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Abstract. We establish that the derived Witt group is isomorphic to the usual Witt group when 2 is invertible.


This key result opens the Ali Baba’s cave of triangular Witt groups, linking the abstract results of Part I to


classical questions for the usual Witt group. For commercial purposes, we survey the future applications of


triangular Witt groups in the introduction. We also establish a connection between odd-indexed Witt groups


and formations. Finally, we prove that over a commutative local ring in which 2 is a unit, the shifted derived


Witt groups are all zero but the usual one.


Introduction


The usual Witt group is the one defined by Knebusch (see [6]) for algebraic varieties. We present the
obvious generalization of his definition to exact categories (see § 1) without any feeling of paternity. The
derived Witt group is the Witt group of the derived category (see § 2), following the general definition
for triangulated categories introduced in [1] and [2].


Let E be an exact category with a duality � : E � E , i.e. � is a contravariant exact functor and� 2 � Id. This includes the case of schemes (even with twisted dualities) and therefore rings and fields but
also the case of abelian categories with duality, like the category of finite length modules over a regular
local ring, for instance. Given such an exact category, its derived bounded category Db(E) is equipped


with an induced duality # : Db(E) � Db(E) which is contravariant, satisfies #2 � Id and is exact, this
last notion of exactness requiring some care. Our main objective here is to establish that the natural
homomorphism from the usual Witt group to the derived Witt group :�


E : W(E) −� W Db(E)


is an isomorphism when 1
2


�
E . This is theorem 4.3. The homomorphism �


E is described in 2.8.
Even if it might be of some metaphysical interest to know that a construction depending on an exact


category is actually an invariant of its derived category, the reader will rapidly note that symmetric forms
over complexes are much “heavier” (to keep this text within the boundaries of politeness) than the classical
symmetric forms. Technical and calligraphic obstacles arise, like the size of the complexes and of the
morphisms, like homotopies, like cone and cylinder constructions, like (fractions of) quasi-isomorphisms
and are moreover of considerable unaesthetic weight.


Therefore, if the main question remains of course :


What shall we use derived Witt groups for ?


a collateral question is :


How can we avoid the technical toughness of the symmetric forms over complexes ?


The answer to the second question is obvious : we try to formalize everything in the framework of
triangulated categories. This was successfully used in [2] to establish a long exact sequence for localization.
If, in some cases, the triangular approach appears to be too ethereal, one can also have recourse to the
more detailed formalism of bi-Waldhausen categories.
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2 PAUL BALMER


Let us advertise derived Witt groups in answering the first question : usefulness. The following ideas
are not developed herein. They will appear in forthcoming articles in collaboration with Charles Walter.


First of all, we already mentioned the localization exact sequence constructed in part I of this series.
Making all due allowance, this gives for Witt groups the analogue of Thomason’s result in K-theory,
namely a long exact sequence relating the Witt groups of a scheme, the Witt groups of an open subscheme
and the Witt groups on those complexes of the scheme which are acyclic on the open subscheme (confer


[13]). This is discussed in remark 4.9 below.
Secondly, among the triangulated categories with duality associated to a given scheme, there is also


the derived category of quasi-coherent sheaves with coherent homology, considered by Hartshorne in [4]
and equipped with Grothendieck’s duality. This will lead to the definition of what could be considered
as the Witt group of coherent modules, by analogy with G-theory (or K


�
-theory). This will also allow us


to define, in this very flexible framework, a direct image homomorphism (a transfer) for a large collection
of morphisms of schemes, introducing twists and shifts, all things which make full sense in the derived
categories as presented in [4]. As usual, over regular separated schemes, this will coincide with the already
existing Witt groups (of locally free modules).


Thirdly, out of the long exact sequence, we shall elaborate a spectral sequence for a filtration of
triangulated categories. Applying this to schemes, we shall establish a Gersten-type spectral sequence,
analogous, once again, to the existing one in K-theory. This has very easy new and powerful consequences
on the Gersten complex over schemes of low Krull dimension (until dimension 4) and opens the way to
deal with those problems in higher dimension. Among “those problems”, we do include the Gersten
conjecture.


Fourthly, finally and obviously, the result : “derived Witt group equals usual Witt group” creates a new
way for the computation of some Witt groups through results on the derived categories. Let me simply
mention in this direction the possibility of computing the Witt group of the projective space over a field
using well-known identifications of its derived category. This will re-prove the famous and pretty hard
theorem of Arason W(Pn


k ) � W(k) and, more importantly, will allow similar computations for those
projective schemes for which these determinations of the derived categories have already been performed.


To put it in a nutshell, we install a machinery that allows a serious treatment of the Witt groups
within the well-known and powerful strategies of K-theory. But, of course, one has to check first that
this new Witt group has something to do with the one we all love. This is the goal of the present article.


Let us overview briefly its content. After the presentations made in paragraphs 1 and 2, paragraphs
3 and 4 are devoted to the proof of the main result � E : Wus


�� Wder. Surjectivity of � E depends upon
the possibility of reducing complexes (a non-split version of “surgery on complexes” as topologists would
say) and is presented in § 3. Injectivity depends upon a general triangular result (stably neutral forms are
neutral ) established in part I of this series and upon a simple reformulation of the classical sub-lagrangian
reduction (slogan : “L


�
/L”) displayed in lemma 4.1.


Paragraph 5 is dedicated to shifted or higher Witt groups, whose definitions are recalled, explained
and detailed in remark 5.1. We also mention a slight amelioration of the techniques of reduction used
in paragraph 3. This shows how a link could be made between odd-indexed Witt groups and groups of
formations as introduced by Ranicki (see [12]) or Pardon (see [9]). In proposition 5.3, we give generators
of the odd-indexed Witt groups but relations are not considered here. A complete treatment of this
question though important is not of crucial interest in this first presentation. So we choose to focus on
the usual Witt group for the obvious reasons.


Finally, we also establish the reassuring result : Over a commutative local ring (e.g. a field) in which 2
is a unit, the only one of the four shifted Witt groups which is not trivial is the usual one (theorem 5.6).
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1. The usual Witt group.


1.1. References. Standard references for exact categories are [5], [8], [11] or appendix A of [13].


1.2. Definition. Let E be an exact category and let � : E � E be a contravariant exact functor such
that there exists an isomorphism � : Id


�� �
	
�
satisfying (� M)


� 	 �
M � = IdM � for all object M of E . The triple (E , � , � ) is called an exact category with


duality.


1.3. Additive definitions. Let (E , � , � ) be an exact category with duality. This is in particular an
additive categories with duality (see [10]). In this context, there are classical notions that we recall here


briefly. A symmetric space is a pair (P,  ) where  : P
�� P


�
is a symmetric isomorphism, meaning that � 	 � P =  . It is common to refer to  as the form or sometimes the symmetric form over P .


Let (P,  ) and (Q, � ) be symmetric spaces. The orthogonal sum of these spaces is the symmetric


space (P � Q, � 0


0 � ) and is denoted by (P,  ) � (Q, � ). An isometry between (P,  ) and (Q, � ) is an


isomorphism h : P
�� Q such that h


� � h =  . Isometry is of course an equivalence relation on symmetric
spaces and preserves orthogonal sum.


Assume that E is essentially small. We define the Witt monoid of E to be the set of isometry classes
of symmetric spaces, with orthogonal sum. We denote it by


(MW(E), � ).


“M” stands for “Monoid”.


1.4. Definition. Let (E , � , � ) be an exact category with duality. A symmetric space (P,  ) is called meta-
bolic if it possesses a lagrangian, that is a pair (L, � ) where � : L � P is an admissible monomorphism
such that the following sequence is exact :


L ������� P � � � ����� L
�
.


