

Signal Space Diversity:


a power and bandwidth efficient


diversity technique for the Rayleigh fading channel


J. Boutros∗, E. Viterbo†


Abstract


The increasing need of high data rate transmissions over time or frequency selective fading channels has drawn


attention to modulation schemes with high spectral efficiency such as QAM. With the aim of increasing the ‘diversity


order’ of the signal set we consider the multidimensional rotated QAM constellations. Very high diversity orders


can be achieved and this results in an almost Gaussian performance over the fading channel. This multidimensional


modulation scheme is essentially uncoded and enables to trade diversity for system complexity, at no expense of


power or bandwidth.
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I. Introduction


The rapidly growing need of high data rate transmissions over fading channels has stimu-


lated the interest for AM-PM modulation schemes with high spectral efficiency (or through-


put) [1], [2], [3]. The effectiveness of these transmission schemes basically relies on the good


error correcting capabilities of a code. The price to pay for this gain is either a bandwidth


expansion or an additional transmission power to accommodate the redundant bits.


In this paper we present a different approach. We consider uncoded multidimensional


modulation schemes with an intrinsic diversity order, which achieve substantial coding gains


over fading channels. The diversity order of a multidimensional signal set is the minimum


number of distinct components between any two constellation points. In other words, the


diversity order is the minimum Hamming distance between any two coordinate vectors of
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(a) 4-PSK (b) 4-RPSK


Fig. 1. How to increase diversity: (a) L = 1, (b) L = 2.


constellation points.


To distinguish from other well known types of diversity (time, frequency, space, code) we


will talk about modulation diversity or signal space diversity. Throughout the paper we will


use, for simplicity, only the term diversity and it will be denoted with the symbol L.


As we will show in the following, the key point to increase the modulation diversity is


to apply a certain rotation to a classical signal constellation in such a way that any two


points achieve the maximum number of distinct components. Figure 1 illustrates this idea


on a 4-PSK. In fact, if we suppose that a deep fade hits only one of the components of


the transmitted signal vector, then we can see that the ‘compressed’ constellation in (b)


(empty circles) offers more protection against the effects of noise, since no two points collapse


together as would happen with (a). A component interleaver/deinterleaver pair is required


to assume that the in-phase and quadrature components of the received symbol are affected


by independent fading. This simple operation already results in a gain of 8 dB at 10−3


over the traditional 4-PSK (see Fig. 11). We will show in this paper, that the increase in


the dimensionality of the signal set produces significant gains in a fading channel, over the


corresponding non-rotated signal set.


An interesting feature of the rotation operation is that the rotated signal set has exactly the


same performance of the non rotated one when used over a pure AWGN channel. The rotated


constellation when used over a Ricean fading channel will show a performance between the


two extreme cases of Gaussian and Rayleigh fading channel.
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We have used the term ‘uncoded’ since we are not adding any type of redundancy to the


information bit stream. The information bits are grouped into blocks and directly mapped


one-to-one onto the multidimensional constellation points. This means that the coding


gain is obtained without spending additional power or bandwidth, but only increasing the


complexity of the demodulation operation. In fact, demodulation must now be performed


on blocks of consecutive symbols.


The scope of this paper is to analyze in detail all the methods devised to construct high


diversity multidimensional QAM constellations carved from a rotated cubic lattice Zn.


Most of the best known lattices for the Gaussian channel have the property of being


integral, i.e. subsets of the cubic lattice Zn, so this can be used to obtain convenient


labelings. In the case of Rayleigh fading channel, no efficient labeling was found for the


optimal lattices given in [4], thus limiting their practical use. The rotated multidimensional


QAM constellations presented in this paper can be easily labeled by Gray mapping.


The paper is structured as follows. Sections II and III introduce the system model and


review some elementary concepts of algebraic number theory. In Section IV it is proved that


for large values of diversity the point error probability over a fading channel approaches the


one over an AWGN channel. This property is verified through simulation and for values


of modulation diversity larger than 12, the bit error rate curves are within 1-2dB from


the corresponding Gaussian curve. Section V presents three different techniques we used


to increase the diversity of multidimensional QAM-type signal constellations. Although the


most important, diversity is not the only parameter which influences the system performance.


It is also important to maximize the minimum product distance between any two points of


the signal constellation. This problem is considered in Section VI. Finally we give our results


and conclusions in Sections VII and VIII respectively.


II. The multidimensional QAM system


We now describe the system model shown in Figure 2. An n-dimensional QAM constella-


tion is obtained as the Cartesian product of n/2 two-dimensional QAM signal sets. A block


of m bits is mapped onto the constellation by applying the Gray mapping in each dimension.
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We obtain an overall Gray mapping which results in a one bit change when moving from one


constellation point to any one of its nearest neighbors.


Each group ofm/n bits uniquely identifies one of the n components of the multidimensional


QAM constellation vector u = (u1, . . . un), where ui = ±1,±3, . . .. We will call u the integer


component vector. We denote by η the system throughput measured as the number of bits


per symbol (two dimensions), so we have m = ηn/2. In the case of odd dimension, one of the


symbols should be split between two successive points. The total number of points in this


cubic shaped constellations is 2m and the average energy per bit is simply Eb = (2η − 1)/3η.


We can view this constellation as carved from a translated and scaled (enlarged by a


factor 2) version of the n-dimensional cubic lattice Zn. In the following, for simplicity, we


will consider only the constellations carved form Zn, so that ui = 0,±1,±2, . . .. By simple


scaling and translation it is possible to revert to the multidimensional QAM constellation.


The point x of the rotated constellation is obtained by applying the rotation matrix M to


u. The set of all points {x = uM,u ∈ Zn} belongs to the n-dimensional cubic lattice Zn,L


with generator matrix M and diversity L. The two lattices Zn and Zn,L are equivalent in


the sense of Section V-A, but exhibit a different modulation diversity. In the following we


will identify the lattice with the corresponding finite constellation carved from the lattice.


