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ABSTRACT. This manuscript describes how a generic splitting tower of a regu-
lar anisotropic quadratic form digests the form down to a form which is totally
split.

Introduction

We work with quadratic forms on finite dimensional vector spaces over an arbitrary
field k. We call such a form q: V' — k regular if the radical V* of the associated
bilinear form B, has dimension < 1 and the quasilinear part q|V+ of g is anisotropic.
If k has characteristic char k # 2 this means that V- = {0}. If char k = 2 it means
that either V- = {0} or V+ = kv with g(v) # 0.

In the present article a “form” always means a regular quadratic form. Our first
goal is to develop a generic splitting theory of forms. Such a theory has been given
in [K»] for the case of char k # 2. Without any restriction on the characteristic,
a generic splitting theory for complete quotients of reductive groups was given in
[KR], which is closely related to our topic.

In §1 we present a generic splitting theory of forms in a somewhat different manner
than in [K»]. We start with a key result from [KR] (cf. Theorem 1.3 below),
then develop the notion of a generic splitting tower of a given form ¢ over k with
associated higher indices and kernel forms, and finally explain how such a tower
(K, | 0 <r < h) together with the sequence of higher kernel forms (g, | 0 < r < h)
of ¢ controls the splitting of ¢® L into a sum of hyperbolic planes and an anisotropic
form (called the anisotropic part or kernel form of ¢ ® L), cf. 1.19 below. More
generally we explain how the generic splitting tower (K, | 0 < r < h) together with
(gr | 0 < r < h) controls the splitting of the specialization ~.(q) of ¢ by a place
v:k = LUoo, if ¢ has good reduction under ¢, cf. Theorem 1.18 below. Then in §2
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we study how a generic splitting tower of ¢ ® L can be constructed from a generic
splitting tower of ¢ for any field extension L/k. All these results are an expansion
of the corresponding results in [K»] to fields of any characteristic.

We mention that a reasonable generic splitting theory holds more generally for a
quadratic form q: V — k such that the quasilinear part ¢|V* is anisotropic, without
the additional assumption dim V- < 1. This needs more work. It will be contained
in the forthcoming book [Ks].

In §3 we prove that for any form g over k there exists a generic splitting tower
(K, | 0 <7 < h) of ¢ which contains a subtower (K | 0 < r < h) of field extensions
of k such that K//K!_, is purely transcendental, and such that the anisotropic
part of ¢® K, can be defined over K. for every r € [1,h]. {We have K} = Ko = k.}
This result, which may be surprising at first glance, leads us in §4 to the second
theme of this article, namely generic splitting preparations (Def. 4.3) and the closely
related generic splitting decompositions (Def. 4.8) of a form gq. We focus now on
the second notion, since its meaning can slightly more easily be grasped than that
of the first (more general) notion.

A generic splitting decomposition of a form q over k consists of a purely transcen-
dental field extension K'/k and an orthogonal decomposition

qOK =2no Ly L--- Lgn Ly (%)

with certain properties. In particular, dim ¢, < 1, all n; have even dimension,
and 7o is the hyperbolic part of ¢ ® K’ (which comes from the hyperbolic part
of ¢ by going up from k to K'). The generic splitting decomposition in a certain
sense controls the splitting behavior of ¢ ® L for any field extension L of k, more
generally of v.(q), for any place y:k — L U oo such that ¢ has good reduction
under v. This control can be made explicit in much the same way as the control by
generic splitting towers, using “quadratic places” (or “Q-places” for short) instead
of ordinary places, cf. §6.

Quadratic places have been introduced in the recent article [K4] and used there for
another purpose. We recapitulate here what is necessary in §5. We are sorry to
say that our theory in §6 demands that the occurring fields have characteristic # 2.
This is forced by the article [K4], where the specialization theory of forms under
quadratic places is only done in the case of characteristics # 2. It seems that major
new work and probably also new concepts are needed to establish a specialization
theory of forms under quadratic places in all characteristics.

An overall idea behind generic splitting decompositions is the following. If we
allow for the form ¢ over k a suitable linear change of coordinates with coefficients
in a purely transcendental field extension K' D k, then the form — now called
g ® K' — decomposes orthogonally into subforms ng, 71, -..,m,,@n such that the
forms g L --- L np L p with 1 < k < h give the higher kernel forms of g, when
we go up further from K’ to suitable field extensions of K'. Thus, after the change
of coordinates, the form ¢ is “well prepared” for an investigation of its splitting
behavior. This reminds a little of the Weierstrass preparation theorem, where an
analytic function germ becomes well prepared after a linear change of coordinates.
In contrast to Weierstrass preparation we allow a purely transcendental field ex-
tension for the coefficients of the linear change of coordinates. But no essential
information about the form ¢ is lost by passing from ¢ to ¢ ® K', since ¢ is the
specialization A (¢ ® K') of ¢ ® K' under any place A\: K' — kU oo over k.
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The idea behind generic splitting preparations is similar. {Generic splitting decom-
positions form a special class of generic splitting preparations.} Now the forms n;
are defined over fields K such that K = k and every K] is a purely transcendental
extension of K_;.

Generic splitting decompositions and, more generally, generic splitting preparations
give new possibilities for manipulations with forms. For example, if ¢ @ K' =7 L
.-+ L np L @y is a generic splitting decomposition of ¢, then we may look how many
hyperbolic planes split off in ¢ ® E,. for E, the total generic splitting field of one of
the summands 7,. We do not enter these matters here, leaving all experiments to
the future and to the interested reader.

§1. Generic splitting in all characteristics

1.0. NOTATIONS. For a,b elements of a field ¥ we denote the form a&? + &n + bn?
over k by [a,b]. Since we only allow regular forms, we demand 1 — 4ab # 0. By
H:=0,0] we denote the hyperbolic plane.

If ¢ is a (regular quadratic) form over k then we have the Witt decomposition ([W],
[A]) ¢ = r x H L ¢ with an anisotropic form ¢ and r € Ny. We call r the index of
q and write 7 = ind (q). We further call ¢ the kernel form V) or anisotropic part of
¢ and use both notations ¢ = ker(q), ¥ = ¢an.

If L O k is a field extension then ¢ ® L or ¢r, denotes the form over L obtained
from ¢ by extension of the base field k to L. Thus, if ¢ lives on the k-vector space
V, then ¢ ® L lives on the L-vector space L ®; V. A major theme of this article is
the study of ind (¢ ® L) and ker(q ® L) for varying extensions L/k.

dim ¢ denotes the dimension of the vector space V on which ¢ lives, i.e., the number
of variables occurring in the form ¢. We have dim ¢ = dim(q ® L). The zero form
g = 0 is not excluded. Then V' = {0} and dimg¢ = 0.

We say that ¢ splits totally if dim(gan) < 1. This is equivalent to ind (g) = [dim ¢/2].
For another form ¢ over k we write ¢ < ¢ if ¢ is isometric to a subform of ¢
(including the case ¢ = q).

1.1. DEFINITION/FURTHER NOTATIONS. If ¢ # 0 and dim ¢ is even, let

Sa: = { discriminant of q) € k*/k*?  if chark # 2
9=\ (Arf invariant of ¢) € kT /pk if chark = 2,

2 .
po 0= {52 T ¥ 4 5 e

The separable polynomial psq(X) splits over k if and only if dq is trivial. If dimg
is odd or if dq is trivial we say that q is of inner type, otherwise we say that ¢ is of
outer type.

These notions are adjusted to the corresponding notions in the theory of reductive
groups. ¢ is inner (resp. outer) if and only if SO(q) is inner (resp. outer). {N.B.
SO(q) is almost simple for dim g > 3 since the form q is regular.}

We define 5 Fois of .
o ifgis of inner type
ksq: = {k[X]/p5q(X) if gis of outer type.

Fori=1,...,[dimq/2], we denote by V;(q) the projective variety of totally isotropic
subspaces of dimension i in the underlying space of ¢, and by k;(¢) we denote the

1 = “Kernform” in [W]
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function field of V;(q), unless dimg = 2. In the latter case Vi consists of two
irreducible components defined over k5. We then set k1(g) = ksq-

In general, we will also write k(q) = k1(q), which is, with the above interpretation,
the function field of the quadric V4 (¢) associated to g by the equation ¢ =0. O

1.2. LEMMA. Let q be a (regular quadratic) form over k.

i) If K/k is any field extension such that qx is of inner type, then K contains
a subfield isomorphic to ksq.

i) Leti e {1,...,[dimgq/2]}. If q is of inner type or if i < dimgq/2 — 1, then
Vi(q) is defined over k. If q is of outer type, then Viim q/2(q) is defined over
ks

iii) V;i(q) is geometrically irreducible unless q is of outer type and i = dim ¢/2—1,
in which case it decomposes, over ks,, into two geometrically irreducible
components isomorphic to Vim q/2(q)-

PROOF. i): Let dimq be even. Clearly gk is inner if and only if the polynomial
Dsq has a zero in K, hence i) follows.

i), iii): Since the stabilizer of an i-dimensional totally isotropic subspace of the
underlying space of ¢ is a parabolic subgroup of SO(q), the statements follow from
[KR, 3.7, p. 44f]. O

A key observation for the generic splitting theory of quadratic forms is the following
theorem, which has a generalization for arbitrary homogeneous projective varieties
[KR, 3.16, p. 47]:

1.3. THEOREM. Let q be a form over k, let F; denote the function field of V;(q)
as a regular extension of k resp. ksq according to 1.2.ii, and let L[k be a field
extension. The following statements are equivalent.

i) ind (¢® L) > i.
ii) The projective variety V;(q) has an L-rational point.
iii) There is a k-place F; — LU 0.
iv) L contains a subfield isomorphic to the algebraic closure F) of k in F;, and
the free composite LF; over F is a purely transcendental extension of L.