It is easy to check that a space isometric to a metabolic one is metabolic and that the sum of two
metabolic spaces is again metabolic. In other words, we can consider the sub-monoid of MW(E) consisting
of isometry classes of metabolic spaces, which we denote by


NW(E).


“N” stands for “Neutral”.


1.5. Remark. Let N � M be an inclusion of abelian monoids. Recall that the quotient monoid M/N
is the set of equivalence classes of elements of M under the following relation: x � y if and only if there
exists n1, n2


�
N such that x + n1 = y + n2. The monoid M/N is a group as soon as for any element


x
�


M there exists an element y
�


M such that x + y
�


N .
It is easy to see that if (P,  ) is a symmetric space then the space (P,  ) � (P, −  ) is metabolic.


1.6. Definition. Let (E , � , � ) be an essentially small exact category with duality. The Witt group of E
is defined to be the quotient


W(E) =
MW(E)


NW(E)


(see remark 1.5). It is an abelian group. The class of symmetric space (P,  ) in W(E) is denoted by [P,  ]
and we say that two symmetric spaces are Witt-equivalent if their classes in W(E) coincide. We call it
the usual Witt group and denote it by Wus(E) when we want to distinguish it from the derived one.
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1.7. Exercise. Define the natural notion of morphism of exact categories with duality and check that
the Witt group is a covariant functor. Repeat this exercise for all the notions introduced hereafter.


1.8. Example. Let X be a scheme. Denote by E(X) the category of OX -modules which are locally
free of finite rank. It is an exact category with the exact structure inherited from the abelian category
of (quasi-coherent) OX-modules. Explicitly, a sequence is exact if it is locally a (necessarily split) short
exact sequence of OX,x-modules for all x


�
X. The functor


Hom OX
(−, OX) : E(X) � E(X)


is a duality. By definition, the usual Witt group of the scheme X is Wus(X) = W E(X) .


2. The derived Witt group.


2.1. Once for all. Let K denote a triangulated category and T be its translation automorphism. For
the basic notions of triangulated categories, the reference is [15, chapter 10] or [14]. For the derived
category of an exact category, the reference is [8] or [5]. For triangulated categories like we use them, see
also § 0 of [2].


2.2. Definition. An additive contravariant functor # : K � K is said to be exact if T 	 # �= # 	 T −1


and if for any exact triangle


A
u �� B


v �� C
w �� T (A)


the following triangle is exact:


C#
v# �� B#


u# �� A#
T (w#)�� T (C#).


Suppose, moreover, that there exists an isomorphism of functors� : Id
�� # 	 #


such that �
T (M) = T (� M ) and (� M )


# 	 �
M# = IdM# for any object M of K. Then the


triple (K, #, � ) is called a triangulated category with duality.


2.3. Definition. Symmetric spaces, orthogonal sums and isometries are defined in the same way as in
1.3 above. So, we get the Witt monoid MW(K). The question is now to define an analogue to metabolic
spaces. To avoid confusion, we call them neutral.


A symmetric space (P,  ) in a triangulated category with duality (K, #, � ) is said to be neutral if it
possesses a lagrangian. In this context, a lagrangian is a triple (L, ��� z) where the morphisms � : L � P
and z : T −1(L#) � L satisfy those two conditions :


(1) the following triangle is exact :


T −1(L#)
z �� L


� �� P
� #  �� L#


(2) T −1(z#) = �
L
	 z, which we shall abbreviate by : s is symmetric for T −1 	 #.


This is, from the psychological point of view, the analogue of definition 1.4, namely the existence of a
symmetric exact triangle instead of a symmetric exact sequence.


As before, we define NW(K) to be the sub-monoid of MW(K) consisting in neutral symmetric spaces
and we define the Witt group of K to be


W(K) =
MW(K)


NW(K)
.
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2.4. Remark. Actually, we have at our disposal a collection of Witt groups, Wn(K) for n
�


Z, called
the shifted Witt groups defined in [2]. The above one is only W0(K). We focus on this group when K
is the derived category of some exact category (see 2.8 below). Nevertheless, we shall reconsider shifted
Witt groups in § 5.


2.5. Exercise. Let (L, � � z) be a lagrangian of a symmetric space (P,  ). Show that z = 0 if and only


if � is a monomorphism if and only if P � L � L# and  � 0 1


1 ! for some morphism " : L# � L such


that " # = " . Such a space is called split neutral (or split metabolic). When " = 0 it is called hyperbolic.


2.6. The homotopy category. Let (E , � , � ) be an exact category with duality in the sense of definition


1.2. Let K = Kb(E) be the homotopy category of E , whose objects are bounded chain complexes of
objects of E and whose morphisms are chain complexes morphisms up to homotopy. The triangulated
structure of K is given by the cone construction (confer [15, paragraph 1.5]), that is : a triangle


A
u �� B


v �� C
w �� T (A)


is said to be exact if it is isomorphic to the triangle of the mapping cone construction over u, that is the
following triangle over u, where C(u) or Cone(u) stands for cone of u:


degree n#$
A = · · · ��
u #$ An+1


dn+1 ��
un+1 #$ An


dn ��
un #$ An−1


dn−1 ��
un−1 #$ · · ·


B = · · · ��
v #$ Bn+1


d %
n+1 ��&


0


1 ' #$ Bn


d %
n ��&


0


1 ' #$ Bn−1


d %
n−1 ��&


0


1 '#$ · · ·


C(u) := · · · ��
w #$ An � Bn+1


(
−dn 0


−un d %
n+1 ) ��


( −1 0 ) #$ An−1 � Bn


(
−dn−1 0


−un−1 d %
n) ��


( −1 0 ) #$ An−2 � Bn−1 ��
( −1 0 ) #$ · · ·


T (A) := · · · �� An
−dn


�� An−1
−dn−1


�� An−2 �� · · ·


Moreover K is naturally endowed with a duality. If we denote a complex by (Ei, di)i * Z, then its dual
would be the complex


(Ei, di)i * Z


#
:= (E−i)


�
, (d−i+1)


�
i * Z


.


On morphisms, with the same notations, # is given by


(fi)i * Z


#
:= (f−i)


�
i * Z


.


This functor is well defined (up to homotopy), is exact and is a duality. The identification � : IdK


�� # 	 #
is given by �


E = (� E)i i * Z
:= �


Ei i * Z


for any complex E = (Ei)i * Z in K.


The homotopy category is not satisfactory because the functor E � Kb(E), sending everything in
degree 0, does not send an exact sequence to an exact triangle (exercise). To pass over this problem, one
usually inverts quasi-isomorphisms. That’s our next step.
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2.7. Semi-saturated exact categories. Recall from [8, def. 1.11] that an exact category E is called
semi-saturated if every weakly split epimorphism is an admissible epimorphism. In other words, if
p : E � F is a morphism in E for which there exists another morphism + : F � E such that p 	 + = IdF ,
then one requires p to be an admissible epimorphism.


For example, a saturated exact category (= idempotent complete = pseudo-abelian = Karoubian =
every idempotent is the projection on a direct summand) is semi-saturated. For example, if X is a scheme,
the category E(X) defined in 1.8 is saturated and hence semi-saturated. So, for us, semi-saturation is a
weak condition.


A semi-saturated exact category E admits a fully faithful embedding into an abelian category A such
that :


(1) E � A is closed under extension;
(2) the exact functor E � A reflects exact sequences;
(3) every morphism in E which is an epimorphism in A is an admissible epimorphism in E .


In our example E = E(X), we already have A = the category of (quasi-coherent) OX-modules.


