. Since

q(x, x, x, x) := 12 det(x)2,

it is certainly degenerate, and we denote it by Ms. By [Bro69, §4] or [Mey68, §4], all
degenerate triple systems are forms of one of these.

Example 1.5. For J an Albert F -algebra, there is a nondegenerate triple system denoted
by M(J) whose underlying F -vector space is V = ( F J

J F ). Explicit formulas for the b, t, and
q for this triple system can be found in [Bro69, §3], [Mey68, §6], [Fer72, §1], and [Gar99a,
3.2]. For Jd the split Albert F -algebra, we set Md := M(Jd). It is called the split triple
system because Inv (Md) is the split simply connected algebraic group of type E7 over F
[Gar99a, 3.5]. By [Bro69, §4] or [Mey68, §4] every nondegenerate triple system is a form of
Md.

Remark 1.6. Although it is not clear precisely what the structure of the automorphism group
of a degenerate triple system is, a few simple observations can be made which make it appear
to be not very interesting from the standpoint of simple algebraic groups.

Since by definition any element of Inv (Ms) must preserve the quartic form q, it must
also be a similarity of the quadratic form det with multiplier ±1. This defines a map
Inv (Ms) −� µµ2 which is surjective since /0� Inv (Ms)(F ) maps to −1, where

/ ) j
j �+* :=

−* j �
j ) .

So Inv (Ms) is not connected.
Also, we can make some bounds on the dimension. Specifically, we define a map f :

Gm,F ×W ×GL(W ) −� Inv (Ms) by

f(c, u, 1 ) ) j
j �+* := 23) 1 (j)

)54 + 1 †(j � ) 1
c
(* + s( 1 (j), u)) ,

where 1 † = � ( 1 )−1 for � the involution on EndF (W ) which is adjoint to s. (So s( 1 (w), 1 †(w� )) =
s(w,w� ) for all w,w� � W .) Then f is an injection of varieties, but

f(c, u, 1 )f(d, v, 6 ) = f(cd, du+ 1 †(v), 176 ),
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so it is not a group homomorphism. It does, however, restrict to be a morphism of algebraic
groups on Gm,F × {0} ×GL(W ), so Inv (Ms) contains a split torus of rank 28. This map f
is also not surjective since for any u �= 0, the map

/ f(c, u, 1 )/ −1 ) j
j � * =

1
c
( ) − s( 1 (j � ), u)) * u+ 1 †(j)1 (j � ) * c

is not in the image of f . For an upper bound, we observe that the identity component of
Inv (Ms) is contained in the isometry group of det (which is of type D28, hence is 1540-
dimensional), and this containment is proper, as was remarked in [Fer72, p. 326]. Thus

757 < dim Inv (Ms)
+ < 1540.

2. An identity

For a Freudenthal triple system (V, b, t) over F , we define an F -vector space map p :
V 8 F V −� EndF (V ) given by

p(u 8 v)w := t(u, v, w) − b(w, u)v − b(w, v)u.(2.1)

In the case where the triple system is nondegenerate, Freudenthal [Fre54, 4.2] also defined a
map V 8 F V −� EndF (V ) which he denoted by ×. The obvious computation shows that
his map is related to our map p by

8 v × v � = p(v 8 v � ).(2.2)

Theorem 2.3. Let M := (V, b, t) be a Freudenthal triple system with map p as given above.
Then M is nondegenerate if and only if it satisfies the identity

tr(p(x 8 x) p(y 8 y)) = 24 q(x, x, y, y) − 2 b(y, x)2(2.4)

for all x, y � V , where tr is the usual trace form on EndF (V ).

To simplify some of our formulas, we define the weighted determinant, wdet : Ms −� F ,
to be given by

wdet(x) := 3 ) * − s(j, j � )
for x and y as in (1.4). We also bilinearize the determinant to define

det(x, y) := det(x+ y) − det(x) − det(y).

Proof of Theorem 2.3: If M is nondegenerate, then the conclusion is [Fre63, 31.3.1] or it can
be easily derived from [Mey68, 7.1]. So we may assume that M = Ms, the degenerate triple
system from Example 1.2, and show that it doesn’t satisfy (2.4).

We first compute the value of the left side of (2.4). For x and y as in (1.4), we can directly
calculate the action of p(x 8 x) p(y 8 y) on each of the four entries of our matrix as in (1.3).
Since we are interested in the trace of this operator, we only record the projection onto the
entry that we are looking at.