REMARK. Only in the case of an outer ¢ and i = dim q/2, we have F? = ks, # k;
in all other cases, i.e., if ¢ is inner or i < dimg/2 — 1, we have F{ = k in iv).

Proor of 1.3. The equivalence of i) and ii) is obvious. The other equivalences
follow from [KR, 3.16, p.47], again after observing that the stabilizer of an i-
dimensional totally isotropic subspace is a parabolic subgroup of SO(q). O

1.4. DEFINITION. We call two field extensions K D k and L D k specialization
equivalent over k, and we write K ~j, L, if there exists a place from K to L over k
and also a place from L to K over k. O

1.5. COROLLARY. Ifq' =1x H L q, and if F} is the function field of V;(q'), then
F},; and F; are specialization equivalent over k. 2.

2)  We will denote the hyperbolic plane [0,0] over any field by H
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Proor. This is obvious by the equivalence of i) and iii) in 1.3. O

In the following q is a (regular quadratic) form over k. We want to associate to ¢
partial generic splitting fields and partial generic splitting towers as has been done
in [K»] for char k # 2. We will proceed in a different way than in [K], starting
with a formal consequence of Theorem 1.3.

1.6. COROLLARY. Let L and L' be field extensions of k. Assume there exists a
place A\: L — L' U oo over k. Then ind (¢ ® L') > ind (¢ ® L).

PRrROOF. Leti:=ind (¢q®L). By the theorem there exists a place p: F; = LUoco over
k. Then Aop is a place from F; to L'Uoo. Again by the theorem, ind (¢® L") > 4.0

1.7. DEFINITION. (Cf. [HR4]). The splitting pattern SP(q) is the (naturally or-
dered) sequence of Witt indices ind (¢ ® L) with L running through all field exten-
sions of k. O

Notice that the sequence SP(q) is finite, consisting of at most [dim ¢/2]+ 1 elements
Jo < Jj1 <---<jn. Of course, jo = ind (¢) and j, = [dim q/2]. We call h the height
of ¢, and we write h = h(g). Notice also that SP(g) is the sequence of all numbers
i < [dim ¢/2] with ind (¢ ® F;) = 4.
1.8. DEFINITION. Let 7 € {0,1,...,h} = [0,h]. A generic splitting field of q of
level r is a field extension F/k with the following properties:

a) ind (¢ ® F) = j,.

b) For every field L D k with ind (¢® L) > j, there exists a place \: F — LU0

over k.
Such a field extension F'/k, for any level r, is also called a partial generic splitting
field of q, and, in the case r = h, a total generic splitting field of k. O

It is evident from the definitions and from Corollary 1.6 that, if K is a generic
splitting field of ¢ of some level r and L is a field extension of k, then L is a generic
splitting field of ¢ of level r if and only if K and L are specialization equivalent
over k.

1.9. PROPOSITION. Let r € [0,h]. All the fields F; from Theorem 1.3 with j,_; <
i < jr are generic splitting fields of q of level r. {Read j_1 = —1.} In particular,
the fields k(gan), Fjo+1,-- ., Fj, are generic splitting fields of q of level 1.

ProOF. By Theorem 1.3, we certainly have ind (¢®F;) > i, hence ind (¢® F}) > j,.
If L/k is any field extension with ind (¢ ® L) > j,, then, again by Theorem 1.3,
there exists a place A: F; - LU oo over k. Thus condition b) in Definition 1.8 is
fulfilled. We can choose L as an extension of k with ind (¢ ® L) = j,.. By Corollary
1.6 we have ind (¢ ® F;) < ind (¢ ® L). Thus ind (¢ ® F};) = j,.

Moreover, since k(gan) is the function field of Vi(gan), it follows from 1.5 that this
field is specialization equivalent over &k to Fj,41. O

1.10. CoROLLARY. If F is a generic splitting field of g (of some level ), then the
algebraic closure of k in F' is always k, except if q is outer and ind (qr) = dim q/2,
in which case it is ksq.

Proo¥F. Clearly F' ~y F; for i = ind ¢p, hence we have k-places from F' to F; and
vice versa, which are of course injective on the algebraic closure of k in F resp. F;.
Our claim now follows from 1.3 and the remark after 1.3. |
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1.11. ScHOLIUM. Let (K, |0 <r < h) be a sequence of field extensions of k such
that for each r € [0,h] the field K, is a generic splitting field of q of level r. Let
L/k be a field extension of k. We choose s € [0, h] mazimal such that there exists
a place from K to L over k. Then ind (¢ ® L) = js.

Proor. By Corollary 1.6 we have ind (¢ ® L) > js. Suppose that ind (g® L) > js.
Then ind (¢ ® L) = j, for some r € [0,h] with » > s. Thus there exists a place
from K, to L over k. This contradicts the maximality of s. We conclude that
ind (¢ ® L) = js. O

If ¢ is anisotropic and dimgq > 2, then a generic splitting field of g of level 1 is
called a generic zero field of q. Proposition 1.9 tells us that, in general, F},; and
k(gan) are generic zero fields of g,,. {N.B. The notion of generic zero field has also
been established if g is isotropic, cf. [K2, p. 69]. Then it still is true that k(q) is a
generic zero field of ¢.}

1.12. DEFINITION. A generic splitting tower of ¢ is a sequence of field extensions
Ky C --- C Ky, of k such that K| is specialization equivalent over k with &, and such
that K41 is specialization equivalent over K, with K,(gx, an)- 3) In particular, the
inductively defined sequence Ky = k, K;41 = K,(gk, ,an) is the standard generic
splitting tower of g (cf. [K2, p. 78]). We call ¢,: = (gk, )an the r-th higher kernel
form of g (with respect to the tower). We define ig: = ind ¢ and 7,: = ind ¢, 1 ® K,
for 1 <r < h, and we call i, the r-th higher index of ¢ (0 <r < h).

1.13. THEOREM. If Ko C --- C Ky is a generic splitting tower of q, then, for
every r € [0, h], the field K, is a generic splitting field of q of level r.

Proor. We denote the function fields of the varieties V;(¢) by F;, as in 1.3. By
1.9, it suffices to show K, ~ F}_, for every r > 0. For r = 0 this is obvious, since
F}, is a purely transcendental extension of k. For r = 1 we have, by 1.5, applied to
dK, = jO xH L dKgy,an;

K ~Ky KO((]KO,an) ~ Ko Fjo+1K0 ~k Fjo+1=

hence Kl ~E Fj0+1 ~E Fj17 by 1.9.

We proceed by induction on dim ¢,,. By induction assumption, our claim is true
for ¢1 := gk, ,an Over Ki, and hence for gk, = (jo + j1) x H L ¢1 by 1.5. That is,
for r > 1, the field K, is a generic splitting field of gk, of level » — 1, and, as such,
specialization equivalent over K; with the function field of V}, (¢k,) =V}, (¢) xx K1
resp. =V} (q) X, K1ksq, which is F}, - Ky (free product over k resp. ks;). Hence
it remains to show that F}, - K; is specialization equivalent to Fj, over k. We have
a trivial k-place Fj, — F}_ - K1 Uoo. On the other hand, since r > 1, we also have
a k-place K1 = F}; U oo, which gives us a k-place Fj, - K; = Fj U oc. O

The rest of this paragraph will be used in paragraphs 5 and 6 only. For the next
statements we need the notion of “good reduction” of a quadratic form.

3) This definition of generic splitting towers is slightly broader than the definition
in [Ko, p.78]. There it is demanded that Ky = k.
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1.14. DEFINITION/REMARK. Let ¢: K™ — K be a quadratic form over a field K
and A: K — LU oo be a place to a second field L. Let 0 = o) denote the valuation
ring of A.

a) We say that ¢ has good reduction (abbreviated: GR) under the place ), if
there exists a linear change of coordinates T' € GL(n, K) such that (z:=
(1. .- Tn)

q(Ta:) = Zaija:ixj
i<j
with coefficients a;; € o, and such that the form }° A(ai;)z;xz; over L is
i<j
regular.
b) In this situation it can be proved that, up to isometry, the form

Z )\((I,’]‘ )SL'Z'SL']‘
i<j
does not depend on the choice of T' (cf. [K1, Lemma 2.8], [K5, §8]). Ab-
usively we denote this form by A.(¢), and we call A\.(q) “the”’ specialization
of q under .
c) Let g be a regular form over k, let K, L be field extensions of k and let
A: K — LUoo be a k-place with valuation ring 0. Then ¢x has GR under

A and A«(grx) = ¢qr. By Lemma 1.14.b below it follows that also ¢k an has
GR under \. O

If ¢ has GR under X then certainly q itself is regular. Moreover it can be proved
that

(%) ¢ = fa,bi] Lo+ Lfam,bm] (L [e])

with elements a;,b; € 0 and € € o* (cf. [K;], [Ks, §6]). Here the last summand [g]
denotes the form eX? in one variable X. It appears if and only if n = dim ¢ is odd.
Of course, (x) implies

A(g) = [Aa1), A(b)] L -+ L [Mam), Albm)] - (L [Ae)])-

1.15. LEMMA. Let g and ¢' be forms over K, and assume that dim q is even.
a) If ¢ and ¢' have GR under X then ¢ L ¢' has GR under X\, and

A L q") = M(g) L A(d)-
b) If q and ¢ L ¢’ have GR under A\, then ¢' has GR under A.

