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Introduction: In this article, we determine up to isometry the trace form
Tσ of central simple algebras with involution over a field k, which has at
most one ordering and such that I3(k) is torsion free. This quadratic form
has been introduced by Weil in [W], and has been studied by Lewis [L] and
Quéguiner [Q2].

Definitions and notation: Let A be a central simple algebra of degree
n over a field k of characteristic different from 2. An involution on A is a
ring antiautomorphism of order at most 2. An involution σ is of the first

kind if σ|k = Idk, and of the second kind if σ|k is a non trivial involution on
k, denoted by .̄ In the last case, k is a quadratic extension of the subfield
k0 fixed by .̄ So we have k = k0(

√
α), α ∈ k∗0/k

∗2
0 . The involution¯ is then

defined by u + v
√

α = u− v
√

α, with u, v ∈ k0. If A is split, the involutions
of the first kind are exactly the involutions adjoint to symmetric or skew
symmetric bilinear forms. In the case where A is a central simple algebra
with an involution of the first kind, and if L is a splitting field of A, A ⊗ L
is a split algebra and σ ⊗ IdL is an involution on A ⊗ L, then adjoint to a
bilinear form b. We say that σ is of orthogonal type if b is symmetric , and
of symplectic type if b is skew symmetric. This definition does not depend on
the splitting field. Now consider the function (x, y) ∈ A×A 7→ TrdA(σ(x)y).
If the involution σ is of the first kind, this is a nondegenerate symmetric
bilinear form of dimension n2 over k, and we denote by Tσ the corresponding
quadratic form. If σ is of the second kind, this is a hermitian form over k,
denoted by Hσ. Then we define Tσ by Tσ (x) = Hσ (x, x). This is a nonde-
generate quadratic form over k0 of dimension 2n2. If σ is of the first kind, we
set Alt(σ)={ x− εσ(x), x ∈ A }, with ε = 1 if σ is orthogonal, and ε = −1 if
σ is symplectic. Recall now the definition of the determinant of an involution
of the first kind, given by Knus, Parimala and Sridharan:

Definition 1 (see [KPS]): Let A be an even dimensional central simple alge-
bra with an involution σ of the first kind. The determinant of σ, denoted by
d(σ) is the square class of NrdA(u), where u is any element of A∗

⋂

Alt(σ),
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and where NrdA is the reduced norm.

We have d(σ) = 1 if σ is symplectic (take u = 1). If A is split, and σ is
adjoint to b, then d(σ) = det(b).

In this paper, we denote by H the two-dimensional hyperbolic plane, and
by I3(k) the cube of the fundamental ideal of the Witt ring of k. Finally, we
will often use the following formula, which can be easily deduced from the
definition of the Hasse-Witt invariant (see also [S], lemma 12.6):

w2(q1 ⊥ q2) = w2(q1) + (det(q1), det(q2)) + w2(q2).

In the following, we determine the isomorphism class of Tσ, when k or k0

has at most one ordering and such that I3 is torsion free. For this, we use
the well known property that quadratic forms over these fields are classi-
fied by dimension, determinant, Hasse-Witt invariant and the signature (see
[EL]). Then we use the results of A. Quéguiner, who computed in [Q2] the
the determinant and the Hasse invariant of Tσ. This last invariant has also
been computed by Lewis in [L].

I. Case I3 = 0

In this part, we will prove the following result:

Theorem 1: Let A be a central simple algebra of degree n over k, with
an involution σ.

1. If σ is of the second kind, set k = k0(
√

α), and assume that I3(k0) = 0.
Then Tσ '< (−α)n >⊥ (2n2 − 1) < 1 >

2. If σ is of the first kind, assume that I3(k) = 0. Then:

(a) If n is odd, A is a split algebra, σ is adjoint to a nondegenerate
symmetric bilinear form, and we have Tσ ' n2 < 1 >.

(b) If n ≡ 0 [4], we have Tσ ' (n2 − 2) < 1 >⊥< d(σ), d(σ) >.