2.8. The derived category. Let E be a semi-saturated exact category. Define Db(E) to be the local-


ization of Kb(E) with respect to quasi-isomorphisms. Recall, to be sure, that a quasi-isomorphism is a


morphism of complexes in Kb(E) whose mapping cone is acyclic. A bounded complex


· · · � 0 � 0 � Pm
dm−� Pm−1


dm−1
−� Pm−2


dm−2
−� · · ·


dn+2
−� Pn+1


dn+1
−� Pn � 0 � 0 · · ·


is said to be acyclic if dm is an admissible monomorphism and if the shorter complex


· · · � 0 � 0 � 0 � Pm−1/Pm


d̄m−1
−� Pm−2


dm−2
−� · · ·


dn+2
−� Pn+1


dn+1
−� Pn � 0 � 0 · · ·


is acyclic, where Pm


dm� Pm−1


p, Pm−1/Pm is a short exact sequence and d̄m−1 : Pm−1/Pm � Pm−2 is
induced by dm−1, meaning that d̄m−1 p = dm−1. To start this inductive definition, we say that the zero
complex is acyclic. Since we are on bounded complexes, this is the same as saying that one can reduce the
complex from the other side and, in turn, is the same as saying (general definition) that every -/.1032546257 tial
di factors as di = � i−1


	 " i for short exact sequence :


Qi � i� Pi


! i, Qi−1 i
�


Z.


It is easy to see that the structure of triangulated category with duality obtained on Kb(E) “localizes”


to Db(E). We still denote by # the duality on Db(E), which could be called the derived functor of� : E � E even if it is a weak acceptation of that concept. The identification � localizes as well. We
obtain a triangulated category with duality :


Db(E), #, � .


Applying definition 2.3 to this triangulated category with duality, we obtain what we call the derived
Witt group :


Wder(E , � , � ) := W Db(E), #, � .


Now, consider the functor
c0 : E � Db(E)


which sends an object to the complex concentrated in degree 0 and does the same with the morphisms.
It is easy to check (and well known) that it sends exact sequences to exact triangles. Namely, if


E � � F , ! G


is an exact sequence in E then there exists a morphism w : c0(G) � T c0(E) in Db(E) such that the
following triangle is exact :


c0(E)
c0( � )�� c0(F )


c0(" )�� c0(G)
w �� T c0(E) .


It is an easy exercise to verify that if the starting exact sequence is the one characterizing a lagrangian
(in the sense of definition 1.4), then the triangle obtained with this construction satisfies the properties
of definition 2.3 (with z = −T −1(w)). Thus, we have the following
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2.9. Proposition. Let (E , � , � ) be a semi-saturated exact category with duality and let Db(E), #, � be


the associated derived category with duality. Then the functor c0 : E � Db(E) induces a well defined and
natural homomorphism of groups : �


E : Wus(E) � Wder(E).


2.10. Exercise. Let (E , � , � ) be a semi-saturated exact category with duality such that 1
2


�
E (see 3.1).


(1) Let (P,  ) be a neutral form in Db(E) and let (L, ��� z) be a lagrangian of this form. Show that
the symmetric space (P,  ) is uniquely determined up to isometry by L and z : T −1(L#) � L
such that T −1(z#) = z. Solution: theorem 1.6 of [2].


(2) Let (L, z) be such a pair. Suppose that z is moreover a good old morphism of complexes (no
fractions) and that z


�
−i−1 = zi for all i


�
Z. Prove that the cone of z possesses a symmetric form8 given in each degree by


Cone(z)i = (L−i)
� � Li


8
i =


0 −1
−1 0 � Li � (L−i)


�
= Cone(z)−i


�
= Cone(z)#


i


for i
�


Z, which satisfies w = v# 8 where v : L � Cone(z) and w : Cone(z) � L# are the
morphisms of the cone construction described in 2.6 :


T −1(L#)
z �� L


v �� Cone(z)
w �� L#.


Show that such a form is not hyperbolic, in general, even if each 8 i looks pretty hyperbolic.
(3) Suppose that z is only symmetric up to homotopy (instead of z


�
−i−1 = zi). Write the entire exact


triangle over z obtained from the cone construction together with the symmetric form on Cone(z)
satisfying condition (1) of definition 2.3 The form might be more complicated when z is only


symmetric in Db(E).


2.11. Example. Let X be a scheme. The exact category with duality E(X) introduced in 1.8 has a


derived category Db E(X) which Witt group shall be called the derived Witt group of the scheme X :


Wder(X) := W Db E(X) .


2.12. Remark. This notion is already introduced in [1, § 2] in which the notations are slightly -9.:03254;257 t
but do not <=0>2@?5A W0 (see remark 5.1 below). In [loc. cit., thm. 4.29], we establish that � is an isomor-
phism when E = P(R) is the category of finitely generated projective R-modules over a commutative
(noetherian) ring R containing 1


2 . This is an additive version (this exact category P(R) is split) of the
more general theorem stated here. The result of [loc. cit.] does not apply to 79BC7/DE<=FG792 schemes.


3. Reducing complexes.


3.1. Definition. Let E be an additive category. We say that 1
2


�
E if any morphism f in E can be


written in an unique way as f = g + g. In this case, we abbreviate g = 1
2
f .


3.2. Theorem. Let E be a semi-saturated exact category with duality such that 1
2


�
E . Then the


homomorphism �
E : Wus(E) � Wder(E) is surjective.


3.3. Proof. First, it is easy to see that any symmetric space in Db(E) is represented by a symmetric
quasi-isomorphism (see 3.6). Then, we prove that it is Witt-equivalent to a form over a shorter complex
(see 3.7 and main lemma 3.9). Then an easy induction gives the conclusion. The proof of theorem 3.2
will occupy the end of paragraph 3.







8 PAUL BALMER


3.4. Definition. Let P = (Pi)i * Z be a bounded complex. We say that P is supported in [m, n] where
m, n


�
Z if Pi = 0 when i > m or n > i :


P = · · · � 0 � 0 � Pm
dm−� Pm−1


dm−1
−� · · ·


dn+2
−� Pn+1


dn+1
−� Pn � 0 � 0 · · ·


3.5. Definition. A morphism of complexes s : P � P# is said to be strongly symmetric if s
�
−i = si for


all i
�


Z.


3.6. First step. Let x
�


W Db(E) . Then, using only isometries and 1
2 , it is easy to see that x is equal


to a class [P, s] in W Db(E) where P and s are as follows :


(1) P is a (bounded) complex and s : P � P# is a morphism of complexes (no fractions)
(2) s is a quasi-isomorphism;
(3) the form s is strongly symmetric.


The proof will consist in an induction on the length of the support of P . The following lemma is the easy
part.


3.7. Lemma. Let (P, s) be as in 3.6. Suppose that P is supported in [m, −n], with m > n H 0. Then


(P, s) is isomorphic in Db(E) to a symmetric space (Q, t) such that


(1) (Q, t) is as in 3.6;
(2) Q is supported in [n, −n].


3.8. Proof. The proof for m = n + 1 gives the general case. Assume that n H 1 and consider (P, s) :


P = · · · 0


s #$ �� Pn+1
dn+1 ��#$ Pn


dn ��
sn #$ · · ·


d−n+1�� P−n ��
sn
�#$ 0 �� 0 · · ·


P# = · · · 0 �� 0 �� P−n


�
d−n+1 ��� · · ·


dn � �� Pn


�
dn+1 ��� Pn+1


� �� 0 · · ·


The assumption that s is a quasi-isomorphism means that the mapping cone C(s) is acyclic. A direct
computation and the definition of acyclic complexes in an exact category give that dn+1 is an admissible
monomorphism. Choose an exact sequence


Pn+1 �
dn+1


Pn
,
qn


Qn.


Since dn dn+1 = 0 and sn dn+1 = 0, there exist morphisms en : Qn � Pn−1 and tn : Qn � P−n


�
such


that the following diagram commutes :


Pn


qn IJ IJ KKKKKK
dn ��


sn #$
Pn−1


sn−1#$
Qn L en MNNNNN


L tnOP Q Q Q Q
Q


P−n


�
d−n+1


� �� P−n+1


�
.