PROOF. Part a) of this lemma is trivial, but b) needs a proof. A proof can be
found in [K;, §2] in the case that also ¢’ has even dimension, and in [Ks, §8] in
general. 0

Part b) will be crucial for the arguments to follow.

1.16. PROPOSITION. Let A: K — L U oo be a place and ¢ a form over K with
GR wunder . Then po: = ker(p) has again GR under X\ and \.(p) ~ A(po),
ind (A«(¢)) > ind (). If ind (A.(p)) = ind (p), then ker A\, () = A(o)-
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PROOF. Let ¢g: = ker ¢. We have ¢ = j x H L ¢¢ with j = ind (¢). The form
j x H has GR under A. By Lemma 1.15 it follows that ¢y has GR under A and
M) =2 j x H L Ai(pg). Now all the claims are evident. O

1.17. PROPOSITION. Let @ be an anisotropic form over K of dimension > 2 which
has GR under a place \: K — LU oco. Let K1 D K be a generic zero field of ¢.
Then A\ (p) is isotropic if and only if X extends to a place u: K1 — LU 0.

SKETCH OF PROOF. a) If A extends to a place u: K1 — LU oo then it is obvious
that ¢ ® K1 has GR under p and p.(p ® K1) = A\ (p). Since ¢ ® K; is isotropic
we conclude by Proposition 1.16 that A. () is isotropic.

b) Assume now that A, (y) is isotropic. We denote this form by % for short. By use
of elementary valuation theory it is rather easy to extend A to a place A: K (p) —
L(p)Uoo (cf. [Ks, §9]; here we do not need that ¥ is isotropic). Since P is isotropic
the field extension L(p)/L is purely transcendental (cf. Th. 1.3). Thus there exists
a place p: L(@) = LU oo over L. Now po X: K(¢) = LUoo is a place extending .
Since K(¢) ~x K1, there exists also a place u: K1 — L U oo extending A. O

We return to our form g over k.

1.18. THEOREM. Let (K, |0 <7 < h) be a generic splitting tower of g with higher
indices i, and higher kernel forms ¢, (0 <r < h). Let v:k — LU oo be a place
such that ¢ has GR under . Moreover let m € [0,h] and \: K, = LU oo be a
place extending v. Assume in the case m < h that \ does not extend to a place
from K1 to L. Then ind (v«(q)) =90 + -+ + im = jm. The form qn has GR
under A and ker(v«(q)) = Ae(gm)-

Proor. We have ig + -+ i, = jp and ¢ ® K, 2 j,, X H L q,,,. This implies,
that ¢,, has GR under X\ and

(@) = MA@ ® Kip) = jrn xH L Ai(gm)

(cf. Proof of Prop. 1.16.) It remains to prove that A«(¢) is anisotropic. This
is trivial if m = h. Assume now that m < h. If A(gn) would be isotropic
then Proposition 1.17 would imply that A extends to a place from K41 to L,
contradicting our assumptions in the theorem. Thus A.(g,,) is anisotropic. O

Applying the theorem to the special case that L is a field extension of k and = is
the trivial place k — L, we obtain a result on the Witt decomposition of ¢ ® L
which is much stronger than 1.11.

1.19. COROLLARY. Let (K, |0 <t < h) be a generic splitting tower of q. If L/k
is a field extension and ind (¢q® L) = jn, and if p: K. = LU0 is a place over k for
somer € [0, h], thenr < m and p extends to a place A\: K, = LUoco. For every such
place X the kernel form ¢, of ¢ ® K,,, has GR under A and A« (¢) = ker(¢® L).O0

An easy consequence is the following statement.

1.20. SCHOLIUM. (“Uniqueness” of generic splitting towers and higher kernel
forms). Let (K, | 0 < r < h) and (K| | 0 < r < h) be generic splitting tow-
ers of ¢ with associated sequences of higher indices (i, |0 <r < h), (i, |0 <r < h)
and sequences of kernel forms (¢ | 0 < r < h), (¢, | 0 <r < h). Then i, =i, for
every v € [0,h]. There exists a place A\: Kj — K} U oo over k which restricts to a
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place A\ K, — K] Uoo for every r € [0, h]. If there is given a place u: K, — K| Uoo
over k for some r € [0, h] then g, has good reduction under p and p.(gr) = ¢.. O

§2. Behavior of generic splitting fields and generic
splitting towers under base field extension

2.1. DEFINITION/REMARK. If K/k is a partial generic splitting field of ¢ of some

level r, then we denote the algebraic closure of k in K by K°. The extension K°/k
is k or ksq (cf. 1.10).

For systematic reasons we retain the notation K° for later use, although most often
K° =k.

2.2. DEFINITION. We call a generic splitting field K of ¢ of some level r € [0, h]
regular, if K is regular over the algebraic closure K° of k in K. We then denote by
L - K, or more precisely by L - K, the free composite of L - K° and K over K°.

Ezplanation. Here we have toread K° =k, L- K° =L if r < horif r = h and q is
inner. If r = h and ¢ is outer we have two cases. Either L splits the discriminant
of g. In this case K° = ks, embeds into L and we read L - K° = L. Or L does not
split dg. In this case L - K° = L ®y K° = Ls(,gL)- a

2.3. DEFINITION. We call a generic splitting tower (K, | 0 <7 < h) of q regular if
K,/K,_1 is a regular field extension for every r with 1 < r < h, and also for r = h,
if the form ¢ is inner. If r = h and ¢ is outer, we demand that K}, is regular over
the composite Kp_1 - K; = Kp—1 - ksq = Kp—1 ®y, ksq over k. O

Let L/k be any field extension. We want to construct partial generic splitting fields
and generic splitting towers for ¢ ® L from corresponding data for q.

Assume that (K, | 0 < r < h) is a regular generic splitting tower of ¢. For every
r € [0, h] we have the free composite L - K, = L -, K, as explained in 2.2. (The
existence of the free products L- K, is the only assumption needed for the following
theorem. This is generally true if either L or K, is regular over k resp. K°. Thus,
instead of the regularity of the generic splitting tower, we could also assume that
the field L is separable over k.)

2.4. THEOREM. Let J = (rog,...Te) denote the sequence of increasing numbers
r €{0,...,h} such that ind (¢® K,) =ind (¢® L- K,).
a) Then the sequence

L-K,,CL-K,, C---CL-K,,

is a regular generic splitting tower of ¢ ® L-Ky, and hence of ¢ ® L.
b) For every r € [0,h]\ J we have an L - K,-place L - K11 — L - K, U c0.

PRrOOF. The claim is obvious if dim g, < 1. We proceed by induction on dim g,y,.
Let r' := min J\ {0}. The induction hypothesis, applied to gx,, gives a regular
generic splitting tower L - K,» C --- C L - K, for qr,.k,, as well as b) for r > 1.

In particular, the latter implies that L - K ~p.x, L- K1 ~r.kxy L - Ko(qr-Ky,an),
and this proves a).

It remains to show b) for » = 0. But 0 ¢ J means ind ¢z, > ind ¢, hence ind ¢r.x, >
ind gk, . Therefore there is a Ky-place K1 — L-KyUoo, which yields an L-Ky-place
L-Ky — L-KyUoo. O
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In [Kaq, p. 85] another proof of Theorem 2.4 and its corollary has been given, which
clearly remains valid if char k = 2. We believe that the present proof albeit shorter
gives more insight than the proof in [Kj].

The sequence SP(q ® L) is a subsequence of SP(q) = (jo,---,Jn), say SP(q® L) =
(Je(0)s - - - » Je(e))» With

0<t0) <t(l) <---<tle) =h.
{ It is evident, that jy) = jn = [dim¢/2] € SP(¢ ® L.}

It follows from Theorem 2.4 that the ¢(7) coincide with the numbers r; there. Thus
we have the following corollary.

2.5. COROLLARY. a) For every s € [0,¢| the anisotropic part of q ® L - Ky, is
Qi(s) ® L - Ky(s)-

b) SP(q ® L) is the sequence of all v € [0,h] such that the form ¢, ® L - K, is
anisotropic. O

2.6. PROPOSITION. Let K be a reqular generic splitting field of q of some level
r € [0,h]. Then L- K is a generic splitting field of ¢ ® L of level s, where s € [0, €]
is the number with t(s — 1) < r < t(s). {Read t(—1) = —1.}

PRrROOF. We return to the fields F; in Theorem 1.3. Let i: = j,.. We have K ~y F;
by Proposition 1.9. This implies K - L ~p, F; - L. Thus it suffices to prove the
claim for F; instead of K. Now L - F; is the function field of the variety V;(¢ ® L).
Proposition 1.9 gives the claim. O

For later use, it is convenient to insert a digression about “inessential” field exten-
sions.