The channel is modeled as an independent Rayleigh fading channel, separately operating


on each component. Perfect phase recovery and CSI are assumed at the receiver. We also


assume that the system is unaffected by inter-symbol interference.


To satisfy the assumption of independence we need to introduce a component interleaver


which destroys the correlation among the in-phase and quadrature channel fading coefficients.


It should be evident that the component interleaving is the key point in obtaining any gain


in the example of Figure 1. An undesirable effect of the component interleaver is the fact


that it produces non constant envelope transmitted signals [8].


As a result of the above assumptions we will write the received vector as r = α� x + n,


where n = (n1, n2, . . . nn) is a noise vector, whose real components ni are zero mean, N0


variance Gaussian distributed independent random variables, α = (α1, α2, . . . αn) are the
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Fig. 2. System model


random fading coefficients with unit second moment and � represents the component-wise


product. Signal demodulation is assumed to be coherent, so that the fading coefficients can


be modeled after phase elimination, as real random variables with a Rayleigh distribution


and unit second moment (E[α2
i ] = 1). The independence of the fading samples represents


the situation where the components of the transmitted points are perfectly interleaved.


After de-interleaving the components of the received points, the maximum likelihood (ML)


detection criterium with perfect CSI imposes the minimization of the following metric


m(x|r,α) =
n
∑


i=1


|ri − αixi|2 (1)


Using this criterium we obtain the decoded point x̂ and the corresponding integer component


vector û from which the decoded bits can be extracted.


The minimization of (1) can be a very complex operation for an arbitrary signal set with


a large number of points. It is shown in [7] how to apply the Universal lattice decoder [6] to


obtain a more efficient ML detection of lattice constellations in fading channels.


In [4], using the Chernoff bounding technique, we have shown that the point error proba-


bility of a multidimensional signal set is essentially dominated by four factors. To improve


performance it is necessary to


1. Minimize the average energy per constellation point.


2. Maximize the diversity L.
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3. Maximize the minimum L-product distance


d
(L)
p,min =


(L)
∏


xi 6=yi


|xi − yi|


between any two points x and y in the constellation.


4. Minimize the product kissing number τp for the L-product distance i.e., the total number


of points at the minimum L-product distance.


In this paper we have fixed the average energy of the constellations so we concentrate on


the remaining items.


III. Algebraic number theory


The idea of rotating a two-dimensional QAM constellation was first presented in [10]. It


was found that for a 16-QAM a rotation angle of π/8 gave a diversity of 2. The effect of this


rotation is to spread the information contained in each component over both components of


the constellation points. Pursuing a similar approach, the optimization of a four-dimensional


rotation is found in [8]. The approach to determine such rotations is direct and can not be


easily extended to multidimensional constellations.


A more sophisticated mathematical tool is needed to construct lattice multidimensional


constellations with high diversity: algebraic number theory. A simple introduction to this


theory is given in [4] together with a review of the known lattice constellations obtained from


the canonical embedding of real and complex algebraic number fields.


Here we will briefly highlight some of the mathematical concepts in algebraic number


theory, nevertheless we recommend some further readings on this topic [13], [14], [15].


An algebraic number field K = Q(θ) is the set of all possible algebraic combinations


(+,−, ∗, /) of an algebraic number θ (real or complex, irrational and non transcendental)


with the rational numbers of Q. This set has all the field properties and is related to an


irreducible polynomial over Q, called the minimal polynomial, having θ as a root.


From elementary calculus we know that Q is dense in R, the set of real numbers. Then


we could state that the set K is ‘a little bit denser’ in R if K is a real field, and ‘a little
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bit denser’ in C if K is a complex field.3 Using a particular mapping, called the canonical


embedding, it is possible to uniquely represent each element of an algebraic number field with


a point in an n-dimensional Euclidean space Rn just like we represent the elements of Q on


the real line R. This set of points is now only ‘dense’ in Rn as Q was ‘dense’ in R. In fact


we chose n so as to satisfy this condition. n is called the degree of the algebraic number field.


The parallel between Q and K can be further extended. In fact, within Q we find the set


of relative integers Z which can be represented as a one dimensional lattice Z in R. In K


there exists a subset OK , called the ring of integers or integer ring of K, which is mapped


by the canonical embedding to an n-dimensional lattice, i.e. a discrete group of Rn.


Finally, an ideal of Z can be viewed as a sub-lattice of Z, similarly an ideal of the ring of


integers OK is mapped by the canonical embedding into a sub-lattice of the lattice produced


by OK .


The interest in these lattices lies in the fact that they present a diversity which can be


easily controlled by properly selecting the algebraic number field. A key result in [4] shows


that it is possible to design lattice constellations with diversity ranging between n/2 and n


according to the number of real (r1) and complex (2r2) roots of the minimal polynomial of


the number field. In particular it is proven that L = r1 + r2. It is then shown that only for


L = n, the dp,min is related to the particular field properties of K.


IV. Converting the Rayleigh fading channel into a Gaussian channel


In this section, we show that the multidimensional QAM constellation becomes insensitive


to fading when the diversity L is large. This means that the point error probability is the


same with or without fading. We focus the proof on the analysis of the pairwise point error


probability P (x → y), which is the probability of the received point r to be closer to y than


to x, assuming that x is transmitted. The detector selects y if m(x|r,α) ≤ m(y, r,α) and


the conditional pairwise error probability is given by


P (x → y|α) = P (
n
∑


i=1


|ri − αiyi|2 ≤
n
∑


i=1


|ri − αixi|2) = P (X ≥ A)


3We note that this intuitive idea is mathematically unprecise since K has the same density of Q in R.
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where X =
∑n
i=1 αi(xi − yi)ni is a Gaussian random variable and A = 1


2


∑n
i=1 α


2
i (xi − yi)


2 is


a constant. The mean of X is zero and its variance is σ2
X = 2N0A. The conditional pairwise


error probability can be written as P (x → y|α) = Q(A/σX) and we obtain


P (x → y|α) = Q








√


∑n
i=1 α


2
i (xi − yi)2


4N0





 (2)


We recall that the Gaussian tail function is defined as Q(x) = (2π)−1/2
∫∞
x exp(−t2/2)dt.