1 0
0 0

�� 4 [wdet(x)wdet(y) − 4 ) - s(j, k � )](2.5)
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0 0
0 1

�� 4 [wdet(x)wdet(y) + 4* , s(j � , k)](2.6)

0 m
0 0

�� 4
det(x) det(y)m+ 4( ) - − s(k, j � )) s(k � ,m)j

+2det(x)s(k � ,m)k + 2det(y)s(j � ,m)j
(2.7)

0 0
m� 0

�� 4
det(x) det(y)m� − 4(* , − s(j, k � )) s(k,m� )j �

−2 det(x)s(k,m� )k � − 2 det(y)s(j,m� )j �(2.8)

Since s is nondegenerate, it induces an identification of V with its dual, V � , by sending
x � V to the map v �� s(x, v). We may also identify V 8 F V � with EndF (V ), and combining

these two identifications provides an isomorphism 9 s : V 8 F V �−� EndF (V ) given by

9 s(x 8 y)w = xs(y,w),(2.9)

cf. [KMRT98, 5.1]. One has tr( 9 s(x 8 y)) = s(y, x).
With that notation, the terms in the brackets of (2.7) and (2.8) with co ����&��(��� t 4 give the

maps

( ) - − s(k, j � )) 9 s(j 8 k � ) and − (* , − s(j, k � )) 9 s(j � 8 k)

on W , which have traces

( ) - − s(k, j � ))s(k � , j) and (* , − s(j, k � ))s(j � , k)
respectively. Similarly, the terms with co ����&��(��� t 2 give the maps

det(x) 9 s(k 8 k � ) + det(y) 9 s(j 8 j � ) and − det(x) 9 s(k � 8 k) − det(y) 9 s(j � 8 j)

whose sum has trace

2 [det(x)s(k � , k) + det(y)s(j � , j)] .
Adding all of this up, we see that

1
8
tr(p(x 8 x)p(y 8 y)) = wdet(x)wdet(y) + 2* , s(j � , k) − 2 ) - s(j, k � )

+ 27 det(x) det(y)
+ 2 [(* , − s(j, k � ))s(j � , k) + ( ) - − s(k, j � ))s(k � , j)]
+ 2 [det(x)s(k � , k) + det(y)s(j � , j)]

= 3q(x, x, y, y) − b(y, x)2 + 20det(x) det(y) − 5 det(x, y)2

(2.10)

Taking the :�(�"�������	&�� of the left side of (2.10) and one-eighth of the left side of (2.4), we
get the quartic polynomial

5 b(y, x)2 + 20det(x) det(y) − 5 det(x, y)2.(2.11)

We plug

x :=
0 j
j � 0

and y :=
0 k
k � 0

into (2.11), where we have chosen j, j � , k, and k � such that

s(j, k � ) = s(j � , k) = 0 and s(j, j � ) = s(k, k � ) = 1.
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Then b(y, x) = 0 and det(x) = det(y) = −1. Since det(x + y) = 2, we have det(x, y) = 0.
Thus the value of (2.11) is 20 and (2.4) does not hold for degenerate triple systems.

It really was important that we allow x �= y in (2.4), for (2.10) shows that all triple systems
satisfy the identity

tr(p(x 8 x)2) = 24 q(x, x, x, x).(2.12)

3. Gifts

In this section we will define an object we call a gift, such that every adjoint group of type
E7 is the automorphism group of some gift. We must first have some preliminary definitions.

Suppose that (A, � ) is a central simple algebra with a symplectic involution � . The
sandwich map

Sand : A 8 F A −� EndF (A)

defined by

Sand(a 8 b)(x) = axb for a, b, x � A
is an isomorphism of F -vector spaces by [KMRT98, 3.4]. Following [KMRT98, §8.B], we
define an involution � 2 on A 8 F A which is defined implicitly by the equation

Sand( � 2(u))(x) = Sand(u)( � (x)) for u � A 8 A, x � A.
Suppose now that A is split. Then A �= EndF (V ) for some F -vector space V , and � is

the adjoint involution for some nondegenerate skew-symmetric bilinear form b on V (i.e.,
b(fx, y) = b(x, � (f)y) for all f � EndF (V )). As in (2.9), we have an identification 9 b :
V 8 F V �−� EndF (V ), and by a straightforward computation (or see [KMRT98, 8.6]), � 2 is
given by

� 2( 9 b(x1 8 x2) 8;9 b(x3 8 x4)) = − 9 b(x1 8 x3) 8;9 b(x2 8 x4)(3.1)

for x1, x2, x3, x4 � V .

Finally, for f : A −� A an F -linear map, we define f : A 8 F A −� A by

f (a 8 b) = f(a)b.