The relation sn−1 en = d−n+1


�
tn follows from the commutativity of the rest of the diagram and the fact


that q is an epimorphism. Now, it is easy to show that


Q := · · · 0


t #$ �� Qn
en ��


tn #$ Pn−1
dn−1 ��


sn−1 #$ · · ·
d−n+2�� P−n+1


d−n+1��
sn−1 �#$ P−n ��


tn
�#$ 0 · · ·


Q# = · · · 0 �� P−n


�
d−n+1 ��� P−n+1


�
d−n+2 ��� · · ·


dn−1 ��� Pn−1


�
en � �� Qn


� �� 0 · · ·
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is a symmetric morphism. Actually, the complexes P and Q are quasi-isomorphic through :


P = · · · 0


q #$ �� Pn+1
dn+1��#$ Pn


dn ��
qn #$ Pn−1


dn−1�� · · ·
d−n+1�� P−n �� 0 · · ·


Q = · · · 0 �� 0 �� Qn en
�� Pn−1


dn−1
�� · · ·


d−n+1
�� P−n �� 0 · · ·


We leave to the reader to check that this is a quasi-isomorphism directly from the definition.
An immediate computation gives q# t q = s. So, first, t is a quasi-isomorphism (and (Q, t) is as in 3.6)


and secondly the spaces (P, s) and (Q, t) are isometric. This ends the proof of the lemma when n H 1.
Suppose n = 0. Then the form (P, s) is simply


· · ·0 �� P1
d ��#$ P0 ��


s=s �#$ 0 ��#$ 0· · ·


· · ·0 �� 0 �� P0


�
d � �� P1


� �� 0· · ·


and the proof contains a little change. As before, since s is a quasi-isomorphism, its cone is acyclic. The
d is an admissible monomorphism that we can complete in an exact sequence as before :


P1 �
d


P0
,
p


Q.


Since s d = 0 there exists a unique morphism t̃ : Q � P0


�
such that t̃ p = s. But now d


�
t̃ p = d


�
s = 0


and then (since p is an epimorphism) d
�
t̃ = 0. On the other side, � being exact, the following sequence


is exact :
Q
� �


p � P0


� ,
d � P1


�
.


The relation d
�
t̃ = 0 induces the existence of a unique morphism t : Q � Q


�
such that t̃ = p


�
t. Observe


that p
�
t p = t̃ p = s. Dualizing this last equation, we get p


�
t
�
p = s


�
= s by hypothesis. This implies


that t
�


= t by uniqueness of t̃ and t.
Now it is clear that (P, s) is quasi-isomorphic to c0(Q, t) through the following quasi-isomorphism


q : P � c0(Q) :


· · ·0 �� P1
d ��#$ P0 ��


p#$ 0 ��#$ 0 · · ·


· · ·0 �� 0 �� Q �� 0 �� 0 · · ·


Since q# c0(t) q = s, c0(t) is a quasi-isomorphism (and then t : Q � Q
�


is an isomorphism). R
3.9. Main lemma. Let (P, s) be a symmetric space as in 3.6 and suppose that P is supported in [n, −n]
with n H 1. Then there exists a symmetric space (Q, t) such that


(1) (Q, t) is as in 3.6;
(2) Q is supported in [n, −(n − 1)];


(3) [P, s] = −[Q, t] in W Db(E) .


3.10. Proof. Suppose n H 2.
Let (P, s) be


P = · · ·0


s #$ �� Pn


dn ��
sn #$ Pn−1


dn−1 ��
sn−1 #$ · · ·


d−n+1�� P−n ��
s−n#$ 0 · · ·


P# = · · ·0 �� P−n


�
d−n+1 ��� P−n+1


�
d−n+2 ��� · · ·


dn � �� Pn


� �� 0 · · ·
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For readability purpose, we omit the subscripts for the -/.1032546257 tials di as well as for the morphisms si.
They are forced by the subscripts of the objects they are linking. Those who want to restore these
subscripts are recalled that, by assumption, s−i


�
= si for all i


�
Z and that we make an extensive use of


this fact.


Define (Q, t) to be


(degree n)#$ (degree −n)#$
Q := · · ·0


t #$ �� Pn


&
s


d ' ��#$ P−n


� � Pn−1


( 0 d )��
(d � −s ) #$ Pn−2


d ��
−s #$ ···


P−n+2
d ��


−s #$ P−n+1 ��(
d


−s )#$ 0 ��#$ 0 · · ·


Q# = · · ·0 �� 0 �� P−n+1


�
d � �� P−n+2


�
d � �� Pn−2


� &
0


d � '�� P−n � Pn−1


�
( s d � )


�� Pn


� �� 0 · · ·


We are going to prove that (P, s) � (Q, t) is neutral in Db(E), which is enough since (Q, t) obviously satisfies
conditions (1) and (2) of the lemma. Actually, to see that t is a quasi-isomorphism, simply compute the
mapping cone of t and observe that it is isomorphic (not only quasi-isomorphic or homotopically equivalent
but even isomorphic as a complex) to the mapping cone of s. This easy part is left to the reader. Up to
small sign tricks, the isomorphisms are the obvious ones.


The rest of the proof is a little bit technical but involves no particular -9.:FG?5S9T:A;.:25UWV The reader can
very well check every step, the only knowledge required (and already used) being the construction of the
mapping cone.


First of all, we introduce a new complex M and a morphism z : T −1M# � M . Namely, let


(degree n)#$ (degree −n)#$
T −1M# = · · ·0


z #$ �� 0 ��#$ Pn
−d ��


0 #$ Pn−1 ��
0 #$ · · ·


−d�� P−n+2
−d ��


0#$ P−n+1 ��
s−n d−n+1#$ 0 · · ·


M := · · ·0 �� 0 �� P−n+1


�
d � �� P−n+2


� �� · · ·
d � �� Pn−1


�
d � �� Pn


� �� 0 · · ·


Observe that T −1(z#) is the same map except that the first zero map is replaced by d−n+1


� 	 s−n


�
and


that the last map (from P−n+1 to Pn


�
) is zero. Actually the two chain morphisms z and T −1z# are


homotopic through the homotopy (we use the strong symmetry of s) :


T −1M# = · · ·0 �� 0 �� Pn
−d ��


XY Z Z Z Z Z Z Z Z Z
Pn−1 ��


s[\ ] ] ] ] ] ] ] ] ]
· · ·


−d ��
···


P−n+2
−d ��


···


P−n+1 ��
s^_ ` ` ` ` ` ` ` ` ` 0 · · ·


M = · · ·0 �� 0 �� P−n+1


�
d � �� P−n+2


� �� · · ·
d � �� Pn−1


�
d � �� Pn


� �� 0 · · ·


This means that z = T −1(z#) in Kb(E) and a fortiori in Db(E). Now, consider the exact triangle obtained
by the cone construction :


T −1M#
z �� M


z1 �� Z
z2 �� M#.
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Explicitly, the complex Z and the morphisms z1, z2 are :