The pairwise error probability P (x → y) is obtained by averaging over the fadings αi,


P (x → y) =
∫


P (x → y|α)f(α)dα


where f(α) is the probability density function (p.d.f.) of the fading coefficients. The Ham-


ming distance between x and y is at least L, since L is the modulation diversity of the


constellation. For simplicity of notations and without loss of generality, we assume that


|xi − yi| = 1 for the first L components and |xi − yi| = 0 for the other n − L components.


The conditional pairwise error probability given by (2) becomes


P (x → y|α) = Q











√


√


√


√


∑L
i=1 α


2
i


4N0








 . (3)


On a Gaussian channel, expression (3) simplifies to


P (x → y) = Q


(
√


L


4N0


)


= Q


(


dE(x,y)


2σ


)


(4)


where d2
E(x,y) = L is the squared Euclidean distance between x and y and σ2 = N0 is the


noise variance.


At first sight, one can say that
∑L
i=1 α


2
i acts as E[


∑L
i=1 α


2
i ] = L when L goes to infinity.


This is the weak law of large numbers. It states that
∑L
i=1 α


2
i /L converges to 1 since the


variance of the sum tends to zero. The probability that the difference is larger than a


threshold in absolute value is small. The convergence is very weak and can be proved using


the Chebychev inequality. It shows, roughly and intuitively, that (3) approaches (4) and


thus the fading has no effect when L is very large.
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The above discussion does not constitute a rigorous proof. The exact proof is found when


applying the strong law of large numbers (convergence in the sense of probability laws), as


done below.


First, let us rewrite the conditional pairwise error probability as


P (x → y|α) = Q








√


L(1 + Y )


4N0





 (5)


where Y =
∑L


i=1
(α2


i−1)


L
=
∑L
i=1 Yi. The random variables Yi = (α2


i − 1)/L have a central χ2


distribution [12] with 2 degrees of freedom, because α2
i = a2


i + b2i where ai and bi are two


statistically independent and identically distributed Gaussian variables with zero mean and


variance 1/2. The mean and the variance of Yi are respectively E[Yi] = 0 and E[Y 2
i ] = 1/L2.


As a consequence of the statistical independence of the Yi, their sum Y is a χ2 random


variable with 2L degrees of freedom. Its mean and variance are respectively E[Y ] = 0 and


E[Y 2] = 1/L. The p.d.f. of Y is given by


fY (y) =
LL


(L− 1)!
(y + 1)L−1exp(−L(y + 1)), y ≥ −1 (6)


Figure 3 shows the p.d.f. for L = 2, 4, 8, 12, 16 and 32. Clearly, we see that fY (y) tends


to a Dirac impulse δ(y) when L goes to infinity. More precisely, it is easy to show that
∫∞
−∞ fY (y)g(y)dy → g(0) when L → ∞, for any function g of the class C∞(−∞,∞). From


the definition of the Dirac distribution we can say that fY (y) → δ(y). Hence, the pairwise


error probability


P (x → y) =
∫


Q








√


L(1 + Y )


4N0





 fY (y)dy


approaches the pairwise error probability of the Gaussian channel Q(
√


L
4N0


).


An exact expression of P (x → y) can also be obtained by combining expressions (5) and


(6). and directly computing the above integral. This yields P (x → y) as a function of the


signal-to-noise ratio SNR = L/N0,


P (x → y) =
(


1− µ


2


)L


×
L−1
∑


k=0











L + k − 1


k











(


1 + µ


2


)k


(7)
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where µ is given by


µ =


√


√


√


√


SNR
8L


1 + SNR
8L


The pairwise error probability of (7) is plotted in Figure 4 for diversities L = 1, 4, 12 and 32


on the Rayleigh fading channel. We also plotted in Figure 4 the pairwise error probability


of (4) on the additive white Gaussian noise channel (AWGN). Practically, the fading effect


is reduced when diversity is larger or equal to 12, as shown by Figure 4 and confirmed by


the simulation results in Section VII.


V. Rotating the integer lattice Zn


This section collects the three techniques we have investigated to obtain a rotated multi-


dimensional cubic lattice Zn with high diversity. Following the notations of [4] we denote


with Λn,L an n-dimensional lattice with diversity L.
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We observe that the generator matrix M of the rotated lattice Zn is actually a rotation


matrix which transforms all the integer component vectors into a set of vectors with the


required diversity.


The rotated cubic lattice constellation can be either used as an uncoded multidimensional


modulation scheme or as a base modulation for further coding techniques. For example,


we could apply these rotations to any known coding scheme based on QAM modulations to


obtain the benefits of diversity together with the coding gain.


A. Construction of rotated Zn lattices from known rotated integral lattices


In [4] the rotated versions of the lattices D4, E6, E8, K12,Λ16,Λ24 are found for L equal to


half the dimension. Since D4, E6, E8, K12,Λ16,Λ24 are integral lattices (i.e., sub-lattices of


Zn) we expected to find the under-laying rotated Zn lattice with the same diversity. In this


section we will briefly discuss this problem.
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We say that two lattices Λ1 and Λ2 are equivalent if they are equal up to a rotation and a


scaling factor. The generator matrices M1 and M2 of two equivalent lattices are related by


M2 = αBM1R (8)


where α is the scaling factor, R is the rotation matrix (det(R) = ±1) and B is a lattice


basis transformation matrix i.e., an integer matrix with det(B) = ±1. The matrix B is also


known as an integer unimodular matrix.


Let us denote any one of the non rotated lattices D4, E6, E8, K12,Λ16,Λ24 with Λn,1 since


it has diversity L = 1 and with Λn,n/2 the corresponding rotated lattice with diversity


L = n/2. The two lattices Λn,1 and Λn,n/2, defined by the generator matrices M1 and M2,


are equivalent. If we determine the scaling factor α and the matrix B then we are able to


obtain the desired rotation matrix R from (8).