(c) If n ≡ 2 [4], then A is Brauer equivalent to a quaternion algebra
Q. Moreover:

i. If σ is symplectic, set Q = (a, b). Then we get
Tσ '< 1,−a,−b, ab >⊥ (n2 − 4) < 1 >.

ii. If n = 2, that is A = Q, and if σ is orthogonal, there exists
b ∈ k∗ such Q = (a, b), with a = −d(σ), and such that the
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associated standard basis is orthogonal with respect to Tσ.
Then we have Tσ '< 1,−a, b,−ab >.

iii. If n > 2 and if σ is orthogonal, set Q = (a, b). Then
Tσ '< −d(σ),−d(σ), 1,−a,−b, ab >⊥ (n2 − 6) < 1 >.

We will divide the proof of this theorem into five lemmas.

A. Case of involutions of the second kind

Let σ be an involution on A of the second kind and k = k0(
√

α). Then
we have the following result (see [Q2]):

Proposition 1: We have det(Tσ) = (−α)n and w2(Tσ) = 0.

Assume now that I3(k0) = 0. The quadratic form Tσ is then uniquely deter-
mined by its determinant, dimension and Hasse invariant (see [EL]). Then
we get:

Lemma 1: Tσ '< (−α)n >⊥ (2n2 − 1) < 1 >.

B. Case of involutions of the first kind

Assume first that n is odd. Then it is well known that, if A is an alge-
bra with an involution σ of the first kind, then A is split and σ is orthogonal
(see [KMRT] Corollary 2.8). Thus σ is adjoint to a symmetric bilinear form b
over k, which is uniquely determined up to similarity. Since n is odd, we have
det(< λ > ⊗b) = λdetb, so we can assume that det(b) = 1, after multiplying
b by a scalar. Moreover, we know that Tσ ' b⊗ b (see [KMRT], Proposition
11.4). Since we have w2(b⊗ b) = (−1, det(b)) if b is symmetric (see [Q2]), we
get w2(Tσ) = (−1, 1) = 0. Finally, the two quadratic forms Tσ and n2 < 1 >
have the same invariants, and we get:

Lemma 2: Let A be a central simple algebra over k of odd degree, with an
involution σ of the first kind. Then Tσ ' n2 < 1 >, where n = degA.

Assume now that n = 2m. Then det(Tσ) = 1 for any involution (see [Q2]).
Recall also that there exists an involution of the first kind on A if and only if
A⊗A is split (see [J] Theorem 5.2.1). The class of A in the Brauer group of
k, denoted by [A], is then an element of Br2(k), which justifies the following
statement (see [Q2]):
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Proposition 2: We have w2(Tσ) =

{

m(−1,−1) + m[A] if σ is symplectic
(−1, d(σ)) + m[A] if σ is orthogonal

Assume that m is even.
Since d(σ) = 1 if σ is symplectic, we get w2(Tσ) = (−1, d(σ)) in all cases.
Since the invariants of Tσ coincide with the invariants of the quadratic form
(n2 − 2) < 1 >⊥< d(σ), d(σ) >, we have:

Lemma 3: Let A be a central simple algebra of degree n ≡ 0 [4], with
an involution σ of the first kind. Then Tσ ' (n2− 2) < 1 >⊥< d(σ), d(σ) >.

Assume now that m is odd.
We know that the index of a central simple algebra of even degree with an
involution of the first kind is a power of 2 (see [KMRT], Corollary 2.8). In
our case, A is then Brauer equivalent to an algebra of degree 1 or 2. So
A is equivalent to k or to a division quaternion algebra. Since k is equiva-
lent to M2(k) ' (1, 1), we have [A] = (a, b) in all cases. In the symplectic
case, we get w2(Tσ) = (−1,−1) + (a, b). An easy computation shows that
w2(< 1,−a,−b, ab >) = (−1,−1) + (a, b). Since
w2(< 1,−a,−b, ab >⊥ (n2 − 4) < 1 >) = w2(< 1,−a,−b, ab >), and the
determinant of this form is trivial, we get:

Lemma 4: Let A ' Mm(Q), where m is odd and Q is the quaternion
algebra (a, b), with a symplectic involution σ.
Then Tσ '< 1,−a,−b, ab >⊥ (n2 − 4) < 1 >.