T −1M# = · · ·0 ��
z #$ 0 ��#$ Pn


−d ��
0 #$ Pn−1


0 #$
··· −d ··· �� P−n+2


−d ��
0#$ P−n+1 ��


s d#$ 0 · · ·


M = · · ·0 ��
z1 #$ 0 ��#$ P−n+1


� d � ��&
0


1 ' #$ P−n+2


�&
0


1 '#$
··· d � ··· �� Pn−1


� d � ��&
0


1 '#$ Pn


� ��
1#$ 0 · · ·


Z := C(z) = · · ·0 ��
z2 #$ Pn


&
d


0 ' ��
−1 #$ Pn−1 � P−n+1


� & d 0


0 d � '��
( −1 0 ) #$ Pn−2 � P−n+2


�
( −1 0 ) #$


···


&
d 0


0 d � ' ···�� P−n+1 � Pn−1


� (−sd d � )��
( −1 0 )#$ Pn


� ��#$ 0 · · ·


M# = · · ·0 �� Pn
d


�� Pn−1
d


�� Pn−2
··· d ···


�� P−n+1 �� 0 �� 0 · · ·


There is a symmetric form 8 on Z defined by


Z = · · ·08 #$ �� Pn


&
d


0 ' ��
−1 #$ Pn−1 � P−n+1


� & d 0


0 d � '��(
s −1


−1 0 ) #$ · · ·


&
d 0


0 d � '�� P−n+1 � Pn−1


� (−sd d � )��(
s −1


−1 0 )#$ Pn


� ��
−1#$ 0 · · ·


Z# = · · ·0 �� Pn (
−d � s


d )�� P−n+1


� � Pn−1 (
d � 0


0 d )�� · · · (
d � 0


0 d )�� Pn−1


� � P−n+1
( d � 0 )


�� Pn


� �� 0 · · ·


One can verify that 8 	 z1 = z#
2 , which means that the triangle


T −1M#
z �� M


z1 �� Z
z1


# 8 �� M#.


is exact. By definition 2.3, the space (Z, 8 ) is neutral (actually, this one is already neutral in Kb(E)). By
the way, this gives a solution to exercise 2.10, part (3).


It is now U6S9FG?5.:257 t to prove that, in Db(E), the two following spaces are isometric :


(Z, 8 ) � (P, s) � (Q, t).


Note that Z a� P � Q in Kb(E), but only in Db(E), as we are going to see. The strategy is the following.


We are going to establish a certain number of equalities true in Kb(E), labelled from (1) to (5). Then,


we are going to use the fact that s and t are quasi-isomorphisms to deduce new equalities in Db(E). The
final statement being (Z, 8 ) � (P, s) � (Q, t) as announced.


Ex nihilo, let’s consider the following morphism a : T −1(Q#) � P , that we immediately present in
the triangle of its mapping cone :


T −1(Q#)
a �� P


a1 �� A
a2 �� Q#


degree n#$ degree −n#$
T −1(Q#) = · · ·0 ��#$a #$ 0 ��#$ 0 ��#$ P−n+1


� −d � ��
0 #$ · · ·


−d � �� Pn−2


� (
0


−d � ) ��
0#$ P−n � Pn−1


�(−s −d � )��
( 1 0 )#$ Pn


� ��#$ 0 · · ·


P = · · ·0 ��
a1 #$ Pn


d ��
1 #$ Pn−1


d ��&
0


1 '#$ Pn−2
d ��&


0


1 '#$ · · ·
d �� P−n+1


d ��b
0


0


1 c#$ P−n ��&
0


1 '#$ 0 ��#$ 0 · · ·


A := C(a) = · · ·0


a2 #$ �� Pn


&
0


d ' ��#$ P
�


−n+1 � Pn−1


(
d � 0


0 d )��
( −1 0 ) #$ P


�
−n+2 � Pn−2(


d � 0


0 d ) ···


��
( −1 0 ) #$ · · ·


b
0 0


d � 0


0 d c�� P−n � P
�
n−1 � P−n+1


(
s d � 0


−1 0 d )��(
−1 0 0


0 −1 0 )#$ P
�
n � P−n ��


( −1 0 )#$ 0 ��#$ 0 · · ·


Q# = · · ·0 �� 0 �� P−n+1


�
d � �� P−n+2


�
d � ···
�� · · · &


0


d � ' �� P−n � Pn−1


�
( s d � )


�� Pn


� �� 0 �� 0 · · ·
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We claim that there exists an homotopy equivalence d : A
�� Z and we give explicitly d and d −1 :


A = · · ·0


d #$
�� Pn


&
0


d ' ��
−1 #$


P−n+1


� � Pn−1


(
d � 0


0 d )��&
0 −1


1 0 ' ···#$
· · ·


b
0 0


d � 0


0 d c�� P−n � Pn−1


� � P−n+1


(
s d � 0


−1 0 d)��&
0 0 −1


0 1 0 '#$
Pn


� � P−n ��
( 1 s )#$


0 · · ·


Z = · · ·0


d −1 #$
�� Pn


&
d


0 ' ��
−1 #$


Pn−1 � P−n+1


� ��(
0 1


−1 0 ) ···#$
· · ·


&
d 0


0 d � ' �� P−n+1 � Pn−1


� ( −sd d � ) ��ef
−d 0


0 1


−1 0 gh#$
Pn


� ��&
1


0 '#$
0 · · ·


A = · · ·0 �� Pn &
0


d ' �� P−n+1


� � Pn−1 (
d � 0


0 d )�� · · · b
0 0


d � 0


0 d c�� P−n � Pn−1


� � P−n+1(
s d � 0


−1 0 d )�� Pn


� � P−n �� 0 · · ·


One has did −1 = IdZ and it is easy to find the homotopy that insures d −1 dj� Id. Using this isomorphism
and the (cone) exact triangle of a, we get an exact triangle :k�l


T −1(Q#)
a �� P


i �� Z
� �� Q#.


where we have baptized i := d a1 and � := a2 d −1. Explicitly, they are


P = · · ·0 ��
i #$ Pn


d ��
−1 #$ Pn−1


d ��&
−1


0 '#$ · · ·
d �� P−n+2


d ��&
−1


0 ' #$ P−n+1
d ��&


−1


0 '#$ P−n ��
s#$ 0 · · ·


Z = · · ·0m #$ �� Pn


&
d


0 ' ��#$ Pn−1 � P−n+1


� & d 0


0 d � '��
( 0 −1 ) #$ · · · �� P−n+2 � Pn−2


� & d 0


0 d � '��
( 0 −1 ) #$ P−n+1 � Pn−1


� (−sd d � )��(
d 0


0 −1 ) #$ Pn


� ��
−1#$ 0 · · ·


Q# = · · ·0 �� 0 �� P−n+1


�
d � �� · · · �� Pn−2


� &
0


d � ' �� P−n � Pn−1


�
( s d � )�� Pn


� �� 0 · · ·


We consider now a very last morphism; let j := 8 −1 � # : Q � Z be the following:


Q = · · ·0


j #$ �� Pn


& s


d ' ��
1 #$ P−n


� � Pn−1


( 0 d ) ��(
0 1


−d � s ) #$ Pn−2
d ��&


1


s 'n#$ · · · �� P−n+1 ��&
1


s '#$ 0 ��#$ 0 · · ·


Z = · · ·0 �� Pn &
d


0 ' �� Pn−1 � P−n+1


� &
d 0


0 d � '�� Pn−2 � P−n+2


� &
d 0


0 d � '�� · · · �� P−n+1 � Pn−1


�
(−sd d � )�� Pn


� �� 0 · · ·


We give now three equalities of morphisms of complexes and leave their verification to the reader :


i# 	 8 	 i(1) = s,


j# 	 8 	 j(2) = t,� 	 j(3) = t.


Now, only up to homotopy, we have :


i# 	 8 	 j(4) = 0.
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This is easy and we are pretty sure that our reader would have found the homotopy : Q
[+1]�� P# , which


is zero except in degree n − 1 where it is ( 1 0 ). The second (and last) equality that we have to establish


in Kb(E) is
s 	 a(5) = 0.


Set the homotopy o : T −1(Q#)
[+1]�� P# to be :


T −1(Q#) = · · ·0p [+1]#$ ��#$ 0 �� 0 �� P−n+1


� −d � ��
1[\ q q q q q q q q q q


· · · �� Pn−2


� ( 0


−d � ) ��
1^_ r r r r r r r r r


P−n � Pn−1


� (−s −d � )��
( 0 1 )


s s s stu s s s s
Pn


� ��
1tu v v v v v v v v v v


0 · · ·


P# = · · ·0 �� P−n


�
d−n+1 ��� P−n+1


�
d−n+2 � �� · · ·


dn−2 � �� Pn−2


�
dn−1 ��� Pn−1


�
dn � �� Pn


� �� 0 · · ·


Then, a direct verification gives
s a + d


� o + o d̄ = 0


where d
�


(respectively d̄) denotes the -9.:03254;257 tial in P# (respectively in T −1(Q#)).