Taking the absolute value of the determinant of both sides of (8) we obtain


α =


(


| detM2|
| detM1|


)1/n


.


Without loss of generality we can replace M2 by α−1M2 and concentrate on finding B. Let


us consider the Gram matrices G1 = M1M
T
1 and G2 = M2M


T
2 . Since M2 = RM1B we have


G2 = BG1B
T . Instead of finding B we search directly for a generator matrix M1 of the non


rotated lattice which results in G2 = G1 = M1M
T
1 , implying that B is the identity matrix.


The Gram matrix G2 is symmetric and its elements gij are the scalar products 〈vi,vj〉
of the lattice basis vectors corresponding to the rows of M1. The diagonal elements gii


correspond to the square norms of the basis vectors. The problem is then to determine the


generator matrix M1 such that the lattice basis vectors satisfy the conditions on the scalar


products imposed by G2. By computer search we were able to find the generator matrices


M1 and the desired rotation matrices R = M2M
−1
1 .


B. Algebraic construction of Zn,n/2 lattices


In this section we construct a family of orthogonal matrices with diversity L = n/2 for


n = 2e13e2, e1, e2 = 0, 1, 2, . . . applying the canonical embedding to some totally complex
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cyclotomic number fields. For the mathematical details about algebraic number fields and


the canonical embedding the reader can refer to [4].


The key points used in this section to find Zn,n/2 are the following :


• The vectors of the lattice basis are orthogonal.


• The minimal polynomial µθ(x) has integer coefficients.


• The minimal polynomial µθ(x) has n distinct complex roots.


• The lattice dimension is n = Φ(N)/2, where Φ(·) is the Euler function giving the number


of integers prime with N [14].


Let us consider the cyclotomic field K = Q[j](θ), where θ = e2πj/N is an N -th root of


unity. K is an algebraic extension of Q[j] = {a+ jb|a, b ∈ Q} of degree Φ(N)/2. We recall


that this is a totally complex field with signature (r1 = 0, r2 = n/2) and minimal polynomial


µθ(x) =
∏


(k,N)=1


(x− θk) (9)


where (k,N) is the greatest common divisor of k and N . The minimal polynomial over Z[j]


is denoted by m(x) and defined later in this section.


Let us denote θ1 = θ, θ2, . . . θn/2 the complex roots of µθ(x) which define the n/2 distinct


field Q-homomorphisms


σ1(θ) = θ1, σ2(θ) = θ2, . . . σn/2(θ) = θn/2 . (10)


To construct a complex lattice Λ of dimension n/2 we apply the canonical embedding to


the ring of integers OK = Z[j](θ) generated by (1, θ, θ2, . . . θn/2−1). Its generator matrix is


given by


M =
































1 1 . . . 1


θ1 θ2 . . . θn/2
...


...
...


θ
n/2−1
1 θ


n/2−1
2 . . . θ


n/2−1
n/2
































=
































v1


v2


...


vn/2
































(11)


where the complex lattice basis vectors vi, i = 1, 2, . . . n/2, correspond to the rows of M .
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The corresponding real lattice of dimension n can be obtained by replacing each complex


entry a + jb of M by a 2× 2 matrix











a −b
b a








 . As proven in [4] this lattice has diversity


L = n/2 = r2.


We are interested in selecting the roots θi, i = 1, 2, . . . n/2, or equivalently their minimal


polynomial µθ(x), so that M becomes an orthogonal matrix i.e., a generator matrix for the


complex integer lattice in dimension n/2. The orthogonality among the complex vectors


implies the orthogonality among the corresponding real vectors. The complex inner product


of any two rows vp+1 = (θp1, θ
p
2, . . . θ


p
n/2) and vq+1 = (θq1, θ


q
2, . . . θ


q
n/2), p, q = 0, 1, . . . n/2− 1 of


M must satisfy


〈vp+1,vq+1〉 =
n/2
∑


k=1


(θk)
p(θ∗k)


q =

















1 p = q


0 p 6= q
(12)


For p > q, we have


〈vp+1,vq+1〉 =
n/2
∑


k=1


(θkθ
∗
k)
q(θk)


p−q =
n/2
∑


k=1


‖θk‖q(θk)p−q = 0 (13)


and since the complex roots θi are placed on the unit circle ‖θk‖ = 1


〈vp+1,vq+1〉 =
n/2
∑


k=1


(θk)
m = Sm = 0 m = 1, 2, , . . . n/2− 1 (14)


In other words, the first n/2−1 power symmetric functions Sm of the roots of µθ(x) are null.


The polynomial µθ(x), which we want to determine, can be factored into m(x)m∗(x), where


we assume that θi, i = 1, 2, . . . n/2 are the roots of the polynomial m(x) of degree n/2 over


the ring of Gaussian integers Z[j], while m∗(x) takes on the complex conjugate roots.


Applying Newton’s identities one easily observes that m(x) = (x − θ1) · · · (x − θn/2) =


xn/2 + P and m∗(x) = xn/2 + P ∗ so that


µθ(x) = xn + (P + P ∗)xn/2 + 1 . (15)


Now that we have the general form of the minimal polynomial we still need to determine


which of the n roots of unity must be chosen to apply the canonical embedding (11).
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Let θi = ejφi, i = 1, 2, . . . n/2 be the unknown roots of m(x) which we want to determine.


