

BRAUER EQUIVALENCE IN A HOMOGENEOUS


SPACE WITH CONNECTED STABILIZER


MIKHAIL BOROVOI AND BORIS KUNYAVSKĬI


Abstract. Let G be a simply connected algebraic group over a
field k of characteristic 0, H a connected k-subgroup of G, X =
H\G. When k is a local field or a number field, we compute the
set of Brauer equivalence classes in X(k).


0. Introduction


In this note we investigate the Brauer equivalence in a homogeneous
space X = H\G, where G is a simply connected algebraic group over
a local field or a number field, and H is a connected subgroup of G.


In more detail, let k be a field of characteristic 0, and let k̄ be a fixed
algebraic closure of k. For a smooth algebraic variety Y over k, set
Y = Yk̄ = Y ×k k̄. Let Br Y denote the cohomological Brauer group
of Y , BrY = H2


ét
(Y,Gm). Set Br1 Y = ker[BrY → BrY ]. There is a


canonical pairing


Y (k)× Br1 Y → Br k, (y, b) 7→ b(y) (0.1)


called the Manin pairing. We define the Brauer equivalence on Y (k)
as follows: y1 ∼ y2 if (y1, b) = (y2, b) for all b ∈ Br1 Y . We denote the
set of classes of Brauer equivalence in Y (k) by Y (k)/Br . Note that we
define the Brauer equivalence in terms of Br1 Y , not in terms of Br1 Y


c


or BrY c, where Y c is a smooth compactification of Y .
The notion of B-equivalence for a subgroup B of the Brauer group


BrY was introduced by Manin [Ma1], [Ma2]. Colliot-Thélène and San-
suc [CT/Sa1] investigated the Brauer equivalence in algebraic tori (they
defined the Brauer equivalence in terms of the Brauer group of a smooth
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compactification). The Brauer equivalence in reductive groups was
studied in [Th].


Let G be a simply connected semisimple algebraic group over k. Let
H be a connected subgroup of G. We denote by Htor the biggest toric
quotient group of H. We are interested in the Brauer equivalence in
the set X(k) where X = H\G.


We compute X(k)/Br when k is a local field. Namely, we prove that
there is a bijection


X(k)/Br
∼


−→im [ker[H1(k,H) → H1(k,G)] → H1(k,H tor)]


(Theorem 2.1). Moreover, when k is a nonarchimedean local field, we
prove that there is a bijection X(k)/Br → H1(k,H tor) (Theorem 2.2).


We also compute X(k)/Br when k is a number field. We prove that
there is a bijection


X(k)/Br
∼


−→im


[


ker[H1(k,H) → H1(k,G)] →
⊕


v


H1(kv, H
tor)


]


(Theorem 3.1), where v runs over the set of places of k. Moreover when
k is a totally imaginary number field, we prove that there is a bijection


X(k)/Br
∼


−→H1(k,H tor)/X1(k,H tor)


(Theorem 3.6), where X
1 denotes the Shafarevich–Tate kernel.


In Example 3.11 we compute X(k)/Br when X is a symmetric space
of a simply connected almost simple group over a totally imaginary
number field.


Note that all our results remain true when G is any simply connected
algebraic group (an extension of a simply connected semisimple group
by a unipotent group), not necessarily a simply connected semisimple
group.


Acknowledgements. The paper was finished while the authors were vis-
iting Sonderforschungsbereich 343 “Diskrete Strukturen in der Math-
ematik” (University of Bielefeld) whose hospitality and support are
gratefully appreciated. We thank D. Harari and A. N. Skorobogatov
for help in proving Theorem 1.5.


1. Generalities over an arbitrary field


1.1. We introduce some notation. For a smooth algebraic variety Y
over a field k of characteristic 0 let U(Y ) = k[Y ]×/k×. Let Pic Y denote
the Picard group of Y . Let Br Y and Br1 Y be as in the Introduction.
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Set Bra Y = coker [Br k → Br1 Y ]. Assume that Y has a k-rational
point y, and define


BryY = ker[Br1 Y
y∗


−→ Br k]


where y∗ is the specialization map.
We prove that BryY ' Bra Y . Consider the composed map


Br k → Br1 Y
y∗


−→ Br k ,


it is the identity of Br k. It follows that the exact sequence


0 → BryY → Br1 Y
y∗


−→ Br k → 0


splits, and we obtain an isomorphism BryY ⊕ Br k ' Br1 Y . Thus we
obtain an isomorphism BryY → Bra Y and a splitting Bra Y → Br1 Y
of the exact sequence


0 → Br k → Br1 Y → Bra Y → 0.