2.7. DEFINITION. We call a field extension E/k inessential, if there exists a place
a:E — kUoo over k, ie., B ~p k. O

The idea behind this definition is that, if E/k is inessential, then ¢® E has essentially
the same splitting behavior as ¢. This will now be verified.

We know already from Corollary 1.6 that ind (¢® E) = ind (g), hence ker(¢® E) =
ker(q) ® E.

2.8. COROLLARY. Assume again that E [k is an inessential field extension.
i) If (E- | 0 < r < W) is a generic splitting tower of ¢ ® E, then it is also
a generic splitting tower of q. In particular h' = h, i.e., h(¢ ® E) = h(q).
Moreover SP(q ® E) = SP(q).
i) If K/E is a generic splitting field of q® E of some level r € [0, h], then K/k
is a generic splitting field of q of the same level r.

PRrOOF. i): This follows from the definition 1.12 of the notion of a generic splitting
tower, together with 2.4.
ii): We have K ~g E,.. This implies K ~j, E,., and we are done. O

2.9. REMARK. Theorem 2.4 tells us that the splitting pattern of a quadratic form
becomes coarser under base field extension. This may even happen with anisotropic
k-forms, which stay anisotropic over the extension field L. The classical example
is a quadratic form 1 of dimension 4 and with a non trivial discriminant (or Arf
invariant) 0. The form 1 remains anisotropic over the quadratic discriminant
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extension L = kjy. Of course the height of ¢1, is one, which means, that, over L,
the form 1) is ‘simpler’ than over k. Such a transition ¢ — 9y, is called an anisotropic
splitting, since it reduces the complexity of the quadratic form v without disturbing
its anisotropy.

This phenomenon can be more subtle than in the example just given. For the rest
of this remark we assume that char k # 2.

i) For an an anisotropic r-Pfister form ¢ with pure part ¢', and ¢ as above, we
study the form g := ¢’ ® 1. As mentioned above, 1, is anisotropic for L = k(1/dq).
We also assume that ¢ and hence ¢’ as well as ¢ stay anisotropic over L: For
example, we can start with some ground field ko, and let k = ko(X1, X>,Y1,... Y})
be the function field of r + 2 indeterminates over kg, and then take

¢ = <13X13X236X1X2) with § € kS \ kSZ, Y= «Y'h aY'T»

Then (¢ ® 9)r is an anisotropic r + 2-Pfister form, and gz, is a Pfister neighbor of
that form with complement y,.
Hence qr, is an excellent form of height 2 with splitting pattern

SP(qr) = (2"t —4, 271 _2),

On the other hand, if E = k(v/—X;), then g = H L g an, and hence g5 =
(¢ @Y)E =¢r @ H L ¢ @ YEan. Using, e.g., [HR2, 1.2, p. 165] one sees easily
that ¢’ ® ¥E an is anisotropic. It is similar to a Pfister neighbor with complement
¥E,an, hence of height two with splitting pattern (27 — 1,271 — 3).

The splitting pattern of q therefore contains the numbers

2m —1, 27t 4 ortl _3 ortl _ 9o

and possibly more, but only two of them survive for qr,.

ii) The following example may be even more instructive. We refer to [HRz, 2.5
2.10, p. 167ff.]. Assume n > r > 0, and let k = ko(X1,..., Xn, Y1,...,Y:, Z be the
function field over some field kg in n + r + 1 indeterminates. We let k' denote the
subfield ko(X1,...,Xn,Y1,...,Y;) of k, hence k = k'(Z) is an inessential extension
of k'.

We consider the anisotropic forms

q:={(X1,...,Xn) L Z(Y1,...,Y.) over k
and
Y= {(Xq,..., X)) L{Y¥1,...,Y.) over k'.

According to [l.c., 2.6], their splitting pattern is given by

(0, 20, 21 ... 27, on—l on—l 4 or-l) if 1<r<n-2
(%) (0, 20, 2%,... 21 on—l 4 gn—2) if r=n-1
(0, 20, 21, ... 2™ if r=n

(The proof is given in [l.c.] for ¢, but works, mutatis mutandis, for ¢ as well.) We
consider the standard generic splitting tower Ko = k, K1, ..., K} of 9, which is
a generic splitting tower of 1 as well, since k is inessential over k', and note that
h=r+3,r+ 2,r + 1 respectively in the three cases distinguished above.
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The forms o := (X1,...,Xp)k; and 7 := (Y1,...,Y; )k, are anisotropic for r =
0,...,r. Hence, using [l.c., Thm. 1.2, p. 165], we conclude that ¢x, is anisotropic
fori =0,...,r.

In [l.c., 2.5, p. 167] the following well known linkage result is stated: If a linear
combination of two anisotropic Pfister forms o, 7 over a given field is isotropic, then
its index is the dimension of a Pfister form of maximal dimension dividing both o
and 7.

Since Yk, is isotropic, it follows that its index is a power of two, since it is the
dimension of the common maximal Pfister divisor of ¢ and 7. Hence, by the same
result, the first higher index of gk, is exactly the dimension of this Pfister divisor.
Therefore, for ¢ < r, the splitting pattern of gk, consists of 0, followed by the suffix
starting with 2¢ of the appropriate sequence ().

This shows that the gaps occurring in a splitting pattern by base field extension
can be arbitrarily large, even for a form which stays anisotropic over the extension.

§3. Defining higher kernel forms over
purely transcendental field extensions

3.1. DEFINITION. Let L/K be a field extension and ¢ a form over L. If we have
¢ 2ol = ¢ ® L with some form ¢’ over K, then we say that ¢ is definable over
K (by ¢'). We say that ¢ is defined over K (by ¢') if ' is unique up to isometry
over K.

It is known for a field k£ of characteristic # 2, that all higher kernels of a form ¢
over k are defined over k if and only the form ¢ is excellent [K3, 7.14,p. 6], which
is a very strong condition on that form: ¢ is excellent if either dimq < 3, or if ¢ is
a Pfister neighbor with excellent complement. E.g., -7 | X7 is excellent over any
field of characteristic # 2.

In this section, as before, ¢ is a (regular quadratic) form over a field k. We want
to prove the surprising fact, that, for a suitable generic splitting tower of ¢, every
higher kernel form of ¢ is definable over some finitely generated purely transcen-
dental extension of k.

The following lemma is well known, but we will need its precise statement as given
here later on.

3.2. LEMMA. Assume that q is anisotropic. Let L be a separable quadratic field
extension of k, such that qr, is isotropic. Then

g=alp

for some regular quadratic forms a, 8 over k, such that ay, is hyperbolic and By, is
anisotropic. Let L = k[X]/(aX? + X + b) with a #0, b # 0 (which can always be
achieved). Then « is divisible by [a,b]. More precisely, if i = ind (qr), then there
are pairwise orthogonal vectors yi,...,y; over k such that

a = [a,b] ® (a(y1),- -, q(yi))-
In case char k # 2, we may assume that L = k(v/8). Then, a is divisible by (1, —0).

PROOF. Let e # 0 be an isotropic vector for qr,. We denote the image of X in L by
6. Then, for e = x+y6, where , y have coordinates in k, we obtain *) 0 = aqy(e) =

4 We briefly write (z,y): = B,(z,y) with B, the bilinear form associated to g
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aq(z) + aq(y)8” + a(z,y)0 = ag(x) — ba(y) + (a(z,y) — 4(y))f, hence ag(z) = bq(y)
and a(z,y) = q(y). Therefore (z,y) # 0 and g(§y +nz) = (a&® +&n +by®) (2, y) for
arbitrary &,y € k, which gives a binary orthogonal summand of g of the requested
type. If its complement is anisotropic over L we are done. Otherwise, an induction
on dim q gives the general result, and the special result for char k # 2 is obtained
as usual by the substitution X = X’ —1/(2a), § = b/a — 1/(4a?). O

3.3. COROLLARY. Let k(q) denote the function field of the quadric given by ¢ =0,
let k' C k(q) be a subfield containing k such that k(q)/k' is separable quadratic and
k' [k is purely transcendental. Then there is a decomposition

g =ald,

over k', such that a # 0, ay(q) is hyperbolic and q;c(q) is anisotropic. Hence the first
higher kernel form of q is definable by ¢' over the purely transcendental extension

k' of k.

Proor. This follows immediately from 3.2. O

As before h = h(q) denotes the height of q.

3.4. THEOREM. There exists a regular (cf. 2.83) generic splitting tower (K, | 0 <
r < h) of q, a tower of fields (K. | 0 < r < h) with k C K| C K, for every r,
k = K = Ky, and a sequence (¢, | 0 <1 < h) of forms ¢, over K, such that the
following holds. {N.B. All the fields K,, K, are subfields of K.}

(1) ¢ ® K, =ker(q® K,.) for every r € [0, h].

(2) pry1<or®Kpy; (0<r<h). 5)

(3) K,,/K, is purely transcendental of finite transcendence degree (0 < r < h).

(4) K,/K! is a finite multiquadratic extension (0 <r < h).