P is the product of the n/2 roots laying on the unit circle


P = ejψ − π ≤ ψ < π (16)


thus


m(θi) = ejφin/2 + ejψ = 0 (17)


and we obtain exactly n/2 distinct values of θi with


φi = 2
ψ + π


n
+


4π(i− 1)


n
i = 1, 2, . . . n/2 (18)


Similarly, for the roots θi+n/2 = ejφi+n/2 of m∗(x) satisfy


φi+n/2 = 2
π − ψ


n
+


4π(i− 1)


n
i = 1, 2, . . . n/2 (19)


In order to determine the value of ψ we consider the following conditions


• µθ(x) has exactly n distinct roots, so the roots of m(x) must be different from the roots


of m∗(x)


2
π + ψ


n
6= 2


π − ψ


n
⇒ ψ 6= 0 (20)


• µθ(x) has only complex roots, so


φi, φi+n/2 6= kπ ⇒ 2πi + π ± ψ 6= n


2
kπ ⇒ ψ 6= 0 (21)


• µθ(x) has integer coefficients


P + P ∗ = ejψ + e−jψ = 2 cosψ ∈ Z (22)


which implies ψ = ±π/3,±π/2,±2π/3.


The possible values for the roots of m(x) are summarized in Table I, where only the


negative values of ψ were considered since the positive ones correspond to the roots of


m∗(x). The third column (the value of N) is derived from the second one by noting that


φ1 = 2π/N since by definition θ = e2πj/N = θ1 = ejφ1.
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ψ φi = 2ψ+π
n


+ 4π(i−1)
n


N


− π
3


4π
3n


+ 4π(i−1)
n


3n
2


− π
2


π
n


+ 4π(i−1)
n


2n


− 2π
3


2π
3n


+ 4π(i−1)
n


3n


TABLE I


The admissible values for the roots are θi = ejφi , i = 1, . . . n/2


Finally, we must solve Φ(N) = n for N = 3n/2, 2n, 3n, to obtain the admissible values


of the dimension n of the real lattice. Equivalently we can solve Φ(N)/N = 1/K where


N = Kn for K = 2, 3, 3/2. We recall that Φ(N)/N must have the largest prime dividing N


as a factor in the denominator. Then for the above Ks the largest prime in N is at most 3


and we can write N = 2e13e2 for some e1, e2 = 0, 1, 2, . . .. We distinguish the three cases:


N = 3n/2 — Let N = 2e13e2 with e1 = 0, 1, 2, . . ., e2 = 1, 2, . . ., then Φ(3n/2) = n has no


solutions.


N = 2n — In this case the largest prime dividing N is at most 2, so that N = 2e1 with


e1 = 1, 2, . . ., then Φ(2n) = n has solutions for n = 2e1 .


N = 3n — Let N = 2e13e2 with e1 = 0, 1, 2, . . ., e2 = 1, 2, . . ., then Φ(3n) = n has solutions


for n = 2e13e2.


We can conclude that the admissible values of ψ are −π/2 and −2π/3. They correspond


to the polynomials of the type xn + εxn/2 + 1 with ε = 0 or −1 and with N = 2n and 3n


respectively. Thus, there exist Zn,n/2 lattices for all dimensions n = 2e13e2 , with e1 = 1, 2, . . .


and e2 = 0, 1, 2, . . ..


C. Algebraic construction of Zn,n lattices


This construction is based on the totally real algebraic number field Q(2 cos(2π/N)). By


applying the canonical embedding to a particular ideal in this field we found the rotated


cubic lattice Zn,n. Since Q(2 cos(2π/N)) is a totally real field we know from [4] that the
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constellation has full diversity L = n. The choice of this family of number fields appears


to be arbitrary but in the following section we will show that some of these rotated cubic


lattices also maximize the product distance of the constellation.


We now describe the procedure we used to obtain Zn,n. We know that the degree of


Q(2 cos(2π/N)) is Φ(N)/2. This imposes some limitations on the lattice dimensions we can


obtain (n = Φ(N)/2). All the even dimensions up to 32 do not lead to the desired integer


lattice while the odd ones in Table II do. The procedure is the following:


1. Consider the number field K = Q(2 cos(2π/N)) with minimal polynomial µθ(x) (see


Appendix A) and absolute discriminant dK .


2. Let dK = pm be the prime factorization of the absolute discriminant.


3. Factor the principal ideal (p) into In, where I is a prime ideal.


4. For k = 0, . . . n apply the canonical embedding to the ideal Ik and check if the generator


matrix is orthogonal i.e., the generator matrix of Zn,n.


The last column of Table II gives the power of the ideal I which produces the full diversity


Zn,n lattice. The lattice is given by Zn,n = σ(Ik), where σ is the canonical embedding defined


by the n real roots of µθ(x). The fundamental volume of Zn,n can be related to dK and the


algebraic norm N(Ik) = pk by [4]


vol(Zn,n) = N(Ik) ∗
√


|dK| .


If we introduce a scaling factor α = (pk ∗
√


|dK |)1/n, we obtain the unit volume cubic lattice.


As an example, the full diversity cubic lattice Z5,5 is found from the field Q(2 cos(2π/11)).


The absolute discriminant is dK = 114 and Z5,5 = σ(I3). The prime ideal I is computed by


factoring the principal ideal generated by 11: (11) = (11, θ+2)5 and I = 11OK +(θ+2)OK .


VI. Maximizing the product distance


In the previous section we have shown how to obtain rotated Zn lattices which guarantee


a certain degree of diversity. Although diversity appears to be the most relevant design


parameter we are also interested in maximizing the minimal product distance dP,min between
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n N µθ(x) dK k


3 7, 14 x3 + x2 − 2x− 1 72 2


9, 18 x3 − 3x+ 1 34 1


5 11, 22 x5 + x4 − 4x3 − 3x2 + 3x+ 1 114 3


9 19, 38 x9 + x8 − 8x7 − 7x6 + 21x5


+15x4 − 20x3 − 10x2 + 5x+ 1 198 5


11 23, 46 x11 + x10 − 10x9 − 9x8 + 36x7 + 28x6 2310 6


−56x5 − 35x4 + 35x3 + 15x2 − 6x− 1


15 31, 62 x15 + x14 − 14x13 − 13x12 + 78x11 + 66x10− 3114 8


220x9 − 165x8 + 330x7 + 210x6 − 252x5−
126x4 + 84x3 + 28x2 − 8x− 1


TABLE II


Full diversity Zn,n lattices from ideals of the Q(2 cos(2π/N)).


any two points of the constellation. In this section we show a construction of Zn,n lattices


for some even n which aims at maximizing dP,min.