1.2. We wish to investigate the Brauer equivalence in homogeneous
spaces. Let G be a simply connected semisimple algebraic group over a
field k of characteristic 0. Let H ⊂ G be a connected k-subgroup. Set
X = H\G; then X is a right homogeneous space of G with connected
stabilizer. The variety X has a distinguished k-rational point x0, the
image in X(k) of the unit element e ∈ G(k).


We construct a map X(k) → H1(k,H tor) taking x0 to 1. From an
exact sequence in Galois cohomology of nonabelian groups (cf. [Se],
I-5.4, Prop. 36) we obtain a canonical bijection


X(k)/G(k)
∼


−→ ker[H1(k,H) → H1(k,G)] .


Thus we obtain a map X(k) → H1(k,H). Composing this map with
the canonical map H1(k,H) → H1(k,H tor) induced by the homomor-
phism H → Htor, we obtain a map


α : X(k) → H1(k,H tor) . (1.1)


By construction this map is constant on the orbits of G(k) in X(k).
Let X(H) denote the group of k-characters of H, i.e. X(H) =


Homk(H,Gm). We have X(H) = X(H tor).


Proposition 1.3. There is a canonical isomorphism β : X(H)
∼


−→PicX.


Proof. Let χ ∈ X(H). Set L(χ) = H\(Ga × G), where H acts on
Ga × G by h ∗ (u, g) = (χ(h)u, hg) (here h ∈ H, u ∈ Ga, g ∈ G).
There is a canonical map L(χ) → H\G = X, and one can easily see
that L(χ) is a linear bundle over X. We denote its class in PicX by
β(χ). One can easily see that β : X(H) → PicX is a homomorphism.







4 MIKHAIL BOROVOI AND BORIS KUNYAVSKI Ĭ


We wish to prove that β is an isomorphism. We need the following
fact: U(G) = 1. Indeed, by Rosenlicht’s theorem [Ro] U(G) = X(G)
and clearly X(G) = 1 because G is semisimple. We need also the fact
that PicG = 0, cf. [Sa], 6.9(iv).


We construct a map which is inverse to β. We follow an idea of
Mumford [Mu], Ch. I, §2. Let π denote the canonical map G → X =
H\G. Let L → X be a line bundle over X. Consider the pullback
π∗L, it is a line bundle over G. Since PicG = 0, the line bundle π∗L is
trivial. This means that there exists an isomorphism


µ : π∗L→ Ga ×G .


There is a canonical action of H on π∗L, and using µ we obtain an
action of H on Ga×G extending the standard action on G, h∗ g = hg.
The action of H on Ga ×G can be written as


h ∗ (u, g) = (χg(h)u, hg) where h ∈ H, g ∈ G, u ∈ Ga,


and χ : G×H → Gm is a regular map. If we fix h, then χg(h) : G→ Gm


is a regular map, in other words it is a nowhere zero regular function
on G. Since U(G) = 1, we conclude that χg(h) is constant in g. We
may therefore write χ(h) instead of χg(h).


Since h1 ∗ (h2 ∗ (u, g)) = (h1h2) ∗ (u, g), we obtain that χ(h1)χ(h2) =
χ(h1h2). Hence χ : H → Gm is a regular homomorphism, χ ∈ X(H).


If we start from another isomorphism


µ′ : π∗L→ Ga ×G ,


then µ′ differs from µ by a nowhere zero regular function f on G,
and this f must be a constant because U(G) = 1. Then the homo-
morphism χ is replaced by χ′ where χ′g(h) = χg(h)f(hg)f(g)−1, i.e.
χ′ = χ. Thus χ is defined uniquely by L. One can easily check that
we have constructed a homomorphism δ : PicX → X(H) and that this
homomorphism is inverse to β. Thus β is an isomorphism.


1.3.1. Remark. We will use Proposition 1.3 only in the case when k
is algebraically closed. In this case Proposition 1.3 was proved in [Po],
Cor. to Thm. 4.