Definition 3.2. A gift G over a field F is a triple (A, � , � ) such that A is a central simple
F -algebra of degree 56, � is a symplectic involution on A, and � : (A, � ) −� (A, � ) is an
F -vector space map such that

G1: �:� (a) = �<� (a) = −� (a),
G2: =>� (a) �= 2a2 for some a � Skew(A, � ),
G3: � (� (a)a) = 0 for all a � Skew(A, � ),

G4: � − � − Id = −(� − � − Id) � 2, and
G5: TrdA(� (a)� (a� )) = −24TrdA(� (a)a� ) for all a, a� � (A, � ).

Such a strange definition demands an example.
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Example 3.3. Suppose that M = (V, b, t) is a nondegenerate Freudenthal triple system
over F . Let End(M) := (EndF (V ), � , � ) where � is the involution on EndF (V ) adjoint to
b. Using the identification 9 b : V 8 V −� EndF (V ), we define � : A −� A by � := 9 −1

b ,
where p is as in (2.1).

We show that End(M) is a gift. A quick computation shows that

−b(� ( 9 b(x 8 y))z,w) = b(z, � ( 9 b(x 8 y))w) = −b(� ( 9 b(y 8 x))z,w),

which demonstrates G1, since �?9 b(x 8 y) = − 9 b(y 8 x).
Suppose that G2 fails. Then for v � V , we set a := 9 b(v 8 v) and observe that a2 = 0, so

0 = 9 b(v 8 v)� ( 9 b(v 8 v))v = q(v, v, v, v)v.

Since this holds for all v � V , q is identically zero, contradicting FTS2. Thus G2 holds.
Since elements a like in the preceding paragraph span Skew(A, � ), in order to prove G3

we may show that

� (� (a)a� + � (a� )a) y = 0,(3.4)

where

a = 9 b(x 8 x) and a� = 9 b(z 8 z).(3.5)

A direct expansion of the left hand side of (3.4) shows that it is equivalent to FTS3� .
Using just the bilinearity and skew-symmetry of b and the trilinearity of t, G4 is equivalent

to

t(x, y, x� ) = t(x, x� , y) for all x, x� , y � V .

Thus G4 holds by FTS1.
Finally, consider G5. If a is symmetric, then by G1 � (a) = 0 and the identity holds. If a�

is symmetric then the left-hand side of G5 is again zero by G1. Since � and TrdA commute,
we have

TrdA(� (a)a� ) = � (TrdA(� (a)a� )) = − TrdA(a� � (a)) = − TrdA(� (a)a� ),
so the right-hand side of G5 is also zero. Consequently, by the bilinearity of G5, we may
assume that a and a� are skew-symmetric, and we may further assume that a and a� are as
given in (3.5). Then G5 reduces to (2.4).

It turns out that this construction produces all Freudenthal triple systems with the central
simple algebra component split.

Lemma 3.6. Suppose that G = (A, � , � ) is a gift over F . Then G �= End(M) for some
nondegenerate Freudenthal triple system over F if and only if A is split.

Proof: One direction is done by Example 3.3, so suppose that (A, � , � ) is a gift with A split.
Then we may write A �= EndF (V ) for some 56-dimensional F -vector space V such that V is
endowed with a nondegenerate skew-symmetric bilinear form b and � is the involution on A
which is adjoint to b. We define t : V × V × V −� V by

t(x, y, w) := � ( 9 b(x 8 y))w + b(w, x)y + b(w, y)x.
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Observe that t is trilinear. We define a 4-linear form q on V as in FTS2.
The proof that FTS3� implies G3 in Example 3.3 reverses to show that G3 implies

FTS3� . Similarly, G4 implies that t(x, y, z) = t(x, z, y) for all x, y, x�@� V , so q(w, x, y, z) =
q(w, x, z, y). G1 implies that q(w, x, y, z) = q(z, x, y, w) = q(w, y, x, z). Since the per-
mutations (3 4), (1 4), and (2 3) generate S4 (= the symmetric group on four letters) q is
symmetric.

Next, suppose that FTS2 fails, so that q is identically zero. Then since b is nondegenerate,
t is also zero. Then for v, v � , z � V and a := 9 b(v 8 v) and a� := 9 b(v �A8 v � ),

( =>� (a� ) + a� � (a))z = 2(b(v, v � )b(v � , z)v + b(v � , v)b(v, z)) = 2(aa� + a� a)z.
Since elements of the same form as a and a� span Skew(A, � ), this implies that G2 fails,
which is a contradiction. Thus FTS2 holds and (V, b, t) is a Freudenthal triple system.

Finally, writing out G5 in terms of V gives (2.4), which shows that (V, b, t) is nondegen-
erate.

Remark 3.7. The astute reader will have noticed that our definition of End(M) almost works
if M is degenerate, in that the only problem is that the resulting (A, � , � ) doesn’t satisfy
G5. That example and the proof of 3.6 make it clear that if we remove the axiom G5 from
the definition of a gift, then we would get an analog to Lemma 3.6 where the Freudenthal
triple system is possibly degenerate.