Lemma 5: Let A ' Mm(Q), where m ≥ 1 is odd and Q is a quaternion
algebra, with an orthogonal involution σ. If m = 1, there exists b ∈ k∗ such
Q = (a, b), with a = −d(σ), and such that the associated standard basis is or-
thogonal with respect to Tσ. Then we have Tσ '< 1,−a, b,−ab >. If m > 1,
set Q = (a, b). Then Tσ '< −d(σ),−d(σ), 1,−a,−b, ab >⊥ (n2 − 6) < 1 >.

Proof: If m > 1, set Q = (a, b). We have w2(< −d(σ),−d(σ) >) =
(d(σ),−1) + (−1,−1) and w2(< 1,−a,−b, ab >) = (−1,−1) + (a, b). These
two quadratic forms have a trivial determinant, so we easily get
w2(< −d(σ),−d(σ), 1,−a,−b, ab >⊥ (n2 − 6) < 1 >) = (−1, d(σ)) + (a, b).
Since this last quadratic form is n2-dimensional and has a trivial determi-
nant, we have Tσ '< −d(σ),−d(σ), 1,−a,−b, ab >⊥ (n2 − 6) < 1 >. The
case m = 1 can be found in [Q2]. Note that in [Q2], it is shown that
Tσ '< 2,−2a, 2b,−2ab >, but it is easy to see that this last form is isomet-
ric to < 1,−a, b, ab > (it suffices to compare the invariants).
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These five lemmas give the proof of theorem 1.

All these results are true in particular on local fields, function fields and
non formally real number fields.

II. Case I3 torsion free and k uniquely ordered.

Recall first some facts about the signature of the form Tσ. If (k, P ) is an or-
dered field, we denote by kP the corresponding real closure, which is uniquely
ordered by squares (see [S],Theorem 3.1.14). If q is a quadratic form over
(k, P ), then signP (q) = sign(qkP

). Now let A be a central simple algebra over
k. If σ is an involution of the first kind on A, then signP (Tσ) is a square.
Moreover, if A ⊗ kP ∼ 1 and σ is symplectic, or if A ⊗ kP 6∼ 1 and σ is
orthogonal, then signP (Tσ) = 0. See [KMRT] for more details. If σ is of
the second kind, assume that k0 is ordered by P , and k = k0(

√
α). Then

signP (Hσ) is a square and signP (Tσ) = 2signP (Hσ) (see [Q1]). Moreover,
this signature is equal to 0 if α > 0. Now set signP (σ) =

√

signP (Tσ) or
√

1

2
signP (Tσ) respectively if σ is of the first or the second kind. In all cases,

the signature and the degree of A have the same parity (see [KMRT] and
[Q1]).

Before stating the results, recall that if the degree of A is odd, and if σ is an
involution of the first kind on A, then A is split and σ = σb where b is sym-
metric. Moreover, when the determinant is defined, we have d(σb) = det(b),
and d(σ) = 1 if σ is symplectic.

In the following, we will show:

Theorem 2: Let A be a central simple algebra of degree n, with an in-
volution σ. We keep the notation of Theorem 1.

1. If σ is of the second kind, set k = k0(
√

α) and sign(σ) = s (recall that
s = 0 if α > 0). Assume that k0 is uniquely ordered and I3(k0) is
torsion free. Then

Tσ '







< (−α)n >⊥ (n2 + s2 − 1) < 1 >⊥ (n2 − s2) < −1 > if α < 0
n2H if α > 0 and n is even
< 1,−α >⊥ (n2 − 1)H if α > 0 and n is odd

2. If σ is of the first kind, assume that k is uniquely ordered and that
I3(k) is torsion free, and set sign(σ) = s.
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(a) If n is odd, then σ is adjoint to a symmetric bilinear form and we
have Tσ ' n2+s2

2
< 1 >⊥ n2

−s2

2
< −1 >.