1.4. We have seen in the proof of Proposition 1.3 that U(G) = 1.
Hence U(G) = 1. It follows that U(X) = 1.


Since X(k) 6= ∅ and U(X) = 1, we have by [Sa], 6.3(iii)


BraX = H1(k,PicX) .


We have Brx0
X ' BraX. By Proposition 1.3, PicX = X(H). We


obtain


Brx0
X = H1(k,X(H)) = H1(k,X(H


tor


)) . (1.2)
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There is a canonical cup product pairing


H1(k,H tor)×H1(k,X(H
tor


)) → Br k . (1.3)


The pairing (1.3) together with the map (1.1) X(k) → H1(k,H tor) and
the isomorphism (1.2) defines a pairing


X(k)× Brx0
X → Br k . (1.4)


Theorem 1.5. The pairing (1.4) up to sign coincides with the restric-
tion of the Manin pairing (0.1) to X(k)× Brx0


X ⊂ X(k)× Br1X.


This theorem will be proved in the Appendix.


2. Brauer equivalence over a local field


Theorem 2.1. Let G, H, X be as in 1.2. Assume that k is a local
field (archimedean or not). Then the map (1.1) α : X(k) → H 1(k,H tor)
induces a bijection


X(k)/Br
∼


−→im [ker[H1(k,H) → H1(k,G)] → H1(k,H tor)] .


Proof. It follows from Theorem 1.5 that two points x1, x2 ∈ X(k) are
Brauer-equivalent if and only if (α(x1), η) = (α(x2), η) for every η ∈


H1(k,X(H
tor


)). Since k is a local field, the cup product pairing (1.3)
is perfect (Tate–Nakayama duality, cf. [Mi], Cor. I.2.4), and it follows
that x1 and x2 are Brauer-equivalent if and only if α(x1) = α(x2). Thus
the set of classes of Brauer equivalence is in a bijective correspondence
with imα. We see that we must only describe the image of X(k) in
H1(k,H tor). But the image of X(k) in H1(k,H) is the same as the
image of X(k)/G(k) and it equals ker[H1(k,H) → H1(k,G)]. Hence
the image of X(k) in H1(k,H tor) is


im [ker[H1(k,H) → H1(k,G)] → H1(k,H tor)] ,


and the assertion of the theorem follows.


Theorem 2.2. Let G,H,X be as in 1.2, and assume that k is a non-
archimedean local field. Then the map (1.1) α induces a bijection


X(k)/Br → H1(k,H tor).


Proof. Since G is a simply connected group, by Kneser’s theorem (see
[Pl/Ra], 6.1, Thm. 4) H1(k,G) = 1. We see now from Theorem 2.1
that X(k)/Br is in a bijective correspondence with im [H1(k,H) →
H1(k,H tor)]. Let Hssu denote ker[H → Htor], it is an extension of a
semisimple group by a unipotent group. Since k is local nonarchimedean
and (H ssu)tor = 1, the map H1(k,H) → H1(k,H tor) is surjective, cf.
[Bo], Cor. 6.4. This proves the theorem.
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3. Brauer equivalence over a number field


Theorem 3.1. Let k be a number field, and let G,H,X be as in 1.2.
Then the map


X(k) → X(k)/G(k)
∼


−→ ker[H1(k,H) → H1(k,G)] →
⊕


v


H1(kv, H
tor)


induces a bijection


X(k)/Br
∼


−→im


[


ker[H1(k,H) → H1(k,G)] →
⊕


v


H1(kv, H
tor)


]


where v runs over the set of places of k.


3.2. Before proving Theorem 3.1 we note that Br1G = Br k (cf. [Sa],
6.9(iv)), hence every orbit of G(k) in X(k) is contained in one class of
Brauer equivalence. It follows that the map X(k) → X(k)/Br factors
through X(k)/G(k):


X(k) → X(k)/G(k) → X(k)/Br


and these maps are surjective.
For a place v of k consider the map


X(k) → X(k)/Br → X(kv)/Br → H1(kv, H
tor) (3.1)


where the last arrow is defined by Theorem 2.1.


Lemma 3.3. The map (3.1) X(k) → H1(kv, H
tor) factors


X(k) → X(k)/G(k)
∼


−→ ker[H1(k,H) → H1(k,G)] → H1(kv, H
tor)


with the obvious arrows.