Now, jump in the derived category Db(E) and invert happily s and t which are known to be quasi-
isomorphisms. We obtain


a = 0


directly from (5). Therefore the triangle w k�l is split, meaning that


P
i� Z


m, Q#


is a split short exact sequence. Using (3), we have the following commutative diagram:


P


&
1


0 ' �� P � Q
( 0 1 ) ��


( i j ) #$ Q


t
x #$


P
i


�� Z m �� Q#.


Since both lines are split exact, the morphism h := ( i j ) : P � Q � Z is an isomorphism. Since the
beginning, we know that Z is equipped with a neutral form 8 . Using h, we have that


P � Q, h# 8 h


is neutral. To conclude, compute h# 8 h using (1), (2) and (4) :


h# 8 h =
i#


j#
	 8 	 ( i j ) =


i# 8 i i# 8 j
j# 8 i j# 8 j


=
s 0
0 t


.


This gives the result when n H 2. For n = 1, some cone constructions may have 3 factors in degree 0
(when n was H 2, n − 1 and −n + 1 were distinct integers. This is no more the case when n = 1). For
instance, (Q, t) should be defined as :


(degree 0)#$
Q := · · ·0


t #$ �� P1


& s


d ' ��#$ P−1


� � P0 ��(
0 d


d � −s )#$ 0 ��#$ 0 · · ·


Q# = · · ·0 �� 0 �� P−1 � P0


�
( s d � )


�� P1


� �� 0 · · ·


Nevertheless, the argument is exactly the same and the reader may find the exact triangles (over z and
over a) as well as relations (1) to (5) directly. Then, the end of the proof is the same (see 3.12 if needed).
Our main lemma is now proven. R
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3.11. Last step. The end of the proof of theorem 3.2 is now obvious. Using alternatively lemma 3.11
and lemma 3.9 (for m = n+1), we reduce any element of W Db(E) to the class of a form (as in 3.6) over
a complex concentrated in degree zero. Such a quasi-isomorphism is necessarily a symmetric isomorphism
in E . R
3.12. Back entrance to proof 3.10. The idea of that proof is very simple. Actually, the complexes
Q, M , and other morphisms z, a, that we take out of our pocket in proof 3.10 are produced by a general
argument. Consider a complex like the P that we have at the beginning of 3.10. Then the following map :


L :=y
1 #$ · · ·0 �� 0 ��#$ · · · �� 0 ��#$ P−n ��


1#$ 0 · · ·


P = · · ·0 �� Pn


dn �� · · ·
d−n+2�� P−n+1


d−n+1�� P−n �� 0 · · ·


is a sub-lagrangian of the symmetric space (P, s) (in the sense of [2, paragraph 3]). This makes use, of
course, of the fact that n H 1 and that s is a real morphism of complexes.


Then, we can follow the sub-lagrangian construction described in [loc. cit.] and especially construct
the diagram z of 3.1 [loc. cit.]. With those notations, P is P , their  is our s and the morphism { 0 is
easily found. Our z (used in 3.10) is the w = { 0 | 0 of [loc. cit.]. Our morphism a is | 1 	 T −1 { 2 in the
homotopy category, which we prove to be zero in the derived category. The morphism t is guessed to
match in the diagram ¯z that appears in [loc. cit., 3.5].


However, we cannot use formally the results of [loc. cit.] for two reasons. First, they depend upon
the assumption that the considered triangulated category is “noetherian” and this is not necessary here.
Second reason, the constructions in [loc. cit.] are not explicit and have to be written here into technical
details to be sure that Q is really a shorter complex. So, this conceptual complement is only added to
explain and strengthen the proof.


As we shall see in § 5, it is useful to understand this reduction of complexes because it applies to shifted
dualities too.


4. The isomorphism between usual and derived.


4.1. Lemma. Let (E , � ) be a semi-saturated exact category with duality such that 1
2


�
E . Let A be an


abelian category as in 2.7. Consider a complex P in E of the form :


P = · · ·0 −� Pn � n−� · · · � 2−� P1 � 1−� P0 � �1 } �� P1


� � �2−� · · · � �n−� Pn


�
−� 0 · · ·


where (P0, � ) is a symmetric space in E . Suppose that the complex P , seen in A, is acyclic except in


degree zero. Denote by H0(P ) the homology of P in degree zero. Denote by ~ : P
�� P# the obvious


form, that is identity in each degree but � in degree zero. Then, all the following hold :


(1) H0(P ) is in E ;


(2) P# has also homology concentrated in degree zero and H0(P
#) �= H0(P )


�
;


(3) H0 w;~ l induces a symmetric form on H0(P );
(4) most important : [H0(P ), H0 w6~ l�� = −[P0, � ] in Wus(E);
(5) If P


�
is of the same form as P and is also acyclic except in degree 0 and if h : P � P


�
is an


isomorphism in Db(E), then H0(h) is an isometry between the symmetric spaces H0(P ), H0 w6~ l
and H0(P


�
), H0 w6~ � ) .


4.2. Proof. Suppose n H 2. In the abelian category A, the morphism � �n is an epimorphism because
H−n(P ) = 0. By 2.7, part (3), it is an admissible epimorphism in E . Therefore � n is an admissible
monomorphism and one can easily get rid of Pn and shorten the complex, keeping the same homology in
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degree zero and the same structure. So we are reduced to the case n = 1 :


P = · · ·0~ #$ �� P1 � ��
1 #$ P0 � � � ��� #$ P


�
1 ��


1 #$ 0 · · ·


P# = · · ·0 �� P1 � � �� P
�
0 � � �� P


�
1 �� 0 · · ·


But, as before, � � is an admissible epimorphism and � is an admissible monomorphism. The pair (P1, � )
is called a sub-lagrangian of the symmetric space (P0, � ) in the usual sense. Therefore, one can apply
the usual sub-lagrangian construction which is nothing but taking the homology in degree zero of the
above complex. This is classical and is not included here (see [6, § 2 prop. 4 p. 128 and § 4 thm.3 p.140
and its proof]). For instance, the orthogonal P


�
1 of P1 is by definition ker( � � � ) which is in E . The


homology is then P
�
1 /P1 and is in E because the map P1 −� P


�
1 is an admissible monomorphism (still


using the semi-saturation). The form induced by � on P
�
1 /P1 is clearly H0 w;~ l and one has property (4)


as usual.
The rest of the proof is left as an easy exercise. R


4.3. Theorem. Let E be a semi-saturated exact category with duality such that 1
2


�
E . Endow Db(E)


with the induced duality as in paragraph 2. Then the natural homomorphism :�
E : Wus(E) −� W Db(E)


sending everything in degree zero is an isomorphism.


4.4. Proof. In view of theorem 3.2, we only have to prove injectivity of � E . Let x
�


ker(� E). Then


x = [Q,  ] for some symmetric space (Q,  ) in E . By hypothesis, � E (x) = [c0(Q), c0(  )] = 0 in W Db(E)


using the notations of 2.8. This means that c0(Q), c0(  ) is stably neutral in Db(E), # .
The key part of the proof is theorem 2.5 of [2] which says that a stably neutral space is neutral in any


triangulated category with duality containing 1
2
. That is c0(Q), c0(  ) is isomorphic to some cone form.