ProOF. We proceed by induction on dim g. We may assume that ¢ is anisotropic.
If dim ¢ < 1 nothing has to be done. Assume now that dimg > 1. Let K; = k(q),
the function field of the projective quadric ¢ = 0. We choose for K a subfield of
K containing k such that K| /k is purely transcendental and K; /K] is quadratic,
which is possible. By 3.3 we have a (not unique) decomposition ¢ ® K| =11 L ¢1
with dim ¢; < dim¢q, ¢; ® K7 anisotropic, 71 ® K; hyperbolic. If the height h =1,
we have finished with K7, K1, ;.

Assume now that h > 1. We apply the induction hypothesis to ;. Let h(p1) = e.
There exists a regular generic splitting tower (L; | 0 < j < e) of ¢y, a tower of fields
(L; 10 <j <e), and forms ¢; over L; (0 < j < e), such that K C L, C Ly,
Yiv1 < ;@ Ly, ¢ ® Lj = ker(p1 ® Lj), L, /LY is purely transcendental of
finite degree, and L;/L’ is finite multiquadratic. Certainly e > h —1 > 1 since
h(pr ® K1) = h— 1.

We form the field composites K; - L; = K - Ky Lj as explained in 2.2. Let J denote
the set of indices j € [0, e] with ¢; ® K; - L; anisotropic, and let p(0) < u(1) <
-+ < u(t) be a list of these indices. (N.B. u(0) = 0,u(t) = e.) By 2.4 and 2.9
the sequence of fields (K - L,y | 0 < r <) is a regular generic splitting tower of
©1®K71, hence of p® K1, and ¢® (K- L)) has the kernel form ¢,y ® (K1-Lyy))-
Clearly the tower (K1 - L,y |0 < r < t) is regular, and t = h — 1.

5) ¢f. Notations 1.0
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For 2 <i < h we put K:= L;l(iil), K; = Ky - Lyi—1, ¥t = Yu(i—1)- Adding to
these fields and forms the fields K1, K1, Ko = K{ = k, and the forms ¢1,po: = ¢,
we have towers (K, |0 <r < h), (K| |0 <r < h) and a sequence (¢, |0 <r < h)
of anisotropic forms with all the properties listed in the theorem. O

We add to this theorem a further observation.

3.5. PROPOSITION. We stay in the situation of Theorem 3.4. Assume that h > 1,
i.e., q is not split. By property (2) we have a sequence (n, | 1 < r < h) of forms n,
over K| such that

90r—1®K,'«§77rJ-<Pr (1<r<h).

We choose for each r € [1,h] a total generic splitting field E, of n.. Let g, denote
the kernel form of q@ K,, 0 <r < h.

CLAIM. The field composite K,_, ‘k!_, Br =Ly is specialization equivalent to K,
over K,._1. Thus L, is a generic zero field of q-—1 and a generic splitting field of
q of level r.

PROOF. ¢._1 ® L, is isotropic. Thus there exists a place A\: K, — L, U oo over
K,_1. On the other hand 7, ® K, ~ 0. Thus there exists a place p: E. = K, U 00
over K. The field extension K,_,/K]_; is finite multiquadratic. By standard
valuation theoretic arguments p extends to a place u: K, 1k E, — K,Uoo
over K,_; - K|, hence over K,_;. O

EXPLANATIONS ON THE DIAGRAM. The tower on the left consists of purely tran-
scendental extensions (labeled by “p.t.”), the tower on the right is a generic split-

ting tower of q. The “horizontal” extensions labeled by “m.q.” are multiquadratic,
r—1

splitting the direct sums g, = L nik! L nr (for which we simply have written
i=1

m L --- L ) totally and leaving ¢, anisotropic, making it isometric to the r-th

higher kernel form ¢, of q. The field E, = K/(n, — 0) is a generic total splitting

field of the form 7, over K.
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A GENERIC SPLITTING TOWER ACCORDING ToO 3.4 AND 3.5

1ol —0
K’lz n m~7f71h Kh
: ‘Ph_>(QKh)an :
p.t. E.=K!(n—0 K

ml--Lln. — 0
m.q.
$r— (qu)afi_.-"'..
p.t.
ml-Lln.—1 — 0 ’
K; 1 m.q Kr,-_l
: @r—1— (9K,_4)an :
p:t.
EI m — 0 :
K m.q K, = K(q)
1
| 1 = (gxy)an
p|.1:.
k Ky

84. Generic splitting preparation

In 3.4 and 3.5 we have associated to the form ¢ over k¥ — among other things — a
tower (K | 0 < r < h) of purely transcendental field extensions of k together with
a sequence (n, | 1 < r < h) of anisotropic subforms 7, of ¢ ® K. We want to
understand in which way these data control the splitting behavior of ¢ under field
extensions, forgetting the generic splitting tower (K, | 0 <r < h) in 3.4. (We will
have only partial success, cf. §6 below.) In addition we strive for an abstraction of
the situation established in 3.4 and 3.5.

As before ¢ is any regular quadratic form over a field k£ and h denotes the height
h(q).

4.1. DEFINITION. Let r € [0,h] and let K/k be an inessential field extension (cf.
2.7). A form n over K is called a generic splitting form of q of level r, if dimn is
even and there exists an orthogonal decomposition ¢ ® K = n L 9 such that the
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following holds: If E/K is a total generic splitting field of 5, then E/k is a partial
generic splitting field of ¢ of level r, while 1) ® E is anisotropic. We further call 1
the complement (or complementary form) of 7. O

N.B. This property does not depend on the choice of the total generic splitting field
of E.

Generic splitting forms occur whenever a higher kernel form of ¢ is definable over
an inessential field extension of k.

4.2. PROPOSITION. Let K/k be a partial generic splitting tower of q of level r.
Assume there is given an inessential subextension K'/k of K[k and a subform ¢ of
g® K' such that  ® K = ker(q® K). Let n denote the complement of ¢ in ¢ K',
i.e, g K'2=n L. (N.B. n is uniquely determined up to isometry.) Then n is a
generic splitting form of q of level r.

PrOOF. dimg = dim¢ mod 2. Thus dim7 is even. Let E/K’ be a total generic
splitting field of . Then ¢ ® E ~ 1) ® E. Thus there exists a place \: K - EU oo
over k. On the other hand, n® K ~ 0. Thus there exists a place u: E — K Uoo over
K'. Since p is also a place over k, the fields E and K are specialization equivalent
over k. We conclude that also E is a generic splitting field of g of level r. Now it
is evident that dimker(q ® E) = dimt. Thus ¢ ® E is anisotropic. O

4.3. DEFINITION. A generic splitting preparation of ¢ is a tower of fields (K | 0 <
r < h) together with a sequence (7, | 0 < r < h) of forms 7, over K such that the
following holds:

(1) K| =k, and 1y is the hyperbolic part of .

(2) K!,,/K! is purely transcendental for every r, 0 < r < h. 5

(3) There exist orthogonal decompositions

g=mno Ly, r ®K;+1 =1 Lorp1, (0<r <h).

(4) For every r € [0, h] the form n; ® K is a generic splitting form of ¢ of

.
1
7=0

level r. O
The forms ¢, (0 < r < h) are uniquely determined (up to isometry, as always)
by condition (3). We call ¢, the r-th residual form and n, the r-th splitting form
of the given generic splitting preparation. Clearly i,: = dim#, /2 is the r-th higher
index (cf. 1.1) of ¢, and dim ¢y, < 1. If g is anisotropic then we sometimes denote
the generic splitting preparation by (K. | 0 < r < h), (n, | 1 < r < h), omitting
the trivial form 7y = 0. O

4.4. SCHOLIUM. Generic splitting preparations of q exist in abundance. Indeed, in
the situation described in 3.4 and 3.5, the tower of fields (K. | 0 < r < h) together
with the sequence (n, | 0 < r < h) of forms 0, over K|, where n, for r > 1 has
been introduced in 3.5 and ng denotes the hyperbolic part of q, is a generic splitting
preparation of q.

6 Things below would not change much if we merely demanded that the exten-

sions K /K, are inessential.
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|—=

PRrROOF. Let r € [1,h] be fixed and e,:= _| 7; ® K. Then ¢® K| = ¢, L ¢, and

o

J
ker(¢p ® K,) = ¢, ® K,.. Proposition 4.2 tells us that €, is a generic splitting form
of q of level r. O

—_

Notice that in this argument property (4) of Theorem 3.4 has not been used.

In the following, we study a fized generic splitting preparation (K] |0 <r < h),
(0 < nr < h) of q with associated residual forms ¢, (0 < r < h). For every

r

r € {1,...,h} let e, denote the form | n; ® K. We do not assume that the
Jj=0

preparation arises in the way described in the scholium.

Our next goal is to derive a generic splitting preparation of ¢ ® L from these data

for a given field extension L/k.

4.5. LEMMA. Assume that K/k is an inessential field extension. Let n be a form
over K which is a generic splitting form of q, and let 1 be the complementary form,
p® K =n L. Let E/K be a regular total generic splitting field of n (cf. 2.2).
Finally, let K - L = K -, L denote the free field composite of K and L over k, and
E-L = E- L the composite of E and L as explained in 2.2. Assume that Y Q@ E- L
remains anisotropic. Then K - L/L is again inessential and n ® K - L is a generic
splitting form of ¢ ® L with complementary form ¢ ® K - L.