Proof. The statement of the lemma shows how to define a map from
X(k)/G(k) to H1(k,H tor). We can define a map from X(kv)/G(kv) to
H1(kv, H


tor) in a similar way. Consider the diagram
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X(kv)/G(kv)


X(k)/G(k)


X(kv)/Br


X(k)/Br


H1(kv, H
tor)


H1(k,H tor)


-


-


?


?


?


�
�


�
��3


�
�


��3 Q
Q


QQs


It is commutative (the lower triangle is commutative by Theorem 2.1).
It follows that the diagram


X(kv)/G(kv)


X(k)/G(k) X(k)/Br


H1(kv, H
tor)


X(kv)/Br


-


- -


? ?


is commutative, which proves the lemma.


Lemma 3.4. (cf. [Ma/Ts], 4.5). Let Y be a variety over a global field
k. Then the map Y (k)/Br →


∏


v Y (kv)/Br is injective.


Proof. Let y1, y2 ∈ Y (k), and assume that y1 and y2 are Brauer-
equivalent in Y (kv) for all places v of k. This means that for ev-
ery bv ∈ Br1 Ykv


, (y1, bv) = (y2, bv). Let now b ∈ Br1 Y . We wish
to compare (y1, b) and (y2, b). Consider locv(yi, b) ∈ Br kv, i = 1, 2,
where loc means localization. We have locv(yi, b) = (yi, locvb), where
locvb ∈ Br1 Ykv


. By assumption we have (y1, locvb) = (y2, locvb). We
see that locv(y1, b) = locv(y2, b) for all v. It follows that (y1, b) = (y2, b),
because the map loc : Br k →


∏


v Br kv is injective. Thus y1 and y2 are
Brauer-equivalent in Y (k).


3.5. Proof of Theorem 3.1. By Lemma 3.3 the obvious map


ker[H1(k,H) → H1(k,G)] →
∏


v


H1(kv, H
tor) (3.2)
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has the same image as the map


X(k)/Br →
∏


v


X(kv)/Br →
∏


v


H1(kv, H
tor), (3.3)


where the last arrow is described in Theorem 2.1. But the image
of map (3.2) is contained in


⊕


vH
1(kv, H


tor) (because the image of
H1(k,H tor) in


∏


vH
1(kv, H


tor) is contained in
⊕


vH
1(kv, H


tor), cf. e.g.
[Vo], 11.3, Cor. 1 of Prop. 1). Thus the image of map (3.3) is con-
tained in


⊕


vH
1(kv, H


tor) and is equal to the image of ker[H1(k,H) →
H1(k,G)].


The first arrow in (3.3) is injective by Lemma 3.4, and the second
arrow is injective by Theorem 2.1, and so the composition (3.3) is
injective. Since (3.2) and (3.3) have the same images, we obtain a
bijection


X(k)/Br
∼


−→im


[


ker[H1(k,H) → H1(k,G)] →
⊕


v


H1(kv, H
tor)


]


.


This proves Theorem 3.1.


Theorem 3.6. In Theorem 3.1 assume that k is a totally imaginary
number field. Then the bijection of Theorem 3.1 induces a bijection


X(k)/Br → H1(k,H tor)/X1(k,H tor).


To prove Theorem 3.6 we need a proposition and two corollaries.


Proposition 3.7. Let k be a totally imaginary number field, and L =
(F, κ) a k-kernel (k-lien) (see [Sp], [Bo], [F/S/S] for a definition),


where F is a connected linear k̄-group such that F
tor


= 1. Then every
element of H2(k, L) is neutral.


Proof. The proposition follows from [Bo], Thm. 6.8(iii) and Thm. 6.3(ii).
Note that in the case when F is semisimple, the proposition was proved
by Douai ([Do], Cor. 5.1), see also [Bo], Cor. 6.9. The proposition fol-
lows also from Douai’s result and [Bo], Prop. 4.1.


Corollary 3.8. Let k be a totally imaginary number field and let


1 → G1 → G2 → G3 → 1


be an exact sequence of linear k-groups. If G1 is connected and Gtor


1
=


1, then the map H1(k,G2) → H1(k,G3) is surjective.