(b) If n ≡ 0 [4], then we have:

i. If d(σ) > 0, we have s ≡ 0 [4] and Tσ ' (n2+s2

2
− 2) < 1 >⊥

n2
−s2

2
< −1 >⊥< d(σ), d(σ) >

ii. If d(σ) < 0, we have s ≡ 2 [4] and Tσ ' n2+s2

2
< 1 >⊥

(n2
−s2

2
− 2) < −1 >⊥< d(σ), d(σ) >

(c) Assume now that n ≡ 2 [4].

i. Assume that σ is symplectic.

A. If A⊗ kP ∼ 1, then we have s = 0 and
Tσ '< 1,−a,−b, ab >⊥ n2

−4

2
H.

B. If A⊗kP 6∼ 1, then s ≡ 2 [4] and Tσ '< 1,−a,−b, ab >⊥
(n2+s2

2
− 4) < 1 >⊥ n2

−s2

2
< −1 >.

ii. If σ is orthogonal and n = 2, then Tσ '< 1,−a, b,−ab > and
s = 0 or 2 depending of the signs of a and b.

iii. If σ is orthogonal and n > 2, then

A. If A⊗ kP 6∼ 1, then s = 0, d(σ) > 0 and we have Tσ '
< −d(σ),−d(σ), 1,−a,−b, ab >⊥ (n2

2
− 4) < 1 >

⊥ (n2

2
− 2) < −1 >.

B. If A⊗ kP ∼ 1 and d(σ) > 0, then s ≡ 2 [4], and we have
Tσ '< −d(σ),−d(σ), 1,−a,−b, ab >⊥ (n2+s2

2
− 2) < 1 >

⊥ (n2
−s2

2
− 4) < −1 >.

C. If A⊗ kP ∼ 1 and d(σ) < 0, then s ≡ 0 [4], and we have
Tσ '< −d(σ),−d(σ), 1,−a,−b, ab >⊥ (n2+s2

2
− 4) < 1 >

⊥ (n2
−s2

2
− 2) < −1 >.

These results are true in particular over euclidean fields and over Q.

Proof: It suffices to show that the quadratic forms have the correct in-
variants. Note that there exist a unique division quaternion algebra on kP ,
namely (−1,−1). Then (a, b) ⊗ kP is a division algebra if and only if a < 0
and b < 0. Then signP (< 1,−a,−b, ab >) = 0 or 4 if A ⊗ kP is a split
algebra or a division algebra respectively. Then it is easy to verify that
the signatures are the correct ones. Now we justify the conditions on s
and d(σ): if q is a quadratic form over k, we have sign(q ⊗ kP )=signP (q),
w2(q ⊗ kP ) = w2(q) ⊗ kP . Now quadratic forms over kP are the forms
u < 1 >⊥ v < −1 >, and the unique quadratic form with dimension n2
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and signature s2 is the form n2+s2

2
< 1 >⊥ n2

−s2

2
< −1 >. If we compute the

Hasse invariant of this form and if we compare it with the Hasse invariant of
Tσ ⊗ kP , we get the announced conditions.

Acknowledgments: I would thank the referee for his remarks, which have
permitted to simplify the statements of the main results.

References

[EL] R.Elman, T.Y. Lam Classification theorems for quadratic forms over

fields. Comm.Math.Helv. 49, 373-381 (1974)

[J] N. Jacobson. Finite-Dimensional Division Algebras over Fields,
Springer (1996).

[KMRT] M.-A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol. The book

of involutions, A.M.S. Colloquium Publications Volume 44 (1998)

[KPS] M.-A. Knus, R. Parimala, R. Sridharan. On the discriminant of

an involution, Bull. Soc. Math. Belgique, sér. A 43 (1991), 89-98.

[L] D.W. Lewis. A note on trace forms and involutions of the first kind,
Exposition.Math. 15, No.3, 265-272, 151 (1997)
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