Stating the problem in the the most general form, we need to determine an arbitrary rota-


tion matrix, with the highest possible diversity order (L = n), which maximizes dP,min of the


corresponding signal constellation. This optimization problem becomes rapidly intractable


due to the number of variables and the complexity of the constraints. For this reason we


restrict our search to a smaller family of rotation matrices which can be parameterized with


a reduced number of variables and result in simpler constraints.


We start with dimensions 2 and 3 and then move up to other dimensions of the type 2e13e2


applying a construction which recalls the one used for Hadamard matrices.


It is important to remind that whenever we are dealing with lattices generated by canonical


embedding of totally real number fields dP,min is related to the field norm and is independent


of the size of the finite constellation carved from the lattice [4]. In all other cases this is not
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Fig. 5. dP,min for a family of Z2,2 lattices


necessarily true.


In the following dP,min-optimizing construction we limited the size of the constellations


to the case of η = 4 bits/symbol. In all cases (except for the three-dimensional one, where


it is proven to be true) we verified experimentally that dP,min does not depend on the size


of the constellation. We conjecture that in all these cases we are dealing with some lower


dimensional sections of a lattice generated by canonical embedding of totally real number


fields of higher degree.


A. Dimension 2


All two-dimensional orthogonal matrices have the following structure


M =











a b


−b a











with the constraint a2 + b2 = 1.
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We parameterize this orthogonal matrix as a function of the single variable λ as follows


a = 1/
√


1 + λ2 b = λa .


Note that the rows of M are the normalized orthogonal lattice basis vectors. Figure 5 shows


the values of dP,min as a function of λ for a finite constellation (η = 4 bits/symbol), carved


from the lattice generated by M . Only positive values of λ were considered due to the


symmetry about the origin and the values of λ resulting in L = 1 diversity constellation


were skipped. dP,min was computed by exhaustive search through the points of the finite


constellation using a small step for λ (e.g. 0.005). In the same figure we also plot the


following upper bounds to dP,min (functions of λ)


dP,min ≤



























































|a b| (1, 0)


|a2 − b2| (1, 1)


|(2a− b)(a + 2b)| (2, 1)


|(a− 2b)(2a+ b)| (1, 2)


(23)


corresponding to the product distances between the origin and the points with the integer


components reported in the second column of (23). The curve of dP,min could, in principle,


be obtained as the minimum of all the bounds of the type (23) for all the points of the


constellation.


In Figure 5 we observe that the highest peaks are found at the intersection of the first and


second bound in (23) that is for


λo,2 =
1±


√
5


2
do,2P,min =


√
5


5
< 0.5 . (24)


The upper bound of 0.5 to dP,min is obtained by assuming that there exists a constellation


containing a unit norm vector with all equal components.


A few considerations about the optimal matrix are appropriate here. λo,2 is the root of the


polynomial λ2 + λ− 1 i.e., it belongs to a totally real number field of degree 2. The entries


a and b of M then belong to a number field of degree 4. In this case we are not using the


canonical embedding lattice but probably some two-dimensional section of it, which gives
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us a Z2 lattice constellation with diversity L = 2 and maximal dP,min. The two dimensional


case is the only one where we have obtained the absolute maximum dP,min among all possible


rotation matrices.


B. Dimension 3


The family of three-dimensional orthogonal matrices we consider here is


M =























a b c


b c a


−c −a −b























with the constraints a2 + b2 + c2 = 1 and ab+ bc + ac = 0.


We parameterize this orthogonal matrix as a function of the single variable λ as follows


a =
1 + λ


1 + λ+ λ2
b = λa c =


−λ
1 + λ


a . (25)


As before the rows of M form the orthonormal lattice basis vectors of a rotated version of


Z3.


Figure 6 shows the values of dP,min as a function of λ, for a finite constellation with η = 4


bits/symbol, carved from the lattice generated by M . dP,min was computed by exhaustive


search through the points of the finite constellation for each value of λ. In this case the


values of λ were taken in the range (−4, 4) since the dP,min rapidly vanishes outside this


interval. The values of λ resulting in diversity less than 3 were skipped. In Figure 6 we also


plot the following upper bounds to dP,min


dP,min ≤









































|a b c| (1, 0, 0)


|(a− b)(b− c)(c− a)| (1, 0, 1)


|(a+ b− c)(b + c− a)(c + a− b)| (1, 1, 1)


(26)


corresponding to the product distances between the origin and the points with the integer


components reported in the second column of (26).
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Fig. 6. dP,min for a family of Z3,3 lattices


In Figure 6, we identify the highest peaks at the intersection of the first and second bound


in (26), that is at the roots of the polynomials


p1(λ) = λ3 + 2λ2 − λ− 1


p2(λ) = λ3 + λ2 − 2λ− 1 .


Surprisingly, these two polynomials happen to be equivalent minimal polynomials of the


totally real algebraic number field Q(2 cos(2π/7)). The values λo,3 of the roots of the above


polynomials have the simple expressions:


p1 : [2 cos(4π/7)]−1 = −2.24698, [2 cos(6π/7)]−1 = −0.55496, [2 cos(2π/7)]−1 = 0.80194


p2 : 2 cos(6π/7) = −1.80194, 2 cos(4π/7) = −0.44504, 2 cos(2π/7) = 1.24698 .


The values of a(λo,3), b(λo,3) and c(λo,3) to replace in M can be either computed directly


by substitution in equations (25) or by applying the field properties of Q(2 cos(2π/7)). This
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second method is preferable since it results in simple polynomial expressions:


a(λo,3) =


[


1 + λ


1 + λ+ λ2
mod pi(λ)


]


λ=λo,3


=
1


7
(5 + λo,3 − λ2


o,3)


b(λo,3) =


[


λ+ λ2


1 + λ+ λ2
mod pi(λ)


]


λ=λo,3


=
1


7
(−1 + 4λo,3 + 3λ2


o,3)


c(λo,3) =


[


−λ
1 + λ+ λ2


mod pi(λ)


]


λ=λo,3


=
1


7
(3− 5λo,3 − 2λ2


o,3) (i = 1, 2) .