Proof. We argue as in [Bo], the proof of Cor. 6.4. Let ξ ∈ H1(k,G3),
and let ψ ∈ Z1(k,G3) be a cocycle from the class ξ. According to
Springer ([Sp], 1.20), one can associate to ψ a k-kernel Lψ = (G1k̄, κψ)
and a cohomology class δ(ψ) ∈ H2(k, Lψ) which is the obstruction to
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lifting ξ to H1(k,G2). Since Gtor


1k̄
= 1, by Prop. 3.7 the class δ(ψ) is


neutral, and hence ξ comes from H1(k,G2).


Corollary 3.9. Let F be a connected linear group over a totally imag-
inary number field k. Then the map H 1(k, F ) → H1(k, F tor) is surjec-
tive.


Proof. We have an exact sequence


1 → F ssu → F → F tor → 1


where (F ssu)tor = 1. Now the corollary follows from Corollary 3.8.


3.10. Proof of Theorem 3.6. Since G is simply connected and k is a
totally imaginary number field, H1(k,G) = 1 (Kneser–Harder–Cher-
nousov, see [Pl/Ra] §6.1, Thm. 6). Thus ker[H1(k,H) → H1(k,G)] =
H1(k,H). By Theorem 3.1 X(k)/Br is in a bijective correspondence
with


im


[


H1(k,H) → H1(k,H tor) →
⊕


v


H1(kv, H
tor)


]


.


By Corollary 3.9 the map H1(k,H) → H1(k,H tor) is surjective. We
see that X(k)/Br is in a bijective correspondence with


im


[


H1(k,H tor) →
⊕


v


H1(kv, H
tor)


]


= H1(k,H tor)/X1(k,H tor).


Example 3.11. Let G be a simply connected almost simple group
over a number field k, H ⊂ G a connected k-subgroup, X = H\G.
Assume that X is a symmetric space, i.e. H is the group of invariants
of an involution of G. From the classification of involutions of simple
Lie algebras (see e.g. [He], X-5, p. 514) it follows that dimH tor ≤ 1.


If H tor = 1 or H tor is a one-dimensional split torus, then H1(kv, H
tor)


= 1 for all v, and by Theorem 3.1 X(k)/Br consists of one element.
If H tor is a one-dimensional nonsplit torus, then Htor splits over a


quadratic extension K of k. Assume in addition that k is totally imag-
inary. Then by Theorem 3.6 X(k)/Br = H1(k,H tor)/X1(k,H tor).
Since K/k is cyclic, we have X


1(k,H tor) = 1 ([Vo], 11.6, Cor.3), and
we see that


X(k)/Br = H1(k,H tor) = k×/NK/kK
×


where NK/k denotes the norm map.
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4. Appendix


In this appendix, we prove Theorem 1.5.
We use the description of the Manin pairing with the help of torsors


given in [CT/Sa2], §2. We first recall some generalities.


4.1. Torsors. Let X be a smooth geometrically integral k-variety
such that U(X) = 1 and PicX is a finitely generated g-module, where
g = Gal(k̄/k). Let S be a k-torus. Let (Y, pY : Y → X) be a right
X-torsor under S.


The set of isomorphism classes of X-torsors under S is the first étale
cohomology group H1(X,S). We have a canonical map


χ : H1(X,S) → Homg(X(S),PicX)


defined as follows. To any X-torsor Y under S we associate a ho-
momorphism χY sending a character λ ∈ X(S), λ : S → Gm,k̄ to the


push-forward λ∗(Y ) which is an X-torsor under Gm,k̄; since PicX =


H1(X,Gm), we identify the isomorphism class of λ∗(Y ) with an ele-
ment of PicX. We call χY the type of Y . If S is the Néron–Severi
torus of X (i.e. X(S) = PicX) and χY is the identity map, the torsor
Y is called universal.


4.2. Evaluation map. Let Y be an X-torsor under S. We then have a
natural evaluation map θY : X(k) → H1(k, S) which associates to ev-
ery rational point x ∈ X(k) the isomorphism class of the fibre Yx of Y
at x. The map θY allows us to identify the Manin pairing with a cup-
product. We use the following construction. To x ∈ X(k) we can asso-
ciate a homomorphism of g-modules σ : k̄(X)× → k̄×, σ(f) = f(x) for


f ∈ k̄(X)×. There is a canonical isomorphism H1(k,PicX)
∼


−→BraX,


cf. [Sa], 6.3(iii). Together with the isomorphism BraX
∼


−→BrxX (see
1.1) this yields an embedding tx : H1(k,PicX) → Br1X (in [CT/Sa2],
p. 449, this embedding is denoted by tσ).