PRrROOF. Any place a: K — L U oo over k extends to a place from L - K to L over
L. Thus K-L/L is inessential. By Proposition 2.6 the field £ -, L = E - (K - L)
is a total generic splitting field of n ® K -L and also a partial generic splitting field
of ¢ ® L. Now the claim is obvious from Definition 4.1. a

As in §1 and §2 we enumerate the splitting pattern SP(¢) = {j» | 0 < r < h} by

dimq]
2
and write SP(¢q® L) = {j, | r € J} with J = {t(s) | 0 < s < e},

0<jo<ji<---<jn=|

0<t0) <t(l) <---<tle) =h.
We have e = h(q ® L).
4.6. PROPOSITION. For 0 < s < e we define L), = L - Ké(s) as the free composite
of the fields L and Ké(s) over k, and we put
Cor=M(s—1)41 @ L, L -+ Laysy—1 @ L, L 15

We further define Ly = L and (o as the hyperbolic part of ¢ ® L. Then (L. | 0 <
s<e), (¢ |0<s<e)is a generic splitting preparation of ¢ ® L.

PRroOOF. For every r with 0 < r < h we choose a regular total generic splitting field
F./K] of the form g,.*) 7 Then F, /k is a partial generic splitting field of g of level
r. Let L - F,. = L -, F, denote the composite of L with F,. over k as explained in

”)  The fields F; from 1.3 will not be used in the following.
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2.2. If 0 < s < e, then the field L - Fy,) is a generic splitting field of ¢ ® L and
ker(o ® L - Fy(5)) = py(s) ® L - Fy5) by Proposition 2.6. We have

P® Ly ey ® Ly L gy ® L.
Again by 2.6, the field
L, Fysy = (L -k Kyy)) "k

t(s

, Fis) = L K, Fis)
is a total generic splitting field of £4(;) ® L§. The form ;) ® L}, remains anisotropic
over L - Fy;). Now Proposition 4.2 tells us that e, ® L} is a generic splitting

form of ¢ ® L., and we are done. O

4.7. COROLLARY. Let m € [1,h] be fized, and let F' be a regular total generic
splitting field of €. For every r withm < r < h let F- K. denote the free composite
of F' and K. over k. Then the tower F C F - K] ., C --- C F - K} together with
the sequence (n, @ F - K. | m < r < h) is a generic splitting preparation of the
anisotropic form ¢, @ F.

ProoF. We apply Proposition 4.6 with L = F. Now J = {m,m + 1,...h}. Thus
e=h—mandit(s) =s+m (0<s<h—m). The form q® F has the kernel form
om @ F. O

We now look for generic splitting preparations with K| = --- = K. These are the
“generic decompositions” according to the following definition.

4.8. DEFINITION. Let K' D k be a purely transcendental field extension. A generic
splitting decomposition of q over K' is a sequence (ag,ay, - . .,ay) of forms over K’
of even dimensions such that the following holds.
1) gK' =2 ag La; L - 1Lapl g, with dimyp, < 1.
ii) ap is the hyperbolic part of ¢ ® K'. For every r with 1 < r < h the form
oo L --- L o, is a generic splitting form of ¢ of level r. O

The next proposition tells us that we can always pass from a generic splitting
preparation of ¢ to a generic splitting decomposition of q.

4.9. PROPOSITION. As before, let (K. | 0 < r < h), (n, | 0 <7 < h) bea
generic splitting preparation of q. Then (9, ® K; | 0 < r < h) is a generic splitting
decomposition of q over K} .

Proo¥. Let K':= K; and a,:=1,® K; (0 <r < h). Since 7 is the hyperbolic
part of ¢ and K'/k is purely transcendental, the form «f is the hyperbolic part
of g K'. For 1 < r < h we have — with the notations from above — ¢, ® K' =
ap L --- L a,. Let F, be a regular total generic splitting field of e, (over K}),
hence a partial generic splitting field of g (over k) of level r. The free composite
F,-K' =F, -k K'is a total generic splitting field of &, ® K' = a, by Proposition
2.6. Now F, - K' is purely transcendental over F,.. Thus F, - K' is also a partial
generic splitting field of ¢ of level r. We have ¢ ® K' = a, L (¢, ® K'). The form
or ® F, is anisotropic. Since F, - K'/F, is purely transcendental, it follows that
(pr @K"YQF.-K' = (p,®F,)® F,.- K' is anisotropic. Thus «, is a generic splitting
form of q of level r. O

Although generic splitting decompositions look simpler than generic splitting prepa-
rations, it is up to now not clear to us which of the two concepts is better to work
with. See also our discussion below at the end of §6.
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§5. A brief look at quadratic places

We need some more terminology.

If K is a field, we denote the group of square classes K*/K*? by Q(K) and a single
square class aK*? by {a), identifying this class with the bilinear form (a) over K.
If K — LUoo is a place with associated valuation ring 0 = 0y, we denote the
image of the unit group o* in Q(K) by Q(o). Notice that Q(0) = 0*/0*2, and that
A gives us a homomorphism A: Q(0) = Q(L), A({e)) = (A\(¢)). (The bilinear
form () has good reduction under A and A.({¢)) is the specialization of this form
under \.)

5.1. DEFINITION. A quadratic place, or Q)-place for short, from a field K to a field
L is a triple (A, H, x) consisting of a place \: K — L U oo, a subgroup H of Q(K)
containing ()(0,), and a homomorphism x: H — Q(L) (called a “character” in the
following) extending the homomorphism A.: Qo)) — Q(L). O

We often denote such a triple (A, H, x) by a capital Greek letter A and symbolically
write A: K — LU oo for the Q-place A.

Every place \: K — L U oo gives us a @-place A= A Q(or),As): K — LU oo,
where A,: Qo)) — Q(L) is defined as above. We regard X and X essentially as the
same object. In this sense ()-places are a generalization of the usual places.

5.2. DEFINITION. If A = (A, H,x): K — LU is a @-place then an expansion of
Ais a @Q-place A’ = (\,H',x'): K — LU oo with the same first component \ as A,
a subgroup H' of Q(K) containing H, and a character x': H' — Q(L) extending
X- O

Usually A allows many expansions, and A itself is an expansion of A
In the following A = (A, H,x): K = LU oo a @-place and o0: = o).

5.3. DEFINITIONS. Let k be a subfield of K.
a) The restriction Alk of the Q-place A to k is the @-place (p, E,o) where
p = Ak:k = LUoo denotes the restriction of the place \: K — LUoo in the
usual sense, E denotes the preimage of H in Q(k) under the natural map
Jj:Q(k) = Q(K), and o denotes the character x o (j|D) from D to Q(L).
b) I T:k — LUoo is any @-place from k to L then we say that A extends T
(or, that A is an extension of I'), if A|k is an expansion of T'. |

At the first glance one might think that this notion of extension is not strong
enough. One should demand Alk = T, in which case we say that A is a strict
extension of I'. But it will become clear below (cf. 5.8.ii, 5.12, 6.1) that the weaker
notion of extension as above is the one needed most often.

As before, we stay with a Q-place A = (\,H,x): K - LU co.

5.4. DEFINITION. Let ¢ be a regular quadratic form over K. We say that ¢ has
good reduction (abbreviated: GR) under A, if there exists an orthogonal decompo-
sition
(+) o= 1 hyn

heH
with forms 1, over K which all have GR under A. Here hi;, denotes the product
(h) ® ¢p, of the bilinear form (h) with ¢,. {This amounts to scaling ¢ by a

representative of the square class (h).} Of course, 1, # 0 for only finitely many
heH.
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Alternatively we say in this situation that ¢ is A-unimodular. In harmony with
this speaking we call a form v over K, which has GR under )\, also a A-unimodular
form. O

5.5. REMARK. We may choose a subgroup U of H such that H =U x Q(o). If ¢
has GR under A then we can simplify the decomposition (*) to a decomposition

p= L UPy,
uelU

with A-unimodular forms ¢,,. O

5.6. PROPOSITION. If ¢ has GR under A, and a decomposition (*) is given, then

the form | x(R)A(¥p) is up to isometry independent of the choice of the decom-
heH

position (x).

This has been proved in [K4] if charL # 2. A proof in general (which is rather

different) will be contained in [Kj].

5.7. DEFINITION. If ¢ has GR under A then we denote the form | x(h)\.(¢n)
heH
(cf. 5.6) by A.(p), and we call A.(p) the specialization of ¢ under \. O

5.8. REMARKS.

i) If 1 is a second form over K such that ¢ L 1) is regular, and if both ¢ and
1 have GR under A then ¢ 1 1 has GR under A and

Al L) = Au(p) L Au(¥).

ii) Assume that k is a subfield of K and T:k — LU oo is a Q-place such that
A extends T (cf.5.8.b). Let q be a regular form over k which has GR under
T'. Then ¢ ® K has GR under A and A,(¢® K) = T.(q).

We omit the easy proofs. O
It seems that quadratic places come up in connection with generic splitting forms
(cf. 4.1) in a natural way. We illustrate this by a little proposition, which will also
serve us to indicate some of the difficulties we have to face if we want to make good
use of quadratic places in generic splitting business.

5.9. PROPOSITION. Let q be an anisotropic regular form over a field k, dim q > 2.
Let k(q) denote the function field of the projective quadric ¢ = 0. Let L D k
be a field extension such that q;, = q ® L is isotropic. Then there is a purely
transcendental subextension k' /k of k(q)/k, such that k(q)/k' is separable quadratic,
and a quadratic place A: k' — LU 0o over k, such that the form o described in 3.3
{aw 2 a L g, agq ~0, q;(q) anisotropic} has GR under A and A,(a) ~ 0.