Similarly, we can compute the optimal value do,3P,min:


do,3P,min = [|a b c| mod pi(λ)]λ=λo,3
=


[


λ2(1 + λ)2


(1 + λ+ λ2)3
mod pi(λ)


]


λ=λo,3


=
1


7
<


1


3
(i = 1, 2)


By direct inspection we find that all these lattices are equivalent to the lattices Z3,3a and


Z3,3b of Section 3.3.


C. Construction in higher dimensions


In the two previous subsections we have found the basic building blocks of the rotation


matrices we will present here. This construction is based on the special structure of some


orthogonal matrices similar to the one used to construct Hadamard matrices. We will il-


lustrate this construction in some detail for dimension 4. The other rotation matrices for


dimensions 6, 8 and 12 are obtained by iterating the same construction.


C.1 Dimension 4


The family of four-dimensional orthogonal matrices we consider here is


M =
































a b −c −d
−b a d −c
c d a b


−d c −b a
































=











M1 −M2


M2 M1











Let U2 = a2 + b2 + c2 + d2 be the normalization factor.


If the 2 × 2 sub-matrix M1 is fixed to be one of the optimal two-dimensional matrices,


then the orthogonality constraints reduce to ad− bc = 0. The other 2× 2 sub-matrix M2 is
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Fig. 7. dP,min for a family of Z4,4 lattices


dependent on the parameter λ. The basis vectors are finally normalized by U giving


a =
1


U
√


1 + λ2
o,2


b =
λo,2


U
√


1 + λ2
o,2


c =
λ


Uλo,2
d =


λ


U


where


U =


√


λ2
o,2 + λ2 + λ2


o,2λ
2


λo,2
.


Figure 7 shows the values of dP,min as a function of λ for a finite constellation (η = 4


bits/symbol), carved from the lattice generated by M . dP,min was computed by exhaustive


search through the points of the finite constellation. The values of λ are shown, with steps


of 0.005, in the range (0, 3), since the dP,min rapidly vanishes outside this interval and the


curve is symmetric about the origin. The values of λ resulting in diversity less than 4 were
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skipped. In Figure 7 we also plot the following upper bounds to dP,min (functions of λ)


dP,min ≤



















































































|a b c d| (1, 0, 0, 0)


|(a2 − c2)(b2 − d2)| (1, 0, 1, 0)


|(a− d)2(b + c)2| (1, 0, 0, 1)


|(a+ d)2(b− c)2| (0, 1, 1, 0)


|(−b + c− d)(a+ d+ c)(d+ a− b)(−c + b+ a)| (0, 1, 1, 1)


(27)


corresponding to the product distances between the origin and the points with the given


integer components.


In Figure 7 we find identify the two highest peaks at the intersection of the first and third


bound in (27)


λ
(1)
o,4 =


1


10
(
√


2− 1)
√


50 + 10
√


2 = 0.3523511


and at the intersection of the first and fourth bound in (27)


λ
(2)
o,4 =


1


10
(
√


2 + 1)
√


50 + 10
√


2 = 2.0536527 .


These values can be obtained in a closed form since they are roots of a polynomial of degree


4. The corresponding optimal value for dP,min is 1/40. Other two lower peaks are found


at the intersection of the second and third bound in (27) (λ
(1)
so,4 = 0.6641681) and at the


intersection of the second and fourth bound in (27) (λ
(4)
so,4 = 1.0894935). The corresponding


sub-optimal value for dP,min is 1/85. Closed form values of λso, can also be found.


C.2 Dimension 6


By a similar procedure we can build the six-dimensional orthogonal matrices starting from


the optimal three-dimensional one. This is the highest dimension where closed-form solutions


can be computed and we find one optimal value 1/(72 5
√


5) for dP,min.


The first row of the rotation matrix is reported in Table III. The entire matrix can be


easily obtained by the construction given in the previous section.
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n index dP,min


3 1–3 -0.3199 0.7189 0.5765


4–6 -0.0590 0.1326 0.1654 1.825 10−3


8 1–4 0.0583 -0.0943 0.1407 -0.2277


5–8 0.1926 -0.3116 0.4649 -0.7522 3.685 10−6


12 1–4 -0.1517 0.3409 -0.2734 0.0938


5–8 -0.2107 0.1690 0.2751 0.4721


9–12 0.0333 -0.0869 0.2317 0.5860 1.528 10−10


TABLE III


First rows of the generator matrices of Z6,6, Z8,8 and Z12,12


C.3 Other dimensions


In all the previous cases we were able to obtain the closed form expressions for the optimal


rotation matrices. If we further increase the dimension a greater number of constraints


become non linear and the degree of the polynomial equations giving the optimal values of


λ becomes greater than four, which is the ultimate limit for closed form solutions.


In these cases we adopt a purely numerical approach to find the peek values of dP,min.


Unfortunately we are not able to guarantee the absolute optimality of the rotations. We


report in Table III the numerical values of the first row of the rotation matrix for dimensions


8 and 12. The entire matrices can be easily reconstructed by iterating the construction given


in the previous sections.


VII. Simulation results


In this section we give a complete presentation of the performance curves of the rotated


constellations that we have constructed in the previous sections.


We first consider a throughput of η = 4 bit/symbol so that we will compare the perfor-


mance with a traditional 16-QAM modulation scheme. In all the figures we plot the BER
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Fig. 8. Bit error rates for the family of Zn,n/2 constellations (η = 4)


curve of the 16-QAM over the Gaussian channel and over the independent Rayleigh fading


channel. These two curves bound the region of potential gain over the fading channel, when


the rotated multidimensional uncoded schemes are used.