In other words, applying definition 2.3, we obtain easily that there exists a complex L in E , a morphism
z : T −1(L#) −� L


degree n#$ degree −n#$
T −1L# = · · ·0


z #$ �� 0 ��#$ L−n−1


� −d � ��
zn #$ L−n


� ��
zn−1 #$ · · ·


−d � �� Ln−1


� −d � ��
z−n#$ Ln


� ��
z−n−1#$ 0 · · ·


L = · · ·0 �� 0 �� Ln
d
�� Ln−1 �� · · ·


d
�� L−n


d
�� L−n−1 �� 0 · · ·


such that :


(1) z is strongly symmetric, i.e. (z−i−1)
�
= zi for all i


�
Z.


(2) Let Z = Cone(z). There is an isometry in Db(E) between (Z, 8 ) and c0(Q), c0(  ) where8 = 8 # : Z
�� Z# is the neutral form given by :


degree n#$ degree −n#$
Z := C(z)· · ·08 #$ �� L−n−1


� ( d �
−z ) ��


−1 #$ L−n


� � Ln


(
d � 0


−z d )��(
0 −1


−1 0 ) #$ · · ·


(
d � 0


−z d )�� Ln


� � L−n


(−z d )��(
0 −1


−1 0 )#$ L−n−1 ��
−1#$ 0 · · ·


Z# = · · ·0 �� L−n−1


� (
−z �
d � ) �� Ln � L−n


� (
d −z �
0 d � )�� · · ·(


d −z �
0 d � )�� L−n � Ln


�
( d � −z � )�� L−n−1 �� 0 · · ·
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Remarks : the integer n does not mean anything and can be taken large enough; the strong symmetry of
z comes from exercise 2.10, which is recommended to the confused reader (see also [2, thm.1.6, part (2)]
if necessary).


Note that in degree zero, 8 is minus the hyperbolic space over L
�
0 � L0. Using the isomorphism 8 to


modify Z in strictly negative degrees only, one obtains the following complex P :


degree 0#$
P := · · ·


� 2:=


(
d � 0


−z d ) �� L−1


� � L1
� 1:=


(
d � 0


−z d ) �� L0


� � L0 � �1 � �� L1


� � L−1 � �2 �� L2


� � L−2 � �3 �� · · ·


where � =
0 −1


−1 0
is a hyperbolic form over P0 := L0


� � L0. We check now that we are in the situation


of the above lemma. The form ~ : P
�� P# induced on P from 8 on Z is identity in all degree but degree


zero where it is � =
0 −1


−1 0
. Moreover, this new complex P is still isomorphic in Db(E) to c0 Q,  .


Therefore P has homology only in degree zero and this homology is isomorphic to Q. The lemma 4.1 says


that the form (Q,  ) � H0(P ), H0 w;~ l is Witt-equivalent to L0 � L0


�
, 0 1


1 0
, which is Witt-trivial. R


4.5. Corollary. Let E be a semi-saturated exact category with duality such that 1
2


�
E . Then the inverse


of the natural isomorphism �
E is given algorithmically by the explicit constructions of 3.6, 3.8 and 3.10.


4.6. Proof and remark. Since � E is an isomorphism, the inverse consists simply in finding any pre-
image. R


The procedure in 3.6, 3.8 and 3.10 was the following: choose a representation of the form (P, s) where
s is a real quasi-isomorphism and is strongly symmetric; then reduce (P, s) on the right and on the left
alternatively using the explicit descriptions of (Q, t) that can be found in those proofs.


In [1, § 4], it was quite a pain to construct explicitly an inverse to � when the considered derived cate-
gory was simply the homotopy category (in the split case, there was no need to invert quasi-isomorphisms).
Even if the result of [loc. cit.] is a closed formula instead of our present algorithmic reduction, it is quite
impressive how the proof of injectivity is shorter in the more general context. The result “stably neutral
implies neutral ” [2, thm 2.5], though very abstract, appears very useful here.


4.7. Theorem. Let X be a scheme such that 1
2


�
OX (obvious sense). There is a natural isomorphism :�


X : Wus(X) −� Wder(X).


The same holds for skew-symmetric forms as well.


4.8. Proof. Let E(X), � , can be the exact category of 1.8 where (−)
�


= Hom OX
(−, OX ) and can :


Id
�� � 2 is the canonical (usual) identification. It U;S9FG?52@U then to apply theorem 4.3 to the following exact


categories : E(X), � , can and E(X), � , −can . R
4.9. Remark. We give in [2, thm 5.1] a general localization exact sequence for triangulated categories
with duality, under the hypotheses of “noetherianity”and of presence of 1


2 . This applies of course to
localization of schemes. Consider U � X to be an open subscheme of a noetherian scheme X. Denote
by Db(X) the derived bounded category of the exact E(X) considered several times up to here (see 1.8,


2.11). We can apply our localization theorem as soon as Db(U ) is a localization of Db(X). This is the
case when X is regular and separated (more general conditions are presented in [13]). In that case, we
have a long exact sequence :


· · ·Wn−1(U ) −� Wn(J) −� Wn(X) −� Wn(U ) −� Wn+1(J) −� · · ·


where J is the full subcategory of Db(X) on those complexes which are acyclic over U .
We recall from [2, proposition 1.14] that the shifted (or higher) Witt groups are 4-periodic. Theorem


4.7 gives a description of half of them, namely the even-indexed Witt groups : W0(X) is the same as
the usual Witt group and W2(X) (which is the same as W0 skew-symmetric) is the usual Witt group of
skew-symmetric forms. We discuss odd-indexed Witt groups in next paragraph.


For more general X, we shall have the ideal formulation by using the derived category of all coherent
OX -modules with Grothendieck’s duality (see [4] for instance). This will appear later.
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5. Some remarks on the shifted or higher Witt groups.


5.1. The four Witt groups : Explaning definitions and notations. In [2] (respectively in [1]),
we associated to a given triangulated category with duality (K, #, � ) a collection of Witt groups Wn,
n
�


Z, (respectively W
p
n, n


�
Z, o = ±1). They should be remembered as being simply the Witt groups


for the shifted dualities T n 	 #. To be less simple, here is a series of considerations that we have to make
on those shifted Witt groups.


(1) The functor T n 	 # does satisfy (T n 	 #)2 � Id because T 	 # �= # 	 T −1 and #2 � Id. But it is
not always exact in the sense of Definition 2.2 because the functor T : K � K is only skew-exact
(i.e. T sends an exact triangle to a skew-exact triangle, that is a triangle which is exact when
changing the sign of all the morphisms). Therefore, we had to deal carefully with the notion of
exactness and introduced � -exact functors for � = ±1 (for T n 	 #, � = (−1)n). This <=0>2@?5A;U also
the notion of neutral forms. This is easy to understand : in the definition of neutral symmetric
spaces, we required the existence of a symmetric exact triangle, but exactness involves some sign.
We do not want to re-write all this here and we refer to [2, § 1].


(2) Those Witt groups are called sometimes shifted Witt groups because they use shifted dualities.
Their interest is that they fit into a long exact sequence of localization (see thm. 5.1 in [2])
already mentioned in remark 4.9. This explains why we also call them higher (and lower) Witt
groups. This cohomological use justifies also the notation Wn. To have this nice property,
we make the following definition of the translation of a triangulated category with � -duality :
T (K, #, � ) = (K, T 	 #, − � · � ). In other words, we introduce a sign when we translate a duality
but we introduce no sign when we translate a skew-duality. If we start with a triangulated category
with (+1)-duality (K, #, � ), we have then :


T n(K, #, � )
(def)
= K , T n 	 # , (−1)


n(n+1)
2 · �


for all n
�


Z. We define then the shifted Witt groups very simply by :


Wn(K, #, � ) := W T n(K, #, � ) .