Remark 3.8. Observe that in the isomorphism G �= End(M) from the preceding lemma, M

is only determined up to similarity. To wit, for a triple system M = (V, b, t) and  B� F � ,
we define a similar structure MC = (V,  �!ED� GF ). Then MC is also a triple system and is
degenerate if and only if M is. We observe that End(M) = End(MC ). The only possible	���'&�H:IKJ y would be if the � produced by MC , which we shall denote by �@C , is 	�(�"���L��� t from
the � produced by M. However, we see that

�@C ( 9MCEN (x 8 y))w =  AF (x, y, w) −  "! (w, x)y −  "! (w, y)x
=  A� ( 9 b(x 8 y))w
= � ( 9MCEN (x 8 y))w.

Isometries and derivations.

Definition 3.9. An isometry of a gift G := (A, � , � ) is an element f � A such that � (f)f =
1 and � (faf−1) = f � (a)f−1 for all a � A (i.e., Int (f) is an automorphism of G). We set
Iso (G) to be the algebraic group whose F -points are the group of isometries of G.

A derivation of G is an element f � Skew(A, � ) such that

GD: � (fa) − � (af) = f � (a) − � (a)f for all a � A.

We define Der (G) to be the vector space of derivations of G.

Since any automorphism of G is also an isomorphism of A, it must be of the form Int (f) for
some f � A � . Thus there is a surjection Iso (G) −� Aut (G). When A is split (for example,
when the ground field is separably closed), then G �= End(M) for some nondegenerate
triple system M by 3.6, hence Iso (G) �= Inv (M), so over any field Iso (G) is simple simply
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connected of type E7. Since the surjection Iso (G) −� Aut (G) is that induced by restriction
from GL(A) −� Aut+ (A), the first map is even a central isogeny, and so Aut (G) is adjoint
of type E7.

It is easy to see that Der (G) is actually a Lie sub-algebra of Skew(A, � ), where the bracket
is the usual commutator. In fact, by formal 	�(�"���L��� tiation as in [Bor91, 3.21] or [Jac59, §4],
Der (G) is the Lie algebra of Iso (G).

Proposition 3.10. For G := (A, � , � ) a gift, im � = Der (G).

Proof: Since im � and Der (G) are both vector subspaces of A, it is equivalent to prove this
over a separable closure. Thus we may assume that A is split, so that G = End(M) for some
nondegenerate triple system M := (V, b, t) over F by Lemma 3.6, and we use the notation
(e.g., 9 b) from the proof of that lemma.

Consider the vector subspace D of Skew(A, � ) consisting of elements d such that dt(v, v, v) =
3t(dv, v, v) for all v � V . (These are known as the derivations of M.) The obvious computa-
tion shows that im �PO D, which one can find in [Mey68, p. 166, Lem. 1.3]. Conversely, the
reverse containment holds by [Mey68, p. 185, S. 8.3]. (He has an “extra” hypothesis that
the characteristic of F is not 5 because he is also considering triple systems of dimensions
14 and 32, but that is irrelevant for our purposes.)

For d � Skew(A, � ), consider

� (da) − � (ad) − Q�� (a) + � (a)d,(3.11)

and suppose first that a is symmetric. Then −� (ad) = �<� (ad) = −� (da) by G1 and � (a) = 0
so the whole of (3.11) is zero.

Now Skew(A, � ) is spanned by elements of the form a = 9 b(x 8 x) for x � V , and for such
an a, (3.11) applied to x is equal to

3t(dx, x, x) − dt(x, x, x)

just by expanding out using the definition of � and cancelling the terms. Thus d � A is in
D if and only if d satisfies GD for all a � Skew(A, � ) if and only if d satisfies GD in general,
so Der (G) = D = im � .

A category equivalence. We will now show that there is an equivalence of categories
between the category of adjoint groups of type E7 over F and the category of gifts over F ,
where both categories have isomorphisms for morphisms (i.e., they are groupoids). We use
the notation and vocabulary of [KMRT98, §26] with impunity.

Theorem 3.12. The automorphism group of a gift defined over a field F is an adjoint group
of type E7 over F . This provides an equivalence between the groupoid of gifts over F and the
groupoid of adjoint groups of type E7 over F .