PROOF. Since gy, is isotropic we have a place A: k(¢) — LU oo over k. Let o denote
the valuation ring of A, let V' denote the underlying k-vector space of q. We take a
T
decomposition V = | (ke; ® kf;) L V' with ke; ® kf; = [a;,b;], and V' = {ao) or
i=1
V= 0, and a,-,b,-,ao € k*.
We choose a primitive isotropic vector z € V, = 0 ® V with (z,V,) = 0. By
rearranging coordinates over k we may assume that x = Xe; + Y fi + 2, and
T

X €o\0,Y €0* z € | (oe; ® kof;) L oV', and after dividing by Y, we

=2
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T

may assume that ¥ = 1. We take the coordinates of | (oe; @ of;) L oV’ as

=2

independent variables over k, which generate a purely transcendental subfield k' of
k(g). The equation 0 = go(z) = a1 X2+ X + b with b = b1 +q(q) (2) € 0Nk’ defines
the field k(g) as a separable quadratic extension of &'.

By construction we have A(b) # co. Hence the quadratic form [aq,b] has good
reduction under this place. We write o = [a1,b] ® (c1,...,¢;) with ¢, € S(gwr) \ 0
according to 3.2. We denote the restriction of A to & by A, and the associated
valuation ring by o'(= o N k').

Let H denote the subgroup of Q(k') which is generated by Q(o') and the classes
(c1),---,{c;). We choose some extension x: H — Q(L) of the character \,: Q(o') —
Q(L). The quadratic place A = (X, H, x) has the desired properties. Alternatively

we may choose for A the restriction of \to k. O

This proposition leaves at least two things to be desired. Firstly, it would be nice
and much more useful, to have the subextension k'/k to be chosen in advance,
independently of the place A in the proof. Secondly it would be pleasant if also
the form ¢’ has GR under A. This is by no means guaranteed by our proof. We
see no reason, why the analogue of Lemma 1.15.b for quadratic places instead of
ordinary places should be true. The main crux here is the case char k¥ = 2. Then
usually many forms over k' do not admit N-modular decompositions for a given
place M': k' — L U oo over k. {It is easy to give counterexamples in a sufficiently
general situation, c¢f. [K5]}. On the other hand, if we can achieve in Proposition
5.9 in addition that ¢’ has GR under A, then the equation

q®L=A(a) L A(q),

which follows from the remarks 5.8 above, together with A.(a) ~ 0 would “explain”
that ¢ ® L is isotropic, and how the anisotropic part of ¢ ® L is connected with the
generic splitting form a of ¢ of level 1.

If char k # 2 it is still not evident that the analogue of 1.15.b holds for the quadratic
place A’ but now at least every form over k' has a A-modular decomposition.
Indeed, this trivially holds for forms of dimension 1, hence for all forms. In [K4] a
way has been found, to force an analogue of 1.15.b for quadratic places to be true,
by relaxing the notion “good reduction” to a slightly weaker — but still useful —
notion “almost good reduction”.

We can define “almost good reduction” without restriction to characteristic # 2 as
follows.

5.10. DEFINITION. Let A = (A, H,x): K — LU oo be a Q-place, 0: = o), and let
S be a subgroup of Q(K) such that Q(K) = S x H. A form ¢ over K has almost
good reduction (abbreviated AGR) under A if ¢ has a decomposition

(%) p= L $@s

with A-unimodular forms ¢, and A(ps) ~ 0 for every s € S, s # 1. In this case
we call the form
A(p):=Au(p1) L (dimp —dim;)/2 x H

the specialization of ¢ under A. |
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The point here is that A.(y) is independent of the choice of the decomposition (xx)
and also of the choice of S. This has been proved in [K4] in the case char L # 2.
It also holds if char L = 2, cf. [Ks].

It now is almost trivial that the analogue of 1.15. holds for @-places with AGR
instead of GR, provided char L # 2, cf. [K4, §2].

5.11. PROPOSITION. Let A: K — LU oo be a Q-place and let ¢ and i be regular
forms over K. Assume that char L # 2.
a) If ¢ and 1 have AGR under A, then ¢ L 1) has AGR under A and

Al L) = Au(p) L Au(¥).
b) If ¢ and ¢ L ¢ have AGR under A, then v has AGR under A. |

5.12. PROPOSITION. Let k C K be a field extension. Let I':k — L U oo and
A:K — LUoo be Q-places with A extending T'. Assume finally that q is a form
over k with AGR under T'. Then q® K has AGR under A and A (¢® K) = T'\(q).

The proof has been given in [Ky, §3] for char L # 2. The arguments are merely
book keeping. They remain true if char L = 2. O
Now we can repeat the arguments in the proof of Proposition 1.16 for quadratic
places and AGR instead of usual places and GR, provided char L # 2. We obtain
the following.

5.13. PROPOSITION. Let A: K — LU oo be a Q-place and ¢ a form over K with
AGR under A. Assume that char L # 2. Then @q: = ker(p) has again AGR under
A and A(p) ~ Au(po), ind Ai(p) > ind (p). If ind A.(p) = ind (p), then
ker Au () = Au(po). O

We finally state an important fact, proved in [K4, §3], which has no counterpart on
the level of ordinary places.

5.14. PROPOSITION. Let again A: K — LUoo be a Q-place with char L # 2. Let k
be a subfield of K andT':= Alk. Let q be a regular form over k. Then g®L has AGR
under A if and only if ¢ has AGR under T', and in this case A.(¢® L) = T.(q). O

§6. Control of the splitting behavior by use of quadratic places

If we stay with fields of characteristic # 2 then the propositions 5.11 — 5.13 indicate
that it should be possible to obtain a complete analogue of the generic splitting
theory displayed in §1 using quadratic places instead of ordinary places. Indeed
such a theory has been developed in [K4, §3]. We quote here the main result
obtained there.

Let g be a form over a field k. We return to some notations from §1: (K, |0 <r < h)
is a generic splitting tower of ¢ with higher indices (i, | 0 < r < h) and higher kernel
forms (¢, | 0 < r < h). Further (j, | 0 < r < h), with j, = dp + -+ + 4, is the
splitting pattern SP(q) of q.

6.1. THEOREM. [Ky, Th. 3.7]. LetT:k — LU oo be a Q-place into a field L
of characteristic # 2. Assume that ¢ has AGR under T'. We choose a Q-place
A:K,, = LUoo extending I' such that either m = h or m < h and A does not
extend to a Q-place from K11 to L. Thenind (I'«(q)) = jm, the form ¢, has GR
under A and ker(T4(q)) = Ai(om)- O

A small point here — which we will not really need below — is that ,, has GR under
A, not just AGR.
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6.2. REMARK.

The theorem shows that the generic splitting tower (K, | 0 < r < h) “controls” the
splitting behavior of I'x(g). Indeed, if L'/L is any field extension then we obtain
from I’ a Q-place joT:k — L' Uoo in a rather obvious way (cf. 6.4.iii below). The
form ¢ has also AGR under joT', and (j0I')«(q) = T'«(q) ® L'. We can apply the
theorem to joI' and ¢ instead of I" and ¢. In particular we see that ind (I'x(¢)®L') is
one of the numbers j,. Thus the splitting pattern SP(I',(q)) is a subset of SP(g).O0

We now aim at a result similar to Theorem 6.1, where the field K,, is replaced by
an arbitrary partial generic splitting field for ¢. (This is not covered by [K4].) For
that reason we briefly discuss the “composition” of ()-places.

6.3. DEFINITION. Let A = (A, H,x): K - LUoo and M = (u,D,%): L — F U oo
be Q-places. The composition M o A of M and A is the )-place

(Mo A) = (po A, Ho,v o (x|Ho))
with Hy:= {a € H | x(a) € D}. O

6.4. REMARKS.
i) f N:F — EUoo is a third @-place then No (M oA)=(NoM)oA, asis
easily checked.
ii) Let i:k — K be a field extension, regarded as a trivial place. This gives
us a “trivial” Q-place ¢ = (i, Q(k),ix: Q(k) — Q(K)) from k to K. If
A= (K,H,x): K — LU oo is any @Q-places starting at K, then A o4 is the
restriction Alk: k — LU co.
iii) The Q-place j o' alluded to in 6.2 is j o I. O

In all the following I': k — LUoo is a Q-place into a field of characteristic # 2 such
that ¢ has AGR under T.

6.5. PROPOSITION. Let F/k be a generic splitting field of the form q of some level
r € [0, h]. Assume that ind T'.(q) > j.. Then there exists a Q-place A:F — LU oo
extending I'. For any such Q-place A the anisotropic part ¢ = ker(q®F) of g F has
AGR under A and Au(p) ~kerI'.(q). if ind T'i(q) = jr, then Au(p) = ker I'i(q).