Let Y x denote anX-torsor under S of type χY : X(S) → PicX which
is trivial at x (such a torsor exists and is unique up to isomorphism,
cf. [CT/Sa2], p. 449).


Theorem 4.3. ([CT/Sa2], Prop. 2.7.10) Let


ρ : H1(k,X(S)) → H1(k,PicX)
tx−→ Br1X


be the composed map where the left arrow is induced by χY . Then the
following diagram is commutative up to sign:
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X(k) × Br1X −−−→ Br k


θY x








y


x








ρ


∥


∥


∥


H1(k, S)×H1(k,X(S)) −−−→ Br k


(4.1)


Here the top row is the Manin pairing and the bottom row is the cup-
product.


4.4. Abelianization of torsors. Let us now suppose that X is as in 1.2,
i.e. X = H\G. We have a canonical map G→ X. Define a right action
of H on G by g ∗ h = h−1g, where g ∈ G, h ∈ H. With this action the
map G→ H is a right (non-abelian) X-torsor under H. Set S = H tor.
We consider the natural homomorphism ψ : H → S. Let Hssu denote
the kernel of ψ. Let ψ∗ : H


1(k,H) → H1(k, S) and ψX
∗


: H1(X,H) →
H1(X,S) be the induced push-forward maps, they send non-abelian
torsors under H to abelian torsors under S. Explicitly, to any right X-
torsor Z under H we associate an X-torsor ψX


∗
(Z) = Z/H ssu under S


(abusing notation, we use the same symbol ψ∗ for maps of torsors and
their cohomology classes). Denote by Y the torsor under S obtained by
applying ψX


∗
to G → X, i.e. Y = H ssu\G. Note that by Proposition


1.3, we have an isomorphism X(S)
∼


−→PicX so that Y is a universal
torsor. With the notation of Theorem 4.3, Y = Y x0 where x0 ∈ X(k)
is the image of the unit element of G.


Lemma 4.5. The map θY : X(k) → H1(k,H tor) coincides with the
map α defined by (1.1).


Proof. Indeed, α is the composition


ψ∗ ◦ δ : X(k)
δ
−→H1(k,H)


ψ∗
−→ H1(k,H tor)


where δ is the connecting map. Note that the image of x ∈ X(k) under
δ coincides with the (isomorphism class of the) fibre of G → X at
x (cf. [Se], I.5.4, Prop. 36, [Ha/Sk], 4.1). Furthermore, push-forward
commutes with specialization, i.e. for any X-torsor Z under H and any
x ∈ X(k) the fibre [ψX


∗
(Z)]x coincides with ψ∗(Zx). Hence ψ∗(δ(x))


coincides with the fibre of the abelian X-torsor Y under Htor at x,
which is equal to θY (x) (by the definition of θY ). Thus α = θY .


4.6. To finish the proof of Theorem 1.5, it only remains to apply dia-
gram (4.1). Indeed, denote by i the isomorphism Brx0


X
∼


−→H1(k,X(S)).
Then the pairing (1.4) X(k)× Brx0


X → Br k is given by


(x, b) 7→ α(x) ∪ i(b), (4.2)
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whereas the Manin pairing (0.1) X(k) × Br1X → Br k restricted to
X(k)× Brx0


X is given by


(x, b) 7→ b(x). (4.3)


Any b ∈ Brx0
X can be written as b = ρ(z) with z ∈ H1(k,X(S)),


where in the definition of ρ (in Theorem 4.3) we use x0 instead of
x. On applying diagram (4.1) to the Manin pairing (4.3), we get an
equality (up to sign)


(x, ρ(z)) = θY (x) ∪ z,


where Y = Y x0 in θY . On the other hand, taking into account that
α = θY (Lemma 4.5) and i(ρ(z)) = z, formula (4.2) gives the same
value θY (x) ∪ z for (x, ρ(z)). Thus formulas (4.2) and (4.3) coincide
(up to sign), and the Manin pairing restricted to Brx0


X coincides (up
to sign) with pairing (1.4). The theorem is proved.
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