Proof: Let CG(F ) denote the groupoid of nondegenerate gifts over F and let CE7
(F ) denote

the groupoid of adjoint groups of type E7 over F . Let

S(F ) : CG(F ) −� CE7
(F )
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be the functor induced by the map on objects given by G �� Aut (G). Then we have a
commutative diagram

CG(F )
S(F )−−−� CE7

(F )

i j

CG(Fs)
S(Fs)−−−� CE7

(Fs)

where i, j are the obvious scalar extension maps. They are both RTS:U���V beddings” for S the
Galois group of Fs over F , in that there is a S:UW�X&LJ>��Y�� on the morphisms in the category over
Fs with fixed points the morphisms coming from F . Since the diagram is commutative and
is compatible with the S:U���&LJ��(Y�� on the morphisms in the categories over Fs, S(Fs) is said to
be a RZS:UW�L[\J>���	]���Y��	^ of S(F ).

Since any nondegenerate triple system is a form of Md (1.5), every nondegenerate gift is a
form of End(Md) by Lemma 3.6. Thus CG(Fs) is connected. Since CE7

(Fs) is also connected
and any object in either category has automorphism group the split adjoint group of type
E7, S(Fs) is an equivalence of groupoids. (For G adjoint of type E7, Aut(G) �= G by [Tit66b,
1.5.6].)

By [KMRT98, 26.2] we only need to show that i satisfies the descent condition, i.e., that
1-cocycles in the automorphism group of some fixed element of CG(Fs) define objects in
CG(F ). Let (A, � , � ) be a gift over F and set

W := HomF (A 8 F A,A) _ HomF (A,A) _ HomF (A,Skew(A, � )).

Here (m, � , � ) � W gives the structure of (A, � , � ). The rest of the argument is as in
26.9, 26.12, 26.14, 26.15, 26.18, or 26.19 of [KMRT98]. We let ` denote the natural map
GL(A)(Fs) −� GL(W )(Fs) and observe that elements of the orbit of w under im ` (Fs)
define all possible gifts over Fs and the objects of CG(F ) can be identified with the set of all
w�?� W such that w� is in the orbit of w over Fs. Then i satisfies the descent condition by
[KMRT98, 26.4].

4. Applications to flag varieties

A Brown algebra is a 56-dimensional central simple structurable algebra with involution
(B,−) such that the space of skew-symmetric elements is one-dimensional. In characteristic
5, a 	�(�"���L��� t definition is needed at the moment due to �(�:]�H	��&��(��� tly strong classification
results in that characteristic. See [Gar99a, §2] for a full definition and 5.2 for examples.

The relevant point is that given a Brown F -algebra B, one can produce a nondegenerate
Freudenthal triple system M := (V, b, t) in a relatively natural way, see [AF84, §2] or [Gar99a,
§4]. This triple system is determined only up to similarity (i.e., for every  a� F � , (V,  "!ED� GF )
is also a triple system associated to B, and these are all of them). Also, this construction
produces all nondegenerate Freudenthal triple systems over F by [Gar99a, 4.14].

We define a gift End(B) by setting End(B) := End(M). Although M is only determined
up to similarity by B, End(B) is still well-defined, as observed in Remark 3.8.
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Definition 4.1. An inner ideal of a gift G = (A, � , � ) is a right ideal I of A such that� (I � (I)) O I. A singular ideal of G is a right ideal of A such that � (I � (I)) = 0.

If A is split so that G �= End(M) for some triple system M = (V, b, t), there is a bijection
between subspaces U of V and right ideals HomF (V,U) of EndF (V ). In this bijection, inner
ideals of M (i.e., those subspaces U such that t(U,U, V ) O U) correspond to inner ideals of
G, and the same holds for singular ideals where a singular ideal of M is a subspace U such
that t(u, u, v) = 2b(v, u)u for all u � U and v � V , see [Gar99a, 6.11].

Since all inner ideals in a nondegenerate Freudenthal triple system are totally isotropic
with respect to the skew-symmetric bilinear form [Fer72, 2.4], any singular or inner ideal in
a gift G is isotropic, i.e., � (I)I = 0.

Now all of the flag varieties (a.k.a. homogeneous projective varieties) for an arbitrary
group Aut (G) of type E7 can easily be described in terms of the singular and rank 12 inner
ideals of the gift G, by translating the corresponding description for the flag varieties for
such groups with trivial Tits algebras from [Gar99a, §7]. Specifically, one simply takes the
statement of [Gar99a, 7.4] and replaces every instance of “n-dimensional” with “rank n” as
well as replacing Inv (B) with Aut (G).

5. A construction

The rest of this section is taken up with a construction which produces groups of type E7

with Tits algebras of index 2, and in particular all gifts (hence all groups of type E7) over
a real-closed field. (Generally, we say that a field F is real if −1 is not a sum of squares in
F and that it is real-closed if it is real and no algebraic extension is real, please see [Lam73,
Ch. 9, §§1, 2] for more information.) Since one of these groups is anisotropic, this is the
first construction of an anisotropic group of type E7 directly in terms of this 56-dimensional
form. (Groups of this type have been implicitly constructed as the automorphism groups of
Lie algebras given by the Tits construction.)