The first family of curves (Fig. 8) corresponds to constellations in dimensions n up to


32 and diversity L = n/2 (Sec. V-B). As the diversity increases the bit error rate curves


approach the one for the Gaussian channel. For the largest value of diversity the gap to the


Gaussian BER curve is only about 1.5 dB between 10−3 and 10−4. These constellations can


be easily constructed for any dimension n = 2e13e2, e1, e2 = 0, 1, 2 . . .. The only limitation


in going beyond dimension 32 is the decoder complexity.


The second family of curves (Fig. 9) corresponds to constellations in dimensions n up to 15


and diversity L = n (Sec. V-C). As the diversity increases (L = 3, 5, 9, 11, 15) the bit error


rate curves approach the one for the Gaussian channel. For the largest value of diversity


the gap to the Gaussian BER curve is about 3 dB between 10−3 and 10−4. If we compare
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Fig. 9. Bit error rates for the family of Zn,n constellations from Q(2 cos(2π/N)) (η = 4)


these curves with the previous ones we observe that for similar dimensions (e.g. 15 and 16)


the performance is similar. This shows that the doubling of the diversity is not sufficient to


increase the performance. We have verified experimentally that for these constellations the


product kissing number τp is much larger and we believe that this is the limiting factor to


improving the performance by simply increasing the diversity.


The third family of curves (Fig. 10) corresponds to constellations in dimensions n up


to 12 and full diversity L = n (Sec. VI). As the diversity increases (L = 3, 4, 6, 8, 12)


the bit error rate curves approach the one for the Gaussian channel. For the largest value


of diversity the gap to the Gaussian BER curve is about 4dB between 10−3 and 10−4.


The computational complexity of finding these rotations is the limiting factor in increasing


dimension. Having optimized the minimum product distance we expected a performance


improvement. Unfortunately, the product kissing number is again the limiting factor. For the


four-dimensional case we have plotted the curves for two distinct rotations corresponding to
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Fig. 10. Bit error rates for the family of Zn,n constellations which maximize the minimum product distance (η = 4)


different values of the minimum product distance (see Section VI-C.1). In this case doubling


dp,min only improves by a few tenths of a dB.


Finally we show in Figure 11 the case of η = 2 bits/symbol which can be compared to the


traditional 4-PSK modulation scheme. We considered the case of Zn,n/2 rotations. In this


case the gap to the Gaussian BER curve is less than 1 dB between 10−3 and 10−4.


This figure is also useful for comparison with the coded system proposed in [8] with 2


bits/symbol. There, a rate 1/2 trellis coded rotated 16-QAM is used and BER of 10−4 is


achieved with Eb/N0 = 19dB. Our uncoded system provides the same performance using


only a four-dimensional constellation and greater gains can be obtained by increasing the


dimension.


VIII. Conclusions


In this paper we have analyzed an alternative diversity technique and we have constructed


high diversity modulation schemes which exhibit an almost Gaussian performance over the
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Fig. 11. Bit error rates for the family of Zn,n/2 constellations (η = 2)


fading channel.


The great advantage of this type of diversity is that it is traded only for a higher demodu-


lator complexity. No additional power or bandwidth is required, since no type of redundancy


is added.


We have verified that the diversity order L and the minimum product distance dp,min are


not the only important design parameters. The product kissing number τp is also a critical


design parameter. The constellation design which takes into account τp is still an open


problem.


Using the Universal lattice decoder the ML detection complexity is independent of the sys-


tem throughput η: only increasing the number of dimensions slows down the demodulation


operation.


Future developments of this work include the analysis of additional error control coding


techniques, the effects of imperfect CSI estimation, performance analysis with correlated
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fading channels.
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Appendix


I. The minimal polynomial of 2 cos(2π/N)


This appendix gives two different methods to compute the minimal polynomials µ(x) of


2 cos(2π/N) for any N .


Proof 1 – Let m(x) be the minimal polynomial of θ = e2πj/N (i.e., the cyclotomic poly-


nomial of degree φ(N)) and let x = 2 cos(2π/N) = θ + 1/θ then


θ2 − xθ + 1 = 0 and θ1,2 =
x±


√
x2 − 4


2


We now consider the polynomial with integer coefficients g(x) = m(θ1)m(θ2). This poly-


nomial has degree Φ(N) and must contain a factor of degree Φ(N)/2 which is the minimal


polynomial we are looking for. This implies that g(x) = µ(x)2 so that the minimal poly-


nomial can be obtained using Euclid’s algorithm to compute the greatest common divisor


between g(x) and its derivative g′(x) = 2µ(x)µ′(x).


Proof 2 – Let m(x) =
∑n
k=0 akx


k be the minimal polynomial of θ = e2πj/N i.e., the


cyclotomic polynomial of degree n = φ(N).


Using the fact that m(x) is reciprocal since it also admits θ−1 as a root, we can write the


relation θ−n/2m(θ) = 0 as
n/2
∑


k=0


a′n/2−k(θ
k + θ−k) = 0


where a′k = ak except a′n/2 = an/2/2. Noting that (θk + θ−k) = 2 cos(2πk/N) = Tk(cos 2π/N)
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where Tk(x) is the k-th Chebychev polynomial of the first kind, we obtain


µ(x) =
n/2
∑


k=0


a′n/2−kTk(x) = 0 .


To show that µ(x) is the minimal polynomial of x = 2 cos(2π/N) it is enough to show


that it is irreducible. Indeed, if it were reducible, then going backwards from the relation


µ(x) = 0 gives a non trivial factorization of ΦN (θ) over Q, which is impossible.


We can conclude that the minimal polynomial of x over Q is given above and has degree


n/2.


Using the above proof it is easy to show that if N is odd, since Φ2N (θ) = ΦN(−θ),
µ2N(x) = µN(−x): the minimal polynomial for x = cos 2π/2N is obtained from the minimal


polynomial of x = cos 2π/N by changing the sign of x.
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