ProOF. We only need to prove the existence of a ()-place A: FF — LU oo extending
I'. The other statements are clear from §5 (cf. 5.12, 5.13). By Theorem 6.1 we
have a @-place A': K, — L U oo extending I". We further have a place p: F — K,
over k. It now can be checked in a straightforward way that the Q-place A = A'op
from F to L extends T. O

6.6. THEOREM. Let K/k be an inessential field extension and ¢® K = n L ¢ with
N a generic splitting form of q of some level r € [0, h]. Assume that ind T'(q) > j,.
Then there exists a Q-place A: K — LU extending T’ such that n has AGR under
A and Ai(n) ~ 0. For every such Q-place A the form ¢ has AGR under A and
Au(p) ~Tu(q). If ind T'u(q) = jr, then Ai(p) = ker['i(q).

PROOF. Again it suffices to prove the existence of a @-place A extending I' such
that 7 has AGR under A and A,(n) ~ 0, the other statements being covered by §5
(cf. 5.11, 5.12).

Let E be a total generic splitting field of n. Then F is a partial generic splitting field
of g (cf. 4.1). By the preceding proposition 6.5 there exists a @-place M: E — LUoo
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extending I". Let A: K — L U oo denote the restriction of M to K (cf. 5.3). Of
course, also A extends I'. The form 5 ® E is hyperbolic, hence certainly has AGR
under M and M, (n® E) ~ 0. Now Proposition 5.14 tells us that n has AGR under
A and A.(n) ~ 0. O

6.7. REMARK. Suppose that I' = 4 with v:k — L U 0o a place and that ¢ has
GR under «y. Then Theorem 6.1 and Proposition 6.5 give us nothing more than we
know from the generic splitting theory in §1. Indeed, if A = (A, H, x) is a Q-place
as stated there, then the form ¢, in 6.1, resp. ¢ in 6.5, automatically has GR
under A.

This is different with Theorem 6.6. Even in the case I' = j for j:k — L the
inclusion map into an overfield L of k (actually the case which is perhaps the most
urgent at present), the @-place A will be different from A Thus, in 6.6, )-places
instead of usual places are needed even in the case I' = 3 O

We now choose again a generic splitting preparation (K, |0 <r <h), (n, |0<r <
T

h) of q with residual forms ¢, and generic splitting forms e, = | 7; ® K 5 (0L

7=0

r < h), cf. 4.3.

6.8. DISCUSSION. Assume that ind I'.(g) > jp, for some m € [0, h]. Theorem 6.6
tells us that there exists a @Q-place A: K], — L U oo extending I' such that £, has
AGR under A and A,(g,;,) ~ 0. Moreover, for every such @-place A the form ¢,
has AGR under A and A, () ~ Tu(q). If ind Ty(q) = jim, it follows that A.(om)
is the anisotropic part of T',(q).

Assume now that ind T'y(q) > j, and A: K, — LUoco is a @)-place as just described.
Then by analogy with 1.18 one might suspect at first glance that A extends to a
place M: K] ., — LU oo such that ey41 has AGR under M and M, (em41) ~ 0.
{N.B. Since A4(gy) ~ 0, this is equivalent to the property that 7,41 has AGR
under M and M, (m+1) ~ 0.} But this is too much to be hoped for. Indeed, let
us consider the special case that K| = --- = K; =:K', i.e., we are given a generic
splitting preparation (19,1, ..,n,) over K'. If A: K' = K — LUoo is as above,
then we can expand A = (\, H, x) to a @-place A’ = (\,Q(K"),¢'): K' - LU cc.
Also A’ extends T, further £, has AGR under A’ and A’ (e,,) = Au(em) ~ 0 (cf.
5.12). But since K, ,; = K’, the only extension of A’ to K, is A’ itself, and
there is no reason why 7,1 should have AGR under A’ and AL (ny41) ~ 0. O

Nevertheless, if ind T'«(q) > jm+1, there exists a somewhat natural procedure to
obtain from a @-place A: K], — L U oo as above a Q-place M: K], ., = LU oo
extending I" such that both &, ® K, || and €,41 have AGR under M and we have
M. (em ® K], 1) ~ 0 as well as M, (em+1) ~ 0. This runs as follows.

6.9. PROCEDURE. Assume that ind T'.(g) > jm. Let A: K/, — LUoo be a @-place
extending T" such that €,, has AGR under A and A.(e,,) ~ 0. We choose a regular
total generic splitting field F' of ¢,,. By Proposition 6.5 the Q-place A extends to a
Q-place A: F — LU co. The form ¢,, ® F is anisotropic. We now invoke Corollary
4.7, which tells us that the tower F C F - K, C --- C F - K} together with the
sequence of forms (n, @ F - K| | m < r < h) is a generic splitting preparation of
¢m @ F. Here F - K| denotes the free composite of the fields F' and K/ over k.
In particular 7,11 ® F - K/ is a generic splitting form of ¢,, ® F over F - K| of
level 1. We have A, (¢ ® F) ~ A, (q® F) = I',(g). Since ind T.(q) > jm, we
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conclude that A, (¢, ® F) is isotropic. Thus, again by Proposition 6.5, A extends
to a Q-place M: F - K], .1 — LUoo such that 7,41 ® F'- K, ,, has AGR under M
and M,(nmi1 ® F- Kl 1) ~ 0. Let M:K!, ., — LU co denote the restriction of
M to K}, .. By 5.14, the form 7,1, has AGR under M and M, (m41) ~ 0.

Now we need a delicate argument to prove that also e,, ® K, ,; has AGR under
M and M.(em ® K], 1) ~ 0. The problem is that the diagram of field embeddings

F—)F'K;n_i_l

]

! !
K, ——K,

does not commute, since the field composite F' - K] ., is built over k instead of
K] . Thus M probably does not extend the Q-place A.

The argument runs as follows. Also ¢r,41 ® F - K, has AGR under M, hence
¢m+1 has AGR under M, and

M (pmi1) = Mu(Pmir @ F - Ky 1) ~ Mo @ F) ~ Au(q ® F) = T (q).

Since @ K, 11 Zemn @K1 L Nmy1 L @my1 and both, 9,41 and @41, have
AGR under M, also €, ® K, ; has AGR under M, cf. 5.11, and

Tu(q) = Mu(q® K1) = Mu(em @ K yy) L Mu(mg1) L Mu(@my)-

Since My (nm+1) ~ 0 and M, (¢m41) ~ T«(q), we conclude that M, (e, ® K, 1)
~ 0. O

We have ind T'.(q) = j, for some r € [0, h] (cf. 6.2). Iterating the procedure with
m=20,1,...,r — 1, we obtain the following theorem.

6.10. THEOREM. Letind T',(q) = j.. Then there ezists a Q-place A: K] — LU oo
extending T such that 0, ® K| has AGR under A and Ai(nm, ® K) ~ 0 for every
m € [0,7]. If A is any such Q-place then ¢, has AGR under A and A.(p,) =
ker T, (q).

We briefly discuss the case that L is a field extension of k and I’ = j with j: k — L
the inclusion map.

6.11. DEFINITION/REMARK. Let K and L be field extensions of k. A @)-place from
K to L over k is a Q-place A = (\, H, x): K — LUoo such that the first component
A is a place over k. It is evident from Definitions 5.3 that this condition just means
that A extends the quadratic place j: k — L U oo, and also that Ak = 7. O

6.12. ScHoLuM. Let L/k be a field extension, ind (¢ ® L) = j.. Then there
ezxists a Q-place A: K| — LU oo over k such that 0, @ K| has AGR under A and
Ac(Nm ® K) ~ 0 for every m € [0,7]. For any such Q-place A the form ¢, has
AGR under A and A (p,) =ker(¢® L). O

We return to an arbitrary @-place I': ¥ — L U oo such that ¢ has AGR under T'.

6.13. DEFINITION. We call the generic splitting preparation (K, | 0 < r < h),
(n- | 0 < r < h) of g tame, if there exists a generic splitting tower (K, | 0 < r < h)
of ¢ such that K. is a subfield of K, and 1, ® K, ~ 0 for every r € [0, h]. O
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Notice that a generic splitting preparation (K. |0 < r < h), (9. | 0 <r < h)
as described by 3.4 and 3.5 is tame. Thus every form admits tame generic split-
ting preparations. On the other hand we suspect that there exist generic splitting
preparations which are wild (= not tame), although we did not look for examples.
If our given generic splitting preparation of ¢ is tame then there exists a much
simpler procedure than the one described above, to obtain a )-place A: K. — LUoo
with the properties stated in Theorem 6.10.

6.14. PROCEDURE. Assume that ind I'.(q) = j, and that (K; |0 < i < h)isa
generic splitting tower of ¢ such that K is a subfield of K; and &; ® K; ~ 0 for
every i € [0,h]. By 6.1 there exists a ()-place A:K, - LU oo extending T'. Let
A denote the restriction of A to K’.. Then A again extends I'. For every i € [0,7]
we have (¢; ® K!) ® K, = ¢; ® K, ~ 0. Certainly ¢; ® K, has AGR under A and
A.(e;® K,) ~ 0. By 5.14 the form ¢; ® K’ has AGR under A and A, (g; ® K') ~ 0.
Since this holds for every i € [0,r] we conclude (using 5.11) that 7; ® K has AGR
under A and A, (n; ® K!) ~ 0 for every i € [0,7].

Thus it seems that life is easier if we have a tame generic splitting preparation
at our disposal than an arbitrary one. Up to now this is an argument in favor
of working with generic splitting preparations instead of the more special generic
splitting decompositions (cf. 4.8), in spite of Proposition 4.9, for we do not know
whether every form admits a tame generic splitting decomposition.
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