A diversion to symplectic involutions. Let Q := (a, b)F be a quaternion algebra over F .
Our construction will involve taking a 56-dimensional skew-symmetric bilinear form from a
triple system over F and twisting it to get a symplectic involution of � on M28(Q). However,
if our triple system is of the form M(J) for some J , then the skew-symmetric form is of a very
special kind, namely it is obtainable from a quadratic form q (specifically, b 1 ced T where T
is the trace on the Jordan algebra), and we use this fact to get an explicit description of � .

More generally, suppose that (V, q) is a nondegenerate quadratic space over F with as-
sociated symmetric bilinear form bq such that bq(x, x) = q(x). Set W := V _ V . For
wi = (vi, v �i) � W for i = 1, 2, define a skew-symmetric bilinear form s by

s(w1, w2) := bq(v1, v �2) − bq(v2, v �1).
Then s is nondegenerate since q is. Now consider the map 6 c : W −� W given by6 c(v, v � ) = (cv � , (b/c)v). This is a similarity of s with multiplier b. Let K := F ( f a)
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and let g be the unique F -linear automorphism of K. Then Int (6 c) 8hg is an automor-
phism of (EndF (W ), � s) 8 F K whose fixed subalgebra is isomorphic to (A, � ) where A is
Brauer-equivalent to Q and of degree dimF W and � is some symplectic involution.

Lemma 5.1. Suppose that for i = 1, 2, (Vi, qi) is a nondegenerate quadratic space over F ,
(Wi, si) are the associated symplectic spaces as described above, and for ci � F � , (A, � ) is
defined by descent from K := F ( f a) as above by Int (6 c1 _i6 c2). Then if q1 = b ) 1, . . . , ) m c
and q2 = b * 1, . . . , * n c , the involution � is adjoint to the hermitian form

b ) 1, . . . , ) m, * 1, . . . , * n c
over Q.

Of course, this generalizes directly to an orthogonal sum of any finite number of such
skew-symmetric spaces.

Proof: Without loss of generality, we may assume that m = n = 1 and write q1 = b ) c and
q2 = b * c . We first describe an isomorphism

f : (Q 8 F K) 8 F M2(F ) −� M2(K) 8 F M2(F ).

We set i and j to be the skew-commuting generators for Q such that i2 = a and j2 = b.
Then we fix a square root of a in K and let Eij be the matrix whose only nonzero entry is
a 1 in the (i, j)-position. We define f by

f(i 8 Ers) :=
f a 0
0 − cr

cs
f a 8 Ers

and

f(j 8 Ers) :=
0 cs
b/cr 0

8 Ers.

For Ci := 0 ci

b/ci 0 and g := Int C1 0
0 C2

, g 8jg is an g -semilinear algebra automorphism

of M4(F ) 8 F K of order 2 and is the specified descent. Also, f−1(g 8jg )f fixes M2(Q) 8 1
elementwise as an F -subalgebra of M2(Q) 8 F K. Thus g 8;g = f(Id 8;g )f−1.

Now the involution on M4(F ) which is adjoint to s1 _ s2 is precisely

Int
A−1 0
0 B−1 k Int

J 0
0 J k t

where A = ) · Id2, B = * · Id2, J = ( 0 1
−1 0 ), and t is the transpose [KMRT98, p. 24]. But

f(, 8;g )f−1 = Int
J 0
0 J k t,

so we are done.

Let Q be a quaternion algebra over F with unique symplectic involution , and h a , -
hermitian form on some Q-vector space V . There is a useful invariant of h which we call
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a quadratic trace form over F . It is the quadratic form q on V regarded as a (4 dimQ(V ))-
dimensional vector space over F defined by q(x) := h(x, x), see [Sch85, p. 352] or [Jac40,
p. 266]. This gives an injection from the Witt group of , -hermitian forms on Q to the Witt
group of quadratic forms over F [Sch85, 10.1.7]. If h is diagonal so that h = b ) 1, . . . , ) n c
for ) i � F � , then q �= b ) 1, . . . , ) n cl8 NrdQ.

The construction. Our construction will need to use a specific kind of Brown algebra
explicitly.

Example 5.2. ([Gar99a, 2.3, 2.4], cf. [All90, 1.9]) The principal examples of Brown F -
algebras are denoted by B(J, m�
 for J an Albert F -algebra and m a quadratic étale F -algebra.
We set B(J, F × F ) to be the F -vector space ( F J

J F ) with multiplication given by

) 1 j1
j �1 * 1

) 2 j2
j �2 * 2

= ) 1 ) 2 + T (j1, j �2) ) 1j2 + * 2j1 + j �1 × j �2
) 2j �1 + * 1j �2 + j1 × j2 * 1* 2 + T (j2, j �1) ,

where T is the bilinear trace form on J and × is the Freudenthal cross product (see [KMRT98,
§38] for more information about these maps). The involution − on B(J, F × F ) is given by

) j
j �+* =

* j
j � ) .