(3) In [1], the groups Wn were written W
p
n. This notation had the handicap of being inadequate


for the harmony of the localization sequence (not yet established at that time). Nevertheless,
it was more expressive because the “n” referred to the shift T n 	 # and the o = ±1 referred
to o -symmetric forms, keeping the identification � : Id


�� #2 unaltered. The dictionary is the


following one : Wn = W
p
n where o = (−1)


n(n+1)
2 (see above). We suggest to stick to the present


notation Wn(K).


(4) There is an isomorphism of triangulated categories with (−1)n-duality


(K, T n 	 #, � )
�� (K, T n+2 	 #, � )


induced by T : K � K which gave in the old notations the isomorphism W
p
n(K)


�� W
p
n+2(K)


and allowed us to reduce ourselves to four Witt groups : W ±


0 or 1(K). In the new notations, note
that T does not give an isomorphism between T n(K, #, � ) and T n+2(K, #, � ) because of this
sign trick. We only have T n(K, #, � ) �= T n+2(K, #, --� ) and therefore the 4-periodicity as :


Wn(K) � Wn+4(K)


(see [2, prop. 1.14]). We also keep only four Witt groups : W0, W1, W2 and W3, for instance. The
group W2 is the old W−


0 , that is the group of skew-symmetric spaces for the unshifted duality.


(5) As a consequence of (4) above, in the case of the derived category of an exact category with


duality (E , � , � ), theorem 4.3 actually identifies W Db(E) as being Wus(E) but also W2 Db(E)


as being W−
us(E) = Wus(E , � , −� ) the usual Witt group of skew-symmetric forms. A direct group


isomorphism :
W−


us(E) −� W2 Db(E), #, �
is given by the functor c1 : E � Db(E) sending everything in degree 1.
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5.2. Proposition. Let (E , � , � ) be a semi-saturated exact category with duality such that 1
2


�
E . Endow


Db(E) with the induced duality as in paragraph 2. Then every symmetric space for the skew-duality T 	 #
is Witt-equivalent to a space of the form (P,  ) where P is a complex supported in [1, 0] :


P = · · · 0 −� 0 −� P1 −� P0 −� 0 −� 0 · · ·


and where  is a morphism of complexes (no fractions) from P to T (P#) which is a quasi-isomorphism
such that  0 =  �1 	 � P0 .


5.3. Proof. We shall omit this proof because we are not going to use this result hereafter. It is an
exercise to adapt the proofs of § 2 to this shifted context. Remark 3.12 definitely helps. R
5.4. Remark. Consider a symmetric form as described above :


P = · · · �� #$ 0 �� P1
d ��� 1 #$ P0 ��� �1#$ 0 �� · · ·


T (P#) = · · · �� 0 �� P
�
0


−d � �� P
�
1 �� 0 �� · · ·


Saying that  is a quasi-isomorphism is nothing but asking for the exactness of the following complex
(the mapping cone with all signs changed) :


· · ·0 �� 0 �� P1


(
d� 1 ) �� P0 � P


�
0


( � �1 d � )�� P
�
1 �� 0 �� 0 · · ·


Now, we have a symmetric space P0 � P
�
0 , 0 1


1 0
with two lagrangians P0 and P1. This is the link with


the notion of formation used by Ranicki [12], Pardon [9] and others. Over a ring (or in the split exact
case), see in particular [12, prop. 2.3].


As explained in the introduction, we choose to focus our attention on the un-shifted Witt group W0


and to identify it with the usual one because this is the classical invariant largely used and studied. This
actually identifies half of the derived Witt groups, the even-indexed ones as explained in remark 5.1,
point (5). It is nevertheless of big interest (mainly for computation of the 12-term localization sequence)
to have a simpler description of the odd-indexed Witt groups too.


* * *


5.5. Notation. If R is a commutative ring and a notation is defined over schemes, say N (X), then
N (R) will denote N Spec(R) .


5.6. Theorem. Let R be a commutative local ring in which 2 is invertible. Then, among the derived
Witt groups of R, we have W1(R) = 0, W2(R) = 0 and W3(R) = 0. That is there is only one non-trivial


Witt group, namely W0(R) �= Wus(R). This holds in particular for fields of characteristic not 2.


5.7. Proof. We denote by Db(R)
(def)
= Db E(R) = Kb(E(R) the derived category of finitely generated


projective (free) R-modules, which reduces to the homotopy category because a quasi-isomorphism of
bounded complexes of projective modules is a homotopy equivalence. We also denote by # the duality
induced by HomR(−, R) and by � the isomorphism of functors Id


�� #2, defined to be the canonical
identification in each degree.


The computation of W0(R) (respectively W2(R) � W0 Db(R), #, −� ) to be the usual Witt group
of symmetric (respectively skew-symmetric) forms is now clear from theorem 4.3 and remark 5.1, point
(5). For the classical proof that W−(R) = 0 see [7, cor. I.3.5, p. 7].


We give the proof that W Db(R), T 	 #, � = 0. The same for −� is left to the reader.
Let m be the maximal ideal of R.
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Recall that a complex of free R-modules of finite rank is homotopically equivalent to a so called minimal
complex, that is a complex such that all the entries of the matrix of the -/.1032546257 tials are in m. To see
this (exercise) it U6S9FG?525U to use elementary operations and to have in mind that R \ m is the set of units
of R. Now, if a complex is minimal, its dual is also minimal. Moreover, a homotopy equivalence between
two minimal complexes is necessarily an isomorphism. This is easy to check. In fact, it U;S9FG?@25U to note
that a n×n-matrix of the form 1n +A where A has all entries in m is invertible (because its determinant


belongs to 1 + m and is therefore invertible). In other words, an element of W (Db(R), T 	 #, � ) can be
represented by an isomorphism :


degree 0#$
P := · · · �� #$ P3


d3 ��� 3
x#$ P2


d2 ��� 2
x#$ P1


d1 ��� 1
x#$ P0


d0 ��� �1 x#$ P−1
d−1 ��� �2 x#$ P−2 ��� �3 x#$ · · ·


T (P#) = · · · �� P
�


−2
−d �


−1


�� P
�


−1
−d �0 �� P


�
0


−d �1 �� P
�
1


−d �2 �� P
�
2


−d �3 �� P
�
3 �� · · ·


with P a bounded minimal complex of finitely generated free R-modules and with  i being an isomorphism
for all i


�
Z. As usual, we managed  to be strongly symmetric since the beginning, which means here i = (  −i+1)


�
for all i


�
Z. Using then  i to replace Pi by P


�
−i+1 for all i > 0, the symmetric space


(P,  ) is isomorphic to the following:


degree 0#$
Q := · · · ��8 #$ P


�
−2


−d �
−1��


1 #$ P
�


−1


−d �0 ��
1 #$ P


�
0


z0 ��
1 #$ P0


d0 ��
1#$ P−1


d−1 ��
1#$ P−2


d−2 ��
1#$ · · ·


T (Q#) = · · · �� P
�


−2
−d �


−1


�� P
�


−1
−d �0 �� P


�
0


−z �0 ��Watch !


P0
d0


�� P−1
d−1


�� P−2
d−2


�� · · ·


where z0 := d1
	 (  1)


−1 : P
�
0 � P0. Note that z


�
0 = −z0 from the first diagram. The form 8 is the


one obtained from  through this isometry. But this last space (Q, 8 ) is neutral by considering the cone
construction on the following skew-symmetric morphism for T −1(T #) = # :


degree 0#$
L# = · · · ��
z #$ P


�
−2


d �
−1 ��#$ P


�
−1


d �0 ��#$ P
�
0 ��


−z0 #$ 0 ��#$ 0 ��#$ · · ·


L := · · · �� 0 �� 0 �� P0
d0


�� P−1
d−1


�� P−2
d−2


�� · · ·


A direct computation gives that (Q, 8 ) = Cone(L#, z) in the notations of [2, definition 1.10]. R
5.8. Remark. This result should be compared with [3, lemma 4.2, p. 215].
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