The map / defined by

/ ) j
j �n* =

* j �
j )

is an automorphism of B(J, F × F ) as an algebra with involution. For m a quadratic field
extension of F and g the nontrivial F -automorphism of m'o we define B(J, m�
 to be the F -
subspace of B(J, F × F ) 8 F m fixed by the g -semilinear automorphism /08pg . Note that
this construction is compatible with scalar extension in that for any field extension K of F ,
B(J, m�
M8 F K �= B(J 8 F K, m+8 F K).

Construction 5.3. Suppose that K is a quadratic field extension of F , Q is a quaternion
algebra over F which is split by K, and J is an Albert F -algebra which is also split by K.
Then there is a gift G := (M4(Q), � , � ) such that

(1) Iso (G) is split by K.
(2) For , the unique symplectic involution on Q, the involution � is adjoint to the , -

hermitian form b 1 cqd T for T the trace on J .
(3) If Q is split, then G �= End(B(J,K)).

Proof: Consider the Brown algebras B := B(J,K) and Bq := B(Jd,K). Their spaces of
skew-symmetric elements are both spanned by some element s0 such that F (s0) �= K, and
they are isomorphic as algebras with involution over K, so B corresponds to a 1-cocycle ,
in H1(K/F,Aut+ (Bq)), which must be given by

,\r ) j
j �+* = ) 6 (j)6 †(j � ) *



GROUPS OF TYPE E7 OVER ARBITRARY FIELDS 15

for some norm isometry 6s� Inv (Jd)(K). Since , is a 1-cocycle, ,\r r ,\r = IdB, so we note
that 6tg�6 † g = IdJd .

Since Q is split by K, it is isomorphic to a quaternion algebra (a, b)F for some a, b � F �
such that K = F ( f a). Consider t � EndF (Bq) given by

t ) j
j �n* = ) ! !u6 (j)6 †(j � ) b2* .

By [Gar99a, 5.10], Md is the unique triple system associated to Bq. The map t is a similarity
of Md with multiplier b, so Int (t) is an automorphism of the gift associated to End(Bq),
which is the split gift Gd. Also,

F3g�F3g (x) = bx

for all x � Bq. Thus setting v r = Int (t) defines a 1-cocycle vB� Z1(K/F,Aut (Gd)), which
defines a nondegenerate gift (A, � , � ) over F which is split over K.

The map H1(K/F,Aut (Gd)) −� H2(K/F, µµ2) sends the class of G to the class of A
(which is the Tits algebra associated to Iso (G)), where we are identifying H2(K/F, µµ2) and
the subgroup of the Brauer group of F consisting of algebras which are split by K. The
image of v under this map is the 2-cocycle f given by frxw r = b. This 2-cocycle determines
the quaternion algebra Q by [Spr59, pp. 250, 251] or [GTW97, Lem. 3.5].

Part (2) follows directly from Lemma 5.1, and part (3) is clear.

Example 5.4. Let Q be a nonsplit quaternion algebra over a field F with splitting field
K a quadratic extension of F and set G to be the gift over F constructed in 5.3 from K,
Q, and the split Albert F -algebra Jd. Then G contains a rank 6 maximal singular ideal
corresponding to the 6-dimensional maximal singular ideal in B(Jd, m�
 given in [Gar99a,
7.5], so by the description of the flag varieties from Section 4 the non-end vertex of the
length 2 arm of the Dynkin diagram of Iso (G) is circled. Since the Tits algebra of Iso (G) is
Brauer-equivalent to Q and hence nonsplit, the end vertex of the long arm is not circled, so
Iso (G) must be of type E9

7,4 in the notation of [Tit66b, p. 59].

6. Groups of type E7 over real-closed fields

Construction 5.3 produces all four isogeny classes of groups of type E7 over a real-closed
field. The two forms with nontrivial Tits algebra are given by taking K = R( f −1), Q =
(−1,−1)R, and J = H3(C, 1) for C the two 	�(�"���L��� t Cayley algebras over R. (For a definition
and a general discussion of Cayley algebras, please see [Sch66, Ch. III, §4] or [KMRT98,
§33.C].) Taking C to be the Cayley division algebra, gives the anisotropic or compact form.
Since we have an explicit description of the involution in the associated gift, we can use this
to describe the connecting homomorphism in degree one of the Galois cohomology of such a
group.

We have a short exact sequence

1 −� µµ2 −� Iso (G)
Int−� Aut (G) −� 1(6.1)
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where we have identified µµ2 with the center of Iso (G). We want to describe the image of
the induced connecting homomorphismy

: Aut (G)(F ) −� H1(F, µµ2) �= F � 2.(6.2)

By the Skolem-Noether Theorem, everything in Aut (G)(F ) is of the form Int (f) for some
f � A � . Since Int (f) is an isomorphism of (A, � ), � (f)f = µ � F � , and

y
is given byy

(Int (f)) = µF � /F � 2.
Application 6.3. For G = (A, � , � ) a nondegenerate gift over a real-closed field R, the
following are equivalent:

(1) A is split.
(2) � is hyperbolic.
(3) The map

y
: Aut (G)(R) −� H1(R,µµ2) from (6.2) is surjective.

Point (3) is interesting because of connections with the Hasse Principle Conjecture II, see
the introduction.

Of course, H1(R,µµ2) �= R � /R � 2 �= Z2, so if the map is not surjective it is trivial.

Proof: (1) =z (3): Since A is split, G �= End(M) for a nondegenerate triple system M, and
since R is real-closed, M �= M(J) for some reduced Albert R-algebra J [Fer76, 5.1]. Since J
is reduced, for any µ � R � , there is a norm similarity 9 of J with multiplier µ [Gar99a, 1.6]
and the map

) j
j �n* �� µ−2 ) { 9 (j)9 †(j � ) µ3 *

is a similarity of M(J) with multiplier µ.
(3) =z (2) purely because (A, � ) is a central simple algebra with symplectic involution,

see the following Lemma 6.5.
(2) =z (1): As mentioned above, G is obtained from Construction 5.3 with J = H3(C, 1)

for some Cayley R-algebra C. Then by 5.3(2), � is adjoint to a hermitian form with quadratic
trace form NrdQ 8 ( b 1 cqd T ), which is hyperbolic since � is. By [KMRT98, p. 533],

T = b 1, 1, 1 c?8 ( b 1 cqd n),

for n the quadratic norm form on C. Thus the two possibilities for T are b 1, 1, 1 c|d 12H
and 27 b 1 c where H denotes a hyperbolic plane, both of which are not hyperbolic. Since R
is real-closed, the Witt ring is an integral domain (isomorphic to Z by [Sch85, 2.4.8]), and
so NrdQ must be hyperbolic and Q must be split.

Taking G := (A, � , � ) to be the gift constructed in Example 5.4 with F = R, K = C, and
Q = H provides an example of a gift over R with A nonsplit and � isotropic, but necessarily
non-hyperbolic. (The involution is isotropic because the gift is nondegenerate and contains
a singular ideal, see the comment following Definition 4.1.)

Example 6.4. That (2) implies (1) in Application 6.3 is special to the field being real-
closed. For example, consider any field F which contains a square root of −1 and has a
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nonsplit quaternion algebra Q. Then for K any quadratic subfield of Q, let (M4(Q), � , � ) be
the gift constructed in 5.3 from K, Q, and J = H3(C, 1) for C the split Cayley F -algebra.
The involution � corresponds to a hermitian form with quadratic trace form

NrdQ 8 ( b 1, 1, 1 cqd 12H),

where H denotes a hyperbolic plane. Since F contains a square root of −1, this form is
hyperbolic over F , so � is hyperbolic over F .

We close with the promised lemma about symplectic involutions.
For (A, � ) a central simple F -algebra with involution, we write G(A, � ) for the group of

multipliers of similitudes of (A, � ), i.e., for the set of all  ;� F � such that there is some
f � A � with � (f)f =  .
Lemma 6.5. Let (A, � ) be a central simple algebra with symplectic involution over a eu-
clidean field E (i.e., E is formally real and |E � /E � 2| = 2). Then G(A, � ) is all of E � if and
only if � is hyperbolic.

Proof: If � is hyperbolic, then G(A, � ) = E � over any field since there is at most one
hyperbolic form of a given dimension over any skew field.

Suppose now that G(A, � ) = E � . If A is split, then � is hyperbolic (regardless of G(A, � ))
and so we are done. So we may assume that A is nonsplit, and since it supports a symplectic
involution it must have index 2. Then A �= EndQ(V ) for the unique nonsplit quaternion
algebra Q over E and � is adjoint to some , -hermitian form h on V where , is the unique
symplectic involution on Q. Let q be the quadratic trace form of h on V as described above.
It is clear from the definition of q that G(A, � ) O G(q), where

G(q) = {  }� E � |  "~ �= q}.
Then G(q) = E � . Since E is euclidean, q must be hyperbolic. Since the map on Witt groups
is an injection, h is hyperbolic, hence � is